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Abstract: Water scarcity significantly challenges agricultural systems worldwide, espe-
cially in tropical areas such as the Dominican Republic. This study explores integrating
satellite-based remote sensing technologies and field-based soil moisture sensors to assess
water stress and optimize irrigation management in avocado orchards in Puerto Escondido,
Dominican Republic. Using multispectral imagery from the Landsat 8 and 9 satellites,
key vegetation indices (NDVI and SAVI) and NDWI, a water-related index that specifi-
cally indicates changes in crop water contents, rather than vegetation vigor, were derived
to monitor vegetation health, growth stages, and soil water contents. Crop coefficient
(Kc) values were calculated from these vegetation indices and combined with reference
evapotranspiration (ETo) estimates derived from three meteorological models (Hargreaves–
Samani, Priestley–Taylor, and Blaney–Criddle) to assess crop water requirements. The
results revealed that soil moisture data from sensors at 30 cm depth strongly correlated
with satellite-derived estimates, reflecting avocado trees’ critical root zone dynamics. Addi-
tionally, seasonal patterns in the vegetation indices showed that NDVI and SAVI effectively
tracked vegetative growth stages, while NDWI indicated changes in the canopy water con-
tent, particularly during periods of water stress. Integrating these satellite-derived indices
with field measurements allowed a comprehensive assessment of crop water requirements
and stress, providing valuable insights for improving irrigation practices. Finally, this
study demonstrates the potential of remote sensing technologies for large-scale water
stress assessment, offering a scalable and cost-effective solution for optimizing irrigation
practices in water-limited regions. These findings advance precision agriculture, especially
in tropical environments, and provide a foundation for future research aimed at enhancing
data accuracy and optimizing water management practices.
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precision agriculture
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1. Introduction
Water scarcity is one of the most pressing challenges in modern agriculture, exacer-

bated by climate change and the increasing demand for fresh water for urban areas [1,2].
Irrigated agriculture, which accounts for approximately 70% of global freshwater use,
faces significant challenges in water management [3,4]. However, to properly assess these
challenges, it is necessary to consider each country’s geographical and socioeconomic
differences and generate water management strategies specific to each location.

In this sense, countries such as the Dominican Republic are characterized by substantial
regional climatic differences in seasonal and annual rainfall, with temperature variations
primarily defined by altitude. This indicates a significant climatic heterogeneity influenced
by geographical features and marine conditions [5,6]. Because of this, the Dominican
Republic has a diverse agricultural sector that cultivates key crops such as mango, cocoa
beans, bananas, tobacco, and avocado [7]. The latter is a widely grown crop, especially in
regions with tropical and subtropical climates, and has reached great relevance worldwide
because of its health benefits and culinary versatility [8]. However, avocado trees are also
characterized by having high water demands and vulnerability to water stress, which can
negatively affect crop yields, quality, and sustainability [9,10]. Therefore, in the context of
the high global demand for avocados, it is essential to maintain optimal fruit quality to
ensure that small and medium producers are competitive [11] while also considering the
current water scarcity scenario.

Regarding irrigation management, it is essential to consider that the avocado roots
that allow nutrient and water uptake correspond to the fine roots in the top 30 cm of the
soil [12]. Therefore, irrigation methods such as drip irrigation, which provides precise
water application directly to the root zone, and overhead sprinkling, which can cover larger
areas but may lead to water loss through evaporation [8,12], must focus on this specific
area of the root zone. Different technologies are currently being used in field settings to
assess irrigation delivery effectiveness, which can sometimes be managed remotely to
provide valuable insights into how much water to apply and when. This often involves soil
moisture sensors that provide real-time or historical data and control automated systems.
These tools can also be compared to remote sensing technologies such as satellite images,
given that in regions where conventional irrigation management practices are not feasible
due to technological constraints, remote sensing technologies offer a promising alternative
for monitoring water stress and optimizing irrigation practices [13–15].

Satellite remote sensing has emerged as a valuable tool in agricultural water man-
agement, providing global coverage at a relatively high spatial resolution and monitoring
vegetation health and water status over large areas [16–18]. Vegetation indices derived
from satellite imagery, such as the Normalized Difference Vegetation Index (NDVI), Soil-
Adjusted Vegetation Index (SAVI), and Normalized Difference Water Index (NDWI), have
been widely used to estimate vegetation vigor and stress [19,20]. The NDVI, based on the
differential reflectance of red and near-infrared light, is particularly useful for assessing
plant health and monitoring crop water stress, making it an essential tool in precision
agriculture [21–23]. In contrast, the SAVI and NDWI are well suited to estimating the vigor
of vegetation cover and its growth dynamics [24,25].

While satellite imagery has proven effective for vegetation monitoring, its integration
with ground-based measurements is critical for enhancing the accuracy and reliability
of water stress assessments. Soil moisture, a key indicator of plant water availability, is
often measured at various depths to understand root-zone water content dynamics [26–28].
However, obtaining accurate soil moisture data in remote agricultural areas can take time
due to logistical and financial constraints. The European Centre for Medium-Range Weather
Forecasts (ECMWF) provides global soil moisture estimates through the ERA-5 dataset,
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which offers hourly soil moisture data at different depths, facilitating the assessment of
soil water contents across large areas. However, validating these remote sensing data with
ground measurements is necessary to ensure their reliability.

Field-based sensors can measure soil moisture at multiple depths (e.g., 10 cm, 30 cm,
and 60 cm) and validate the remotely sensed soil moisture data in this context. These
sensors enable an accurate understanding of soil moisture dynamics, particularly in regions
where advanced irrigation practices still need to be fully implemented and where large-scale
monitoring infrastructure is limited.

Along with soil moisture measurements, crop water stress is influenced by evapo-
transpiration, which refers to the combined process of water evaporation from the soil
and plant transpiration. ET is a key component in irrigation management, as it reflects
the water lost from the production system and helps estimate crop water needs. The FAO
Penman–Monteith equation is widely regarded as the most reliable method for calculating
the reference evapotranspiration (ETo). Still, alternative strategies, such as the Hargreaves–
Samani and Priestley–Taylor models, are also commonly used, particularly in areas where
meteorological data are sparse [29,30].

While these models differ in their approach, they are all helpful in estimating ETo and
understanding crop water requirements. To address all the abovementioned limitations,
this study seeks to integrate satellite remote sensing technologies and field-based soil
moisture sensors to assess water stress and optimize irrigation practices in avocado orchards
in a tropical agricultural environment. By combining vegetation indices derived from
multispectral imagery with soil moisture data collected at critical depths, this study aims to
comprehensively understand water dynamics and crop stress. This is done by focusing on
(i) vegetation monitoring through the use of indices such as the NDVI, SAVI, and NDWI
to capture vegetation health, growth stages, and canopy water contents; (ii) soil moisture
assessment by deploying sensors at varying depths to monitor the soil water content within
the critical root zone and validate remotely sensed data; and (iii) irrigation optimization by
estimating crop water requirements using reference evapotranspiration models and crop
coefficients derived from vegetation indices.

Our goal is to demonstrate how remote sensing, combined with ground-based soil
moisture sensors and evapotranspiration models, can offer an innovative and practical
solution for optimizing irrigation practices. The outcomes of this study will contribute
to improving irrigation strategies in avocado orchards and provide insights that can be
applied to other crops in water-scarce regions, thereby supporting sustainable agricultural
practices worldwide.

2. Materials and Methods
2.1. Study Area

This study was conducted in an avocado (Persea americana) orchard in Puerto Escon-
dido (18.340◦N, 71.605◦W, 447 m.a.s.l.) (Figure 1), Dominican Republic, during the 2021 and
2022 growing seasons, covering an area of 3.58 hectares. This location is characteristic of
the region’s small- to medium-scale agricultural systems. The climate of Puerto Escondido
is subtropical, with distinct wet and dry seasons. The annual temperature ranges from
23 ◦C to 31 ◦C. The rainy season lasts from May to October, contributing to most of the
annual rainfall, while the dry season (November to April) presents irrigation challenges
due to limited water resources. The topography is moderately undulating, with slight
slopes influencing water infiltration and drainage. The soil is primarily loamy, with good
water retention capacity but localized texture and moisture variability due to microclimatic
differences. This site was selected as a representation of a water-limited agricultural system
typical of the region and was well suited for collecting satellite and field data.
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Figure 1. (a) The geographical location of the study site; (b) a high-resolution satellite image of the
orchard. Both maps include latitude and longitude references in degrees (WGS 84/EPSG:4326) to
ensure spatial accuracy.

2.2. Data Collection
2.2.1. Satellite Data

The seasonal vegetation health and water status dynamics were analyzed using the
NDVI, SAVI, and NDWI derived from Landsat 8 and 9 satellite imagery collected during
the 2021 and 2022 growing seasons. Given the 30 m spatial resolution of Landsat 8 and 9,
each pixel may contain a mixture of avocado canopy, bare soil, and surrounding vegetation.
To address this, we focused on homogeneous orchard blocks and computed the standard
deviation of the vegetation indices to assess the pixel variability. This approach allowed us
to estimate the pixel heterogeneity and minimize potential biases.

The trends in these indices were analyzed in conjunction with soil moisture data and
local climatic conditions to provide a comprehensive understanding of crop responses
to water stress across the orchard. By focusing on uniform orchard blocks, we ensured
consistency between the satellite data and field conditions. This ensured that the indices
were representative of the entire orchard, minimizing the impact of heterogeneous areas.

It is important to note that Landsat 8 and 9 imageries were exclusively used to de-
rive the vegetation indices (NDVI, SAVI, NDWI) for monitoring crop health and water
status. Soil moisture estimates from in situ sensors and ERA5 reanalysis data provided
complementary ground-truth information. To mitigate the limitations of Landsat’s 30 m
resolution, we focused on uniform orchard blocks and complemented the satellite data
with field measurements. For each index, satellite-derived values were interpolated to daily
measurements to track temporal variability. The standard deviations of these values were
calculated to assess spatial variability within the study area, highlighting heterogeneous
vegetation responses to environmental conditions. The daily vegetation index values and
their standard deviations were graphed to illustrate the temporal dynamics and variability
of vegetation health and water availability across the growing seasons.

The NDVI, a primary index for vegetation vigor and chlorophyll content, was calcu-
lated using the following formula [31,32]:

NDVI =
NIR − Red
NIR + Red

(1)
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where NIR and Red represent near-infrared and red reflectance values, respectively. High
NDVI values indicate dense and healthy vegetation.

To account for soil reflectance, particularly in areas with partial canopy cover, the
Soil-Adjusted Vegetation Index (SAVI) was employed [33,34]. The SAVI is calculated
as follows:

SAVI =
(NIR − Red)(1 + L)

NIR + Red + L
(2)

where L is a correction factor set to 0.5 for intermediate canopy cover conditions. This
adjustment improves the accuracy of vegetation monitoring in heterogeneous landscapes.

The Normalized Difference Water Index (NDWI) was calculated to estimate the canopy
water content using the following formula [35,36]:

NDWI =
Green − NIR
Green + NIR

(3)

where Green and NIR represent green and near-infrared reflectance values, respectively.
The NDWI is highly sensitive to the water content within the canopy and offers insights
into plant water status.

Figure 2 illustrates the spectral coverage and complementarity of the relevant Landsat 8
and Landsat 9 bands, highlighting the bands used to calculate the NDVI, SAVI, and NDWI,
with their corresponding wavelength ranges. The satellite imagery was preprocessed
using the Google Earth Engine (GEE) platform to ensure data reliability and consistency.
This preprocessing involved cloud masking, radiometric calibration, and atmospheric
corrections. Cloud masking was applied using the Landsat surface reflectance QA band
to exclude pixels affected by clouds and shadows. Radiometric calibration standardized
the data across the acquisition dates, converting digital numbers into surface reflectance
values. Atmospheric corrections were applied to account for the effects of aerosols and
water vapor, improving the accuracy of the spectral bands used for the vegetation indices.
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Figure 2. Spectral reflectance curves of avocado orchards derived from Landsat 8 and 9 satellite data.
The figure shows the distinct spectral bands (blue, green, red, near-infrared, and shortwave infrared)
used to calculate the vegetation and water indices. The variation in reflectance values across these
bands provides insights into plant health, water contents, and stress conditions. Seasonal changes in
reflectance highlight the impact of varying water availability on vegetation indices, illustrating how
water stress influences plant vitality throughout the growing season.
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For the analysis, the vegetation indices were computed for each satellite image, and
seasonal trends were analyzed through temporal aggregation methods, including calculat-
ing seasonal averages and identifying peaks in the indices. This approach, used in several
studies [37–42], helped assess changes in vegetation health and water stress throughout the
growing seasons.

Additionally, soil moisture estimates from ERA5, provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF) through the Copernicus Climate Data Store,
were integrated into the analysis. ERA5 provides hourly soil moisture data with global
coverage, providing a consistent perspective on soil water dynamics. These estimates
were aggregated to match the temporal resolution of the satellite imagery, enabling the
validation and contextualization of the remotely sensed soil moisture data.

2.2.2. Sensor Data for Soil Moisture and Climate Monitoring

To validate satellite-derived soil moisture data from ERA5 against in situ field mea-
surements collected at various depths within the avocado orchard, the soil moisture was
measured using Watermark sensors installed at depths of 30 cm, 60 cm, and 120 cm along
the planting beds in representative locations within the avocado orchard. The soil moisture
sensors were strategically deployed across representative orchard blocks, with each sensor
coded according to its location and depth. The sensor naming convention included a block
identifier (e.g., “A”, “B”) and depth indicators (e.g., “S1-30” for a 30 cm depth sensor)
representing the three soil depth categories: 30 cm, 60 cm, and 120 cm (Figure 3). This
deployment design enabled comprehensive soil moisture monitoring at both horizontal
and vertical scales, which is crucial for evaluating the spatial and temporal accuracy of
satellite-derived moisture estimates.
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These sensors were installed during the study period. Raw field sensor readings were
recorded in centibars and converted to volumetric soil moisture contents (m3/m3) to ensure
comparability with satellite data. This conversion was based on a calibration table that
linked tension values to soil-specific moisture states, including the field capacity (FC) and
permanent wilting point (PWP). These transformations provided a consistent framework
for comparing field and satellite data, strengthening the analysis.

Pearson correlation coefficients (r) and p-values were calculated to evaluate the agree-
ment between the field measurements and ERA5 soil moisture estimates, quantifying the
accuracy of the satellite data. These calculations were performed separately for each sensor,
grouped by depth and growing season (2021 and 2022). The resulting correlations provided
valuable insights into the performance of the field sensors and satellite estimates, allowing
for a clear understanding of the spatial variability and the temporal dynamics of soil mois-
ture. Seasonal analyses were conducted yearly to evaluate the interannual variability in the
correlation results.

Meteorological data were collected using an agro-meteorological station operated by
a local commercial entity adjacent to the orchard. The station provided high-resolution
hourly recordings of air temperature (◦C), relative humidity (%), and solar radiation
(MJ/m2). These air temperature data were critical for understanding the thermal conditions
affecting evapotranspiration rates and crop physiological responses. Relative humidity
measurements enabled the calculation of the vapor pressure deficit (VPD), a key indicator
of atmospheric water demand, using saturation and actual vapor pressures derived from
recorded temperature and humidity values. Solar radiation data quantified the incoming
energy available for evapotranspiration and photosynthesis, while the VPD provided a
comprehensive measure of the atmospheric potential to induce plant water stress. The
meteorological data were aggregated into daily averages to match the temporal resolution
of the satellite data. These aggregated datasets were aligned with the soil moisture and
vegetation index data, ensuring temporal consistency for integrated analyses.

The meteorological station was strategically located adjacent to the study orchard to
capture representative environmental data influencing the crop’s water dynamics. While
microclimatic variations may exist due to differences in vegetation cover or terrain within
the orchard, previous observational studies and field measurements indicated relatively
uniform conditions across the orchard blocks. Thus, the data from the station reliably reflect
the general trends in temperature, solar radiation, and precipitation affecting the study area.
However, we acknowledge that finer-scale variability may influence specific microclimates,
which could benefit from the deployment of additional in situ sensors in future studies.
The distance between the meteorological station and the orchard was approximately 200 m,
ensuring minimal environmental divergence.

2.2.3. Estimation of Crop Water Requirements and Evapotranspiration Models

To estimate the water requirements of the avocado orchard during the 2021 and
2022 growing seasons, crop coefficients (Kc) were derived independently from the NDVI,
SAVI, and NDWI. Crop coefficients are dimensionless factors that adjust ETo to reflect
the actual water use of the crop (ETc), varying with the crop’s growth stage and canopy
development, and are able to capture the dynamic water needs throughout the season. The
reference evapotranspiration was calculated daily using three meteorological models: the
Hargreaves–Samani model, a simplified Priestley–Taylor model, and the Blaney–Criddle
model. This framework provided a detailed understanding of crop water dynamics under
varying environmental conditions. The crop coefficients were calculated using empirical
equations tailored for perennial crops, ensuring relevance to avocado orchards.

The equations for each vegetation index were as follows:
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NDVI:
Kc = 1.2·NDVI − 0.15 (4)

where 1.2 is a coefficient reflecting the sensitivity of Kc to the NDVI, emphasizing its strong
correlation with canopy cover and the leaf area index (LAI), and −0.15 is an intercept that
adjusts Kc for sparse vegetation conditions where NDVI values are low.
SAVI:

Kc = 1.0·SAVI − 0.1 (5)

where 1.0 is a coefficient capturing the soil-adjusted dynamics of Kc, which is particularly
relevant for partial canopy cover conditions, and −0.1 is an intercept to account for soil
reflectance under sparse vegetation.
NDWI:

Kc = 0.85·NDWI + 0.05 (6)

where 0.85 is a coefficient reflecting the relationship between the canopy water content and
Kc, making the NDWI particularly sensitive to changes in water availability, and 0.05 is an
intercept ensures that Kc remains positive despite low NDWI values.

The differences in the coefficients and intercepts reflect each vegetation index’s unique
sensitivities to biophysical characteristics, such as vegetation cover, soil influences, and
water contents.

The reference evapotranspiration (ETo) was calculated using three meteorological
models chosen for their compatibility with the available meteorological inputs:

Hargreaves–Samani model:

ETo = 0.0023·Rs·(Tmax − Tmin)·0.5·
(
Tavg + 17.8

)
(7)

where Rs is the solar radiation at the surface (MJ/m2); Tmax, Tmin, and Tavg are the maxi-
mum, minimum, and average daily temperatures (◦C); and 0.0023 is a coefficient specific to
the Hargreaves–Samani model.
Simplified Priestley–Taylor model:

ETo = 0.23·Rs (8)

where 0.23 is a coefficient suited for energy-driven evapotranspiration in humid or energy-
limited conditions.
Blaney–Criddle model:

ETo = p·
(
0.46·Tavg + 8

)
(9)

where p is the proportion of annual daytime hours for each day of the year (unitless), Tavg

is the average daily temperature (◦C), and 0.46 and 8 are constants derived from the original
Blaney–Criddle formulation.

These models were selected to accommodate the available meteorological inputs,
which included the daily temperature (Tmax, Tmin, Tavg), solar radiation (Rs), and estimated
daylight hours (p). The derived Kc values for the NDVI, SAVI, and NDWI and the ETo
values for each meteorological model were calculated independently. This separation
allowed for a robust assessment of each index’s relative performance without introducing
aggregation biases. By linking vegetation indices to meteorological data, this methodology
provides a scalable framework for estimating crop coefficients and reference evapotran-
spiration in regions with limited meteorological infrastructure, aligning with precision
agriculture objectives.
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3. Results
3.1. Meteorological Data Analysis

The meteorological data collected during the 2021 and 2022 growing seasons provided
essential insights into the environmental conditions influencing the avocado orchard’s
water dynamics. This analysis focused on key climatic variables recorded at an agro-
meteorological station located near the study area, including temperature, precipitation,
and solar radiation (Figure 4). The analysis of daily temperature, precipitation, and so-
lar radiation data recorded over the two years revealed significant seasonal trends and
fluctuations that directly impacted crop water needs and soil moisture dynamics. The tem-
perature exhibited a clear seasonal pattern, ranging from 23 ◦C to 31 ◦C, with the warmest
temperatures occurring during the dry season (November to April) and cooler tempera-
tures recorded in the wet season (May to October). Daily temperatures typically reached
around 30 ◦C during the warmest months and dropped to around 15 ◦C during the cooler
periods, reflecting the region’s subtropical climate. This temperature variation influenced
the ETo rates, contributing to water stress during the warmer months. Precipitation was
concentrated during the wet season, with the highest rainfall recorded between May and
October. The total annual precipitation in 2021 was approximately 762.2 mm, while in 2022,
it was slightly less at 669.03 mm. Despite heavy rain during the wet months, most of the
year remained dry, presenting challenges for irrigation management during the dry season.
Although significant rainfall spikes were recorded, they were infrequent, resulting in a
highly variable distribution of precipitation. Solar radiation followed a consistent seasonal
trend, peaking during the dry months and decreasing during the wet season. Higher solar
radiation values were observed during the dry season, driven by longer daylight hours and
clearer skies; this played a crucial role in photosynthesis and crop transpiration, directly
influencing the orchard’s water demand.
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Seasonal Variability of Meteorological Variables

Boxplots were employed to summarize the seasonal distributions of temperature,
total precipitation, and solar radiation, offering a clear overview of the variability in these
meteorological variables across both years (Figure 5). For the temperature, the interquartile
range remained similar in both 2021 and 2022, with median temperatures slightly above
20 ◦C; however, the data showed considerable fluctuations, reflecting daily temperature
changes. Precipitation exhibited high skewness, with most daily measurements showing
minimal or no rainfall, while extreme outliers represented significant rainfall events that
occurred sporadically throughout the year. This variability underscores the challenges of
managing irrigation during dry weather interrupted by heavy rainfall. Solar radiation
followed a similar seasonal pattern in both years, with higher values in the dry season
and lower values in the wet season. The interquartile range and median values were
comparable across both years, demonstrating the consistency of solar radiation throughout
the growing seasons.
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3.2. Validation of Satellite-Derived Soil Moisture

Validating the satellite-derived soil moisture was critical in assessing the reliability of
remote sensing technologies for monitoring soil water dynamics in the avocado orchard.
This analysis compared field-measured soil moisture data with satellite estimates to evalu-
ate the effectiveness of satellite-based soil moisture assessments, particularly for different
soil depths (30 cm, 60 cm, and 120 cm). The statistical significance of the Pearson correlation
coefficients (r) was consistently evaluated throughout the analyses, using a threshold of
p < 0.01. Correlations meeting this threshold are identified with an asterisk (*) in Table 1.

Table 1. Top 10 and bottom 10 correlations between field-measured soil moisture data and satellite-
derived estimates for 2021 and 2022 seasons.

Top 10 Sensor Correlations Bottom 10 Sensor Correlations

Rank Sensor Correlation (r) Rank Sensor Correlation (r)

1 L-S5-30 0.8237 * 41 G-S7-12 −0.147
2 I-S6-60 0.7867 * 42 C-S6-60 −0.1464
3 F-S8-30 0.7297 * 43 H-S4-12 −0.1358
4 I-S8-30 0.7189 * 44 H-S2-30 −0.1341
5 M-S5-30 0.6949 * 45 F-S5-30 −0.1329
6 H-S7-12 0.6828 * 46 H-S3-60 −0.1189
7 J-S6-60 0.6615 * 47 J-S3-60 −0.106
8 H-S5-30 0.659 * 48 B-S2-30 −0.1054
9 L-S7-12 0.6448 * 49 O-S6-60 −0.1039
10 E-S8-30 0.6319 * 50 B-S3-60 −0.1022

* Statistically significant at p < 0.01.
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Field vs. Satellite Soil Moisture

A detailed comparison was conducted between field-measured soil moisture data
obtained from sensors at three different soil depths (30 cm, 60 cm, and 120 cm) and satellite-
derived estimates. The comparison revealed that the strongest correlations between field
and satellite data occurred at a depth of 30 cm for both the 2021 and 2022 seasons (Table 1).

The correlation analysis supports the hypothesis that the 30 cm depth is particularly effective
for capturing soil moisture dynamics, as it reflects both near-surface soil moisture variations and
deeper water retention, which can be effectively monitored through remote sensing.

The variability in correlations between soil moisture sensor data and satellite-derived
estimates across depths likely reflects differences in sensor placement and environmental
factors. Shallow sensors show stronger correlations with remote sensing data due to their
sensitivity to surface-level moisture changes influenced by precipitation and evapotranspi-
ration. In contrast, deeper sensors reflect longer-term hydrological trends less influenced
by short-term meteorological conditions. Differences in soil texture and microclimate
further contribute to water retention and drainage variability across soil depths. While
these aspects were not the primary focus of this study, they underscore the complexity of
integrating field and satellite data.

In contrast, sensors with weaker or negative correlations, such as G-S7-12 and B-S3-60,
showed lower accuracy in capturing soil moisture variations, emphasizing the importance
of selecting the appropriate sensor depth and configuration for reliable data acquisition.

The previous analysis is complemented by Figure 6, which visually highlights the
performance of the top 10 and bottom 10 sensors based on their correlations with satellite-
derived soil moisture data from the 2021 and 2022 seasons. The bar plots on the left depict
the sensors with the highest positive correlation coefficients, emphasizing those that closely
align with satellite measurements, while the plots on the right display the sensors with the
lowest or negative correlation coefficients, indicating a weaker or inverse relationship.

For 2021, the sensor L-S5-30 at a depth of 30 cm stands out as the best-performing
sensor, with a correlation coefficient of 0.8237, further reinforcing the finding that sensors
positioned at this depth are optimal for capturing reliable soil moisture data that are
comparable to satellite observations. Other sensors at 30 cm, such as F-S8-30 and I-S8-30,
also demonstrate strong correlations, confirming the significance of this depth. For the
2022 season, the A-S7-12 sensor exhibits the highest correlation coefficient, albeit lower
than the top values observed in 2021. Despite this, sensors at 30 cm, such as A-S2-30 and
A-S1-30, continue to perform among the best, supporting the hypothesis that this depth is
consistently adequate across different seasons.
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Figure 6. Top- and bottom-performing sensors: correlation analysis with satellite data (2021–2022).

The bottom 10 sensors for both seasons show significantly lower or negative correlation
coefficients, indicating discrepancies between field measurements and satellite estimates.
These results highlight the variability in sensor performance based on placement and
environmental conditions. This visualization provides a comprehensive overview of the
most and least effective sensors, aligning with the conclusion that a 30 cm depth consistently
yields the most reliable data for satellite validation.

Temporal Dynamics

Satellite-derived soil moisture data were compared with precipitation records to
analyze the temporal dynamics of soil moisture fluctuations. Figure 7 illustrates this
comparison, with soil moisture data (black line) overlaid on precipitation data (gray bars).
The analysis revealed that satellite data effectively captured soil moisture fluctuations
following precipitation events, with notable increases in soil moisture levels immediately
after rainfall.
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For the 2021 season, the soil moisture data show a strong response to precipitation
events, with notable increases following rainfall. Periods of high precipitation correspond
to sharp rises in soil moisture, which gradually declines during dry periods, reflecting
typical hydrological processes. Similarly, the 2022 season exhibits consistent patterns, with
soil moisture levels closely tracking precipitation events. However, variations in the magni-
tude of soil moisture compared to 2021 may indicate differences in the seasonal rainfall
intensity, distribution, or land surface conditions. These results suggest that integrating
meteorological precipitation records further enhances the understanding of soil moisture
fluctuations, emphasizing the satellite data’s applicability for large-scale and long-term
environmental monitoring. In addition to this, it also highlights the reliability of remote
sensing technologies for capturing soil moisture dynamics on a broader temporal scale.

3.3. Seasonal Trends in Vegetation Indices

The analysis of vegetation indices—the NDVI, NDWI, and SAVI—offers valuable
insights into the seasonal dynamics of vegetation health, water contents, and overall
productivity in the avocado orchard. These indices are essential tools for understanding
the temporal fluctuations in vegetative cover, crucial for assessing plant water stress and
optimizing irrigation strategies in remote agricultural areas.

Figure 8 shows the seasonal trends of the NDVI, NDWI, and SAVI over the 2021 and
2022 growing seasons. Each index is presented with its mean value (solid line) and vari-
ability (shaded standard deviation) throughout the days of the year (DOY). This temporal
analysis allows for a characterization of the seasonal changes in vegetation health and
water contents, offering a comprehensive understanding of the vegetative dynamics across
both years.
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The NDVI is widely used to assess canopy greenness and vegetative vigor, and it
follows a clear seasonal pattern. It gradually increased during the early months of 2021 and
2022, reflecting the active growth phase of the avocado trees. The peak NDVI values
observed in the middle of the growing season indicate maximum canopy greenness and
optimal vegetative health, while a subsequent decline towards the end of the season aligns
with the senescence phase or harvest periods. This trend demonstrates that the NDVI is
highly responsive to vegetation growth and environmental conditions, making it a reliable
tool for monitoring crop health over time. Similarly, the NDWI measures dynamic changes
in the canopy water content, showing low values early in the season as the vegetation is
in its early growth stages. As the season progresses, the NDWI values rise, particularly
during the wettest periods when the vegetation reaches its peak water content. The highest
NDWI values correspond to the wet season, while a decline during the dry season reflects
reduced water availability or vegetation decline. These fluctuations emphasize the NDWI’s
sensitivity to vegetative growth and water availability, making it an effective indicator
of plant water stress. The SAVI, which accounts for the soil’s influence in areas with
sparse vegetation, follows a similar pattern to the NDVI but provides more comprehensive
insights into variations in vegetative cover, especially during transitions between growth
and senescence. The peak in SAVI values during the middle of the growing season indicates
robust vegetation and healthy canopy cover. At the same time, the index also captures finer
variations in vegetative density, offering valuable information for assessing canopy health
in agricultural systems with varying levels of vegetation.

These indices collectively reflect the phenological patterns of vegetation, emphasizing
the key periods of vegetative growth, maximum productivity, and decline. Their consistent
seasonal trends across both years demonstrate their reliability as tools for monitoring
vegetative expression and ecosystem dynamics in the avocado orchard. Integrating the
NDVI, NDWI, and SAVI in this analysis offers a comprehensive view of vegetation health
and water contents. This is critical for water management and irrigation optimization,
particularly in remote agricultural areas with limited access to ground-based monitoring.

While the seasonal variation trends observed in vegetation indices such as the NDVI,
NDWI, and SAVI effectively capture general crop responses to water availability, this study
acknowledges the practical implications of the observed fluctuation ranges between the
dry and wet seasons. Specifically, these fluctuations may significantly impact orchard
crops, influencing their phenological development, yield potential, and susceptibility to
stress. Although a direct comparative analysis with other similar study areas or crops was
not conducted, the methodology and results align with established findings in tropical
agricultural systems.

3.4. Crop Coefficients (Kc) Derived from NDVI, NDWI, and SAVI

The calculation of Kc based on the NDVI provided valuable insights into the seasonal and
spatial variability of water requirements for the avocado orchard. The relationship between
Kc and the NDVI was used to derive seasonal trends in crop water dynamics, directly linking
changes in vegetation health and canopy development to the crop’s water needs.

Figure 9 illustrates the seasonal evolution of Kc, derived from the NDVI, for both the
2021 and 2022 growing seasons. The graphs depict the Kc values calculated from the NDVI,
NDWI, and SAVI across both years, providing a comprehensive understanding of crop
water dynamics. Each index reveals distinct patterns of temporal variability corresponding
to changes in vegetative growth, water availability, and phenological stages.
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Figure 9. Kc values calculated using the Kc-NDVI relation for the three indices.

The Kc-NDVI relationship shows a clear seasonal trend, with Kc values increasing during
the early stages of crop growth as the canopy develops and the vegetation becomes more
vigorous. This increase is followed by a peak during the mid-growing season, aligning with
the period of maximum canopy cover and vegetative health. Subsequently, Kc values decline
towards the end of the growing season as the crop experiences senescence or harvest periods.
This pattern is consistent across both 2021 and 2022, with some variations in the magnitude of
Kc due to seasonal differences in rainfall, temperature, and other climatic factors.

The Kc values derived from the NDVI reflect the dynamic relationship between veg-
etation growth and water availability. Higher Kc values during active growth indicate
increased water demand, while lower values correspond to reduced crop water require-
ments during the later stages of the growing season. These findings underscore the impor-
tance of NDVI-based crop coefficients in assessing water stress and optimizing irrigation
schedules in avocado orchards, particularly in regions with limited access to ground-based
monitoring data.

The spatial variability of Kc values across different areas of the orchard further high-
lights the heterogeneity of water requirements within the study area. This variability was
influenced by the soil texture, vegetation density, and local microclimatic conditions, which
affect how water is distributed and retained within the orchard. Integrating Kc values
with satellite-derived soil moisture and precipitation data provides a more robust and
comprehensive understanding of the orchard’s water dynamics, facilitating better water
management practices in regions with limited technological infrastructure.

3.5. Reference Evapotranspiration (ETo) Estimates

Estimating ETo is essential for understanding the water requirements of the avocado
orchard, particularly for developing irrigation strategies that are responsive to seasonal
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changes in climate. ETo estimates were derived using three meteorological models: the
Hargreaves–Samani, Blaney–Criddle, and Priestley–Taylor models. These models provided
a range of estimates, each with strengths and limitations, making it crucial to analyze their
seasonal trends and the variability in ETo values across the different methods.

The seasonal trends in ETo calculated using the three different models for the 2021 and
2022 growing seasons are shown in Figure 10. The upper panels show the seasonal variation
in ETo estimates derived from the Hargreaves–Samani model, which shows considerable
fluctuations across both years. The middle panels display the forecast from the Blaney–
Criddle model, which presents a more consistent seasonal trend with lower variability. The
lower panels depict the estimates from the Priestley–Taylor model, which, similarly to the
Blaney–Criddle model, shows a smooth seasonal curve with minimal fluctuation.
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• Hargreaves–Samani Model: This model, which relies primarily on temperature data,
showed higher variability in its ETo estimates than the other models. The fluctuations
in the estimates were more pronounced, especially in response to temperature changes.
While this model is often used in data-scarce regions, its performance under tropical
conditions showed limitations, particularly in capturing the nuances of water demand
during the wetter and drier phases of the growing season. Despite this, the Hargreaves–
Samani model remains helpful in regions with scarce high-quality wind speed and
humidity data.

• Blaney–Criddle Model: The Blaney–Criddle model provided a more consistent esti-
mate of ETo, with lower variability than the Hargreaves–Samani model. This model,
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relying on temperature and daylight data, showed a smooth seasonal curve, offering
stability in estimating ETo across both years. However, it may not capture rapid
changes in water demand driven by short-term fluctuations in temperature or other
environmental factors.

• Priestley–Taylor Model: Like the Blaney–Criddle model, the Priestley–Taylor model
demonstrated stable estimates with lesser fluctuation. It is particularly effective in
humid regions, where its assumptions about the proportionality between energy
availability and evapotranspiration hold more accurately. However, it showed some
limitations during the dry periods of the seasons when its estimates did not reflect the
sharp fluctuations observed in the field data.

4. Discussion
4.1. Validity of Satellite-Derived Soil Moisture

The comparison of field-measured soil moisture data and satellite-derived estimates
confirmed the effectiveness of remote sensing technologies in monitoring soil water dynamics
in avocado orchards. The strongest correlations between field measurements and satellite
data were consistently observed at the 30 cm depth, corresponding to the root zone dynamics
of avocado trees. This depth is critical as it represents the upper portion of the root zone,
where most water uptake occurs, especially during irrigation and evaporation processes.

Performance of 30 cm Depth Sensors

The 30 cm depth demonstrated the strongest correlation with satellite-derived soil
moisture data, with a correlation coefficient of 0.8237 in 2021. This depth reflects the most
dynamic zone of soil moisture variation due to its proximity to the root zone, which is most
sensitive to changes in irrigation and rainfall [43]. Root uptake is most active in this zone,
playing a significant role in determining the immediate water availability for plants [44].
This dynamic behavior of the 30 cm depth likely explains its strong correlation with the
satellite data, as it captures the surface-level water availability most influenced by seasonal
changes, irrigation practices, and evaporation processes.

The high performance at this depth is also consistent with the findings in other
agricultural studies that indicated that shallow soil layers are more responsive to short-
term changes in environmental conditions [28], such as precipitation and irrigation, which
remote sensing technologies can detect. For instance, similar results were observed in
studies of vineyards and other high-water-demand crops, where satellite-derived soil
moisture values showed strong correlations with field measurements at depths ranging
from 30 cm to 60 cm [45,46]. These studies support the relevance of a 30 cm depth for
effective satellite-based soil moisture monitoring, especially in the context of surface-level
water availability.

Temporal and Spatial Accuracy

The ERA5-derived soil moisture estimates effectively captured soil moisture dynamics
during the wet and dry seasons, as also shown in other studies [47,48]. These satellite-
derived soil moisture estimates closely tracked fluctuations in field-based measurements,
especially following precipitation events. This temporal alignment demonstrates that
ERA5 data are sensitive to seasonal transitions, providing valuable insights into the water
availability and irrigation needs of avocado orchards [49,50].

However, while ERA5 data effectively capture general trends in soil moisture, their
spatial resolution limits their ability to capture fine-scale variability within an orchard,
particularly in areas with heterogeneous soil textures or microclimates [51]. Previous
studies have also pointed out that higher-resolution satellite data or additional ground-
based measurements might be needed to refine soil moisture estimates at the field level.
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For instance, in a prior study [52], the authors emphasized that traditional satellite data
often lack the spatial detail necessary for accurate soil moisture estimation, particularly at
the field level, and highlighted the importance of integrating ground-based measurements
to improve accuracy and representativeness in agricultural contexts. Another study [53]
noted that the original spatial resolution of satellite platforms is insufficient for agricultural
applications, which require higher spatial detail, suggesting the combination of satellite
data with ground-based measurements to achieve more precise soil moisture estimates. In
this sense, the spatial variability observed in this study could not be fully captured by the
ERA5 data, suggesting that more precise monitoring might require denser sensor networks
or higher-spatial-resolution satellite imagery. Overall, integrating ERA5 soil moisture data
with ground-based field measurements provided a robust framework for assessing soil
water dynamics in the avocado orchard. While the ERA5 data captured broader trends in
soil moisture, improvements in spatial resolution and sensor deployment strategies could
enhance the detection of fine-scale variability.

Vegetation Index Performance Across Seasons

The NDVI, SAVI, and NDWI analysis revealed significant insights into the seasonal
dynamics of vegetation health, growth stages, and water availability in the avocado orchard.
The NDVI and SAVI were particularly useful for tracking the vegetative growth phases
and canopy greenness [54,55]. At the same time, the NDWI proved to be an effective tool
for monitoring the water content in the vegetation, thereby providing insights into plant
water stress.

Both the NDVI and SAVI showed clear seasonal patterns, where the NDVI exhibited a
gradual increase during the early months of the 2021 and 2022 growing seasons, reflecting
the active vegetative growth of the avocado trees. The peak in NDVI values, occurring in
the middle of each growing season, signaled maximum canopy greenness, corresponding
to periods of high photosynthetic activity and optimal vegetative health [56,57]. This
increase in the NDVI was followed by a decline towards the end of the season, likely due to
senescence or the harvest period [58], a common phenological change in fruit-bearing crops
like avocados. The SAVI, which accounts for the soil’s influence in sparsely vegetated areas,
showed a similar seasonal trend, reinforcing its utility in monitoring vegetation cover in
orchards with partial canopy coverage.

In contrast, the NDWI was more sensitive to changes in water contents within the
vegetation canopy. The NDWI values were generally low during the early stages of the
growing season, corresponding to periods of minimal water availability. As the season
progressed, the NDWI values increased, peaking during the wettest months when the veg-
etation was at its maximum water content. These increases in the NDWI were particularly
evident during the wet season, highlighting the sensitivity of this index to fluctuations
in water availability. The reduction in the NDWI during dry periods served as a clear
indicator of water stress, making this index a valuable tool for monitoring the water status
of crops.

This analysis provided valuable insights into how vegetation responds to changing
weather conditions, such as periods of water stress or growth phases. It contributed to
understanding the interactions between vegetation health and soil moisture dynamics. Inte-
grating these satellite-derived vegetation indices allowed for a comprehensive assessment
of the orchard’s seasonal dynamics.

Phenological Patterns, Environmental Drivers, and Integration with Field Data

The seasonal trends in vegetation indices (NDVI, SAVI, and NDWI) reflected the
phenological stages of the avocado crop and its response to environmental factors such as
temperature and precipitation. During the growing season, peak NDVI values coincided
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with the period of maximum vegetative growth, which aligned with favorable temperature
and soil moisture conditions [59], as expected in temperate climates. Meteorological
variables, particularly high temperatures and low precipitation during the dry season,
significantly influenced the vegetation index dynamics [60]. These conditions contributed
to a decline in vegetation indices towards the end of the year, indicating stress experienced
by the trees. The temperature and VPD increase during dry periods heightened the
atmospheric water demand, leading to higher evapotranspiration rates and reduced soil
moisture availability. This was evident in the decline in the NDWI, which signaled water
stress, particularly during dry spells, where high VPD values further intensified the effect.

The relationship between precipitation and the NDWI was particularly noteworthy,
as increases in moisture content following rainfall events correlated with sharp rises in
NDWI values [61,62]. This demonstrates the NDWI’s effectiveness as a reliable indicator of
water availability and plant water stress. The interplay between meteorological factors and
vegetation indices illustrates the complex dynamics of crop growth and water availability,
which can be captured using remote sensing tools [63]. However, discrepancies were noted
between satellite-derived vegetation indices and field-measured soil moisture, particularly
during transitions between wet and dry periods. Field measurements provided more
granular insights into the spatial variability of soil moisture across the orchard, which the
satellite data could not fully capture due to their 30 m resolution. Microclimatic factors
such as soil texture, slope, and shading likely contributed to this variability, resulting in
discrepancies between field data and satellite estimates. For example, areas with dense
canopy coverage showed higher NDVI and SAVI values but experienced localized water
stress due to limited irrigation or soil moisture retention variations. These observations
highlight the importance of integrating satellite data with field measurements for a more
accurate and reliable assessment of crop water status, particularly in areas with spatial
variability that remote sensing alone cannot capture.

4.2. Crop Coefficients (Kc) Derived from NDVI: Relevance of Kc Variability

The seasonal variability of Kc derived from the NDVI provided a more accurate rep-
resentation of the water requirements for the avocado orchard. The Kc values, derived
from the NDVI, followed clear seasonal trends that mirrored the vegetative phases of the
avocado trees. Peak Kc values coincided with the maximum canopy greenness observed
in the middle of the growing season, indicating a period of high water demand. This is
consistent with the findings from the literature that crop water requirements are highest
during peak vegetative growth, which aligns with the observed increase in Kc. For in-
stance, in a prior study [64], the authors aimed to enhance evapotranspiration estimates by
integrating NDVI-derived Kc for precise water management in croplands; they noted that
NDVI-derived Kc was able to effectively reflect the crop water demand, aligning with water
stress indicators by capturing vegetation health and growth dynamics and becoming an aid
in precision irrigation and stress mitigation. The advantage of using the satellite-derived
NDVI to calculate Kc is the ability to derive dynamic, spatially explicit Kc values responsive
to seasonal changes in vegetation health and water availability [65,66]. These values offer a
more detailed and accurate estimate of water requirements than the static tabular values
typically used in traditional irrigation scheduling. In contrast to standard Kc values, which
are fixed for specific crop types and growth stages, the NDVI-based Kc values reflect the
actual condition of the vegetation, adjusting in real time to changes in canopy development,
soil moisture, and weather conditions.

Moreover, the Kc values derived from the NDVI, SAVI, and NDWI were validated
by comparing them with published values for avocado orchards in similar agroecological
conditions. The estimated Kc values were also analyzed alongside soil moisture data
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to ensure consistency with field observations. The agreement between the vegetation-
index-derived Kc values and seasonal water stress patterns observed in soil moisture
measurements supports the applicability of these empirical relationships for irrigation
management.

Despite these advantages, the use of VIs and WIs for estimating Kc presents certain
limitations that must be considered, given that the accuracy of Kc estimations derived
from remote sensing data can be influenced by several environmental and agronomic
factors such as the following: (i) Variety differences: Different avocado cultivars exhibit
variations in their canopy structure, leaf area index (LAI), and stomatal conductance, which
may affect the spectral response captured by the NDVI, SAVI, and NDWI. As a result,
the empirical equations used to derive Kc from these indices may require calibration to
account for varietal differences. (ii) Soil type influence: Soil texture and composition
impact water retention, infiltration rates, and root-zone moisture availability, affecting how
vegetation indices reflect the actual water status. For instance, in areas with heterogeneous
soil properties, additional calibration or integration with soil moisture measurements may
be required. (iii) Climate variability: Meteorological conditions such as the temperature,
humidity, and wind speed influence the water-use efficiency and evapotranspiration rates;
therefore, the spectral response of VIs and WIs may vary under extreme climatic conditions
(e.g., prolonged droughts or excessive rainfall), potentially affecting Kc estimations.

Implications for Irrigation Scheduling

Seasonally varying Kc values derived from the NDVI can significantly enhance irri-
gation efficiency, especially under water-limited conditions. Using dynamic Kc values,
irrigation schedules can be more accurately tailored to the crop’s actual water needs, reduc-
ing water waste during less demanding periods and ensuring adequate irrigation during
high-demand phases, such as the mid-growing season. This dynamic approach to irrigation
management is especially beneficial in regions facing water scarcity, where efficient water
use is critical for sustaining crop health and productivity. The Kc values derived from
the NDVI in this study demonstrated their usefulness in capturing the water demand
of the avocado crop, providing an adaptive tool for precision irrigation. These values
were closely aligned with the phenological stages of the crop, highlighting the relationship
between vegetation growth and water needs. The ability to adjust irrigation schedules
based on real-time Kc estimates derived from remote sensing data represents a substantial
advancement in precision agriculture, particularly for crops like avocados, which are highly
sensitive to water stress.

4.3. Reference Evapotranspiration (ETo) Estimates

The comparison of three ETo models—Hargreaves–Samani, Blaney–Criddle, and
Priestley–Taylor—revealed notable differences in their performance in estimating the water
demand of the avocado orchard. Each model employs distinct approaches and parameteriza-
tions, influencing their applicability and accuracy under varying environmental conditions.
Our analysis indicated that while all three models can estimate ETo, their performance
varies depending on the local climatic factors and the available meteorological data.

The Hargreaves–Samani model, based primarily on temperature data, showed higher
variability in its ETo estimates, particularly during rapid temperature changes. While
commonly used in areas with limited meteorological data, its performance in tropical
conditions revealed limitations, particularly in capturing the nuances of water demand
during the wet and dry phases of the growing season. Similar observations were made by
the authors of [67], who indicated that while the Hargreaves–Samani model is accurate and
uses readily available data, its accuracy is low when geographical and climatic conditions
vary. However, this model remains helpful in regions where high-quality wind speed and
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humidity data are unavailable. This is similar to what was observed by the authors of [68],
who indicated that this model is very precise for the estimation of ETo, especially if it is
used in combination with agrometeorological information from ERA5-land, which is an
enhanced version of ERA5.

The Blaney–Criddle model, which relies on temperature and daylight hours, provided
a more consistent estimate of ETo throughout the growing season. This model is more
straightforward and effective in regions where solar radiation data may not be available,
making it a practical choice for areas with limited meteorological infrastructure. However, its
estimates could have been more precise during extreme conditions, such as rapid changes in
temperature or varying precipitation, highlighting its limitations under tropical conditions.

The Priestley–Taylor model, like the Blaney–Criddle model, showed lower variability
in its estimates compared to the Hargreaves–Samani model. This aligns with findings by
the authors of [69], who noted that the coefficients of this model displayed little variation
across four regions, suggesting its potential for ETo calculation. It uses solar radiation as
the primary factor for evapotranspiration, making it well suited for humid regions where
energy-driven evapotranspiration dominates. However, its accuracy during drier months
could have been more reliable, as it needed to fully account for changes in water availability
driven by temperature fluctuations and relative humidity. This limitation underscores
the importance of selecting the most appropriate model based on the local climate and
available meteorological parameters.

In practice, accurate ETo estimates, particularly from the Blaney–Criddle and Priestley–
Taylor models, combined with the Kc values derived from the NDVI, provided a robust
framework for estimating the crop water demand in the avocado orchard. This study was
able to estimate crop water needs more precisely across different phenological stages by
integrating satellite-derived vegetation indices with reference evapotranspiration values.
This combination offers a more data-driven approach to irrigation, allowing for real-time
adjustments based on the crop’s actual water needs and environmental conditions.

Each ETo model in this study presents strengths and limitations depending on the
climatic conditions. The Hargreaves–Samani model, while suitable for data-limited regions,
may underperform in humid conditions where additional climatic factors like humidity and
wind speed play a role. The Blaney–Criddle model provides a stable estimate but may lack
responsiveness to sudden changes in precipitation and temperature. The Priestley–Taylor
model performs well in humid environments but may not fully account for advection
effects in dry conditions. Understanding these limitations is crucial for selecting appro-
priate ETo models in different climatic contexts and ensuring the robustness of irrigation
recommendations.

Selecting the appropriate ETo model depends on specific climatic conditions and the
availability of meteorological data. For arid and semi-arid regions, the Hargreaves–Samani
model is preferred due to its reliance primarily on temperature data, which are commonly
available in such environments. In contrast, for humid climates, the Priestley–Taylor model
is more suitable as it accounts for the energy balance, which plays a significant role in these
areas. The Blaney–Criddle model is recommended for temperate climates, where additional
meteorological data, such as wind speed and humidity, are available, allowing for more
accurate estimates. We also acknowledge the limitations of these models, particularly in
terms of their spatial and temporal resolution, which may impact their applicability in
regions with complex microclimates. To address these limitations, we suggest incorporating
high-resolution satellite data to refine the accuracy of the models. Additionally, we highlight
the importance of local calibration and validation of these models to ensure their accuracy
in specific agroecological conditions. Lastly, we propose that future research focus on
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integrating machine learning techniques with traditional ETo models, which could improve
their adaptability and predictive capabilities across different agricultural regions.

Integrating ETo models with NDVI-derived Kc values enabled the dynamic manage-
ment of crop water requirements. By adjusting irrigation schedules based on seasonally
varying Kc values, this study demonstrated how irrigation practices could be refined
to ensure that water is applied efficiently, reducing the risk of over- or under-irrigation.
However, the variability in ETo estimates among the models highlights the importance of
selecting the right model for specific irrigation decisions. The differences observed among
the Hargreaves–Samani, Blaney–Criddle, and Priestley–Taylor models, especially during
the dry season, suggest that relying solely on one model in regions with significant seasonal
changes in temperature and precipitation could lead to less efficient water use.

4.4. Implications for Agricultural Water Management

Scalability of Satellite-Based Approaches

The findings from this study suggest that satellite-based approaches for monitoring
crop water stress and optimizing irrigation management can be effectively applied to
other tropical crops or regions facing similar water management challenges. Integrating
satellite-derived vegetation indices, such as the NDVI, NDWI, and SAVI, with ground-
based soil moisture sensors has proven to be a reliable method for assessing water stress in
avocado orchards, and this methodology holds excellent potential for broader application.
Tropical crops such as bananas, citrus, and mangoes, which similarly experience high water
demands and are sensitive to water stress, can benefit from these techniques. By adapting
this approach to different crops, agriculturalists can improve water-use efficiency and crop
productivity in water-scarce regions, contributing to sustainable agriculture.

Although this study was conducted on avocado orchards, the presented methodology
provides valuable insights for other crops in water-scarce areas, particularly in tropical re-
gions. We recognize that different crops have unique growth cycles and water requirements,
which may influence their response to water stress. However, the relationship between
vegetation indices (such as the NDVI) and water indices (such as the CWSI) remains consis-
tent across many crops, including other tropical species, based on general physiological
principles governing plant water stress. For instance, many tropical crops share similar
responses to water deficits, which makes the model adaptable to other crops with some
calibration. To enhance the applicability of this study to other crops, future research should
focus on calibrating the model for various tropical species, taking into account their specific
growth cycles and water needs. This would involve validating the model against various
crops under varying climatic conditions, allowing for fine-tuning of the parameters to
ensure that crop-specific characteristics do not negatively impact the model’s effectiveness.
Additionally, we propose further field trials to test the model’s scalability to a broader
range of tropical crops, ensuring its robustness and adaptability.

Although this study primarily relied on vegetation indices and soil moisture sensors to
assess water stress, we recognize that additional factors such as soil texture, topography, and
microclimate variations influence crop water availability. Future studies could benefit from
incorporating high-resolution soil maps and localized meteorological models, enhancing
the precision of water stress assessments and irrigation recommendations. Such approaches
would enable more site-specific hydrological analysis, thus improving precision agriculture
decision-making.

Moreover, the scalability of this approach is supported by the availability of global
satellite data, such as Landsat 8 and 9 imageries, which offer free access to consistent, high-
resolution data for vegetation monitoring. This cost-effectiveness makes satellite-based
methods an attractive alternative to traditional, resource-intensive irrigation manage-
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ment systems, especially in regions where financial and logistical constraints hinder the
widespread use of ground-based sensors. With minimal field validation required, satellite-
based data can provide large-scale insights into water dynamics, allowing for real-time
adjustments to irrigation schedules across vast areas, potentially improving water resource
management at the regional or national level.

5. Conclusions
This study comprehensively evaluated satellite-based remote sensing technologies

integrated with field-based soil moisture sensors for assessing water stress in avocado
orchards. The key findings highlight the effectiveness of satellite-derived vegetation
indices, such as the NDVI, NDWI, and SAVI, in monitoring vegetation health. The 30 cm
depth sensor data consistently correlated strongly with satellite-derived soil moisture
data. Integrating these tools enabled the detection of water stress dynamics, offering an
innovative and cost-effective approach to irrigation management, especially in remote
agricultural areas where traditional methods are often impractical.

The results underscore the potential of using remote sensing technologies as a viable
alternative to conventional irrigation monitoring systems. This study advances precision
agriculture by showing how satellite-derived data and field-based soil moisture mea-
surements can enhance water management practices, even in regions with limited access
to high-resolution data and infrastructure. This approach offers a scalable solution for
monitoring crop water stress across large areas, thus improving water-use efficiency and
supporting sustainable agricultural practices, particularly in water-limited tropical regions.
However, the study acknowledges certain limitations, such as the medium spatial res-
olution of satellite imagery and the limited coverage of field sensors. Future research
should address these constraints by integrating higher-resolution satellite data, deploying
additional field sensors, and refining the models with additional vegetation indices and
climatic variables. Expanding the data’s spatial and temporal coverage in future stud-
ies could enhance the accuracy of crop water stress assessments and improve irrigation
scheduling. Therefore, this study highlights remote sensing technologies’ promising role in
avocado orchards’ water stress assessment and irrigation management. It paves the way
for future advancements in precision agriculture under limited-data scenarios. It provides
a foundation for further research to refine and scale integrated approaches to optimize
water management in worldwide agricultural systems.
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I.F. Impact of Deficit Irrigation on Fruit Yield and Lipid Profile of Terraced Avocado Orchards. Agron. Sustain. Dev. 2021, 41, 69.
[CrossRef]

10. Reints, J.; Dinar, A.; Crowley, D. Dealing with Water Scarcity and Salinity: Adoption of Water Efficient Technologies and
Management Practices by California Avocado Growers. Sustainability 2020, 12, 3555. [CrossRef]

11. Taramuel-Taramuel, J.P.; Montoya-Restrepo, I.A.; Barrios, D. Challenges in the Avocado Production Chain in Latin America: A
Descriptive Analysis. Agron. Colomb. 2024, 42, e113982. [CrossRef]

12. Beyá-Marshall, V.; Arcos, E.; Seguel, Ó.; Galleguillos, M.; Kremer, C. Optimal Irrigation Management for Avocado (Cv. ’Hass’)
Trees by Monitoring Soil Water Content and Plant Water Status. Agric. Water Manag. 2022, 271, 107794. [CrossRef]

13. Ahmad, U.; Alvino, A.; Marino, S. A Review of Crop Water Stress Assessment Using Remote Sensing. Remote Sens. 2021, 13, 4155.
[CrossRef]

14. Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote Sensing and Machine Learning for Crop Water Stress Determination
in Various Crops: A Critical Review. Precis. Agric. 2020, 21, 1121–1155. [CrossRef]

15. Gautam, D.; Pagay, V. A Review of Current and Potential Applications of Remote Sensing to Study the water Status of Horticultural
Crops. Agronomy 2020, 10, 140. [CrossRef]

16. Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and Mapping Vegetation Cover Changes in Arid and Semi-Arid
Areas Using Remote Sensing Technology: A Review. Remote Sens. 2022, 14, 5143. [CrossRef]

17. Chen, J.; Chen, S.; Fu, R.; Li, D.; Jiang, H.; Wang, C.; Peng, Y.; Jia, K.; Hicks, B.J. Remote Sensing Big Data for Water Environment
Monitoring: Current Status, Challenges, and Future Prospects. Earth’s Future 2022, 10, e2021EF002289. [CrossRef]

18. Bhaga, T.D.; Dube, T.; Shekede, M.D.; Shoko, C. Impacts of Climate Variability and Drought on Surface Water Resources in
Sub-Saharan Africa Using Remote Sensing: A Review. Remote Sens. 2020, 12, 4184. [CrossRef]

19. Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical
Review. Agriculture 2021, 11, 457. [CrossRef]

20. Vélez, S.; Martínez-Peña, R.; Castrillo, D. Beyond Vegetation: A Review Unveiling Additional Insights into Agriculture and
Forestry through the Application of Vegetation Indices. J 2023, 6, 421–436. [CrossRef]

21. Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop Water Stress Detection Based on
UAV Remote Sensing Systems. Agric. Water Manag. 2024, 303, 109059. [CrossRef]

22. Awais, M.; Li, W.; Cheema, M.J.M.; Zaman, Q.U.; Shaheen, A.; Aslam, B.; Zhu, W.; Ajmal, M.; Faheem, M.; Hussain, S.; et al.
UAV-Based Remote Sensing in Plant Stress Imagine Using High-Resolution Thermal Sensor for Digital Agriculture Practices: A
Meta-Review. Int. J. Environ. Sci. Technol. 2023, 20, 1135–1152. [CrossRef]

23. Zhou, Z.; Majeed, Y.; Diverres Naranjo, G.; Gambacorta, E.M.T. Assessment for Crop Water Stress with Infrared Thermal Imagery
in Precision Agriculture: A Review and Future Prospects for Deep Learning Applications. Comput. Electron. Agric. 2021,
182, 106019. [CrossRef]

https://doi.org/10.1029/2021EF002567
https://doi.org/10.1016/j.heliyon.2023.e18507
https://www.ncbi.nlm.nih.gov/pubmed/37534016
https://doi.org/10.1088/1748-9326/ac7408
https://doi.org/10.3390/earth4020012
https://doi.org/10.3390/cli11080161
https://doi.org/10.3390/agriculture13051049
https://doi.org/10.1007/s13593-021-00731-x
https://doi.org/10.3390/su12093555
https://doi.org/10.15446/agron.colomb.v42n2.113982
https://doi.org/10.1016/j.agwat.2022.107794
https://doi.org/10.3390/rs13204155
https://doi.org/10.1007/s11119-020-09711-9
https://doi.org/10.3390/agronomy10010140
https://doi.org/10.3390/rs14205143
https://doi.org/10.1029/2021EF002289
https://doi.org/10.3390/rs12244184
https://doi.org/10.3390/agriculture11050457
https://doi.org/10.3390/j6030028
https://doi.org/10.1016/j.agwat.2024.109059
https://doi.org/10.1007/s13762-021-03801-5
https://doi.org/10.1016/j.compag.2021.106019


Remote Sens. 2025, 17, 708 25 of 26

24. Eid, A.N.M.; Olatubara, C.O.; Ewemoje, T.A.; El-Hennawy, M.T.; Farouk, H. Inland Wetland Time-Series Digital Change Detection
Based on SAVI and NDWI Indecies: Wadi El-Rayan Lakes, Egypt. Remote Sens. Appl. 2020, 19, 100347. [CrossRef]

25. Gueraidia, N.; Gueraidia, S.; Sirine, R.; Fehdi, C.; El Kader, H. Natural Hazard Processing Analyze Investigation Using Different
Spectral (Ndvi, Ndwi, Mdwi, Savi, Ndbi, Nbr) Case Study of Souk Ahras Area-Est of Algeria. Period. Mineral. 2024, 93, 55–65.

26. Kisekka, I.; Peddinti, S.R.; Kustas, W.P.; McElrone, A.J.; Bambach-Ortiz, N.; McKee, L.; Bastiaanssen, W. Spatial–Temporal
Modeling of Root Zone Soil Moisture Dynamics in a Vineyard Using Machine Learning and Remote Sensing. Irrig. Sci. 2022, 40,
761–777. [CrossRef]

27. Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.;
et al. Soil Moisture Measuring Techniques and Factors Affecting the Moisture Dynamics: A Comprehensive Review. Sustainability
2022, 14, 11538. [CrossRef]

28. Yinglang, A.; Wang, G.; Hu, P.; Lai, X.; Xue, B.; Fang, Q. Root-Zone Soil Moisture Estimation Based on Remote Sensing Data and
Deep Learning. Environ. Res. 2022, 212, 113278. [CrossRef]

29. Hu, X.; Shi, L.; Lin, G.; Lin, L. Comparison of Physical-Based, Data-Driven and Hybrid Modeling Approaches for Evapotranspira-
tion Estimation. J. Hydrol. 2021, 601, 126592. [CrossRef]

30. Liu, Z. Estimating Land Evapotranspiration from Potential Evapotranspiration Constrained by Soil Water at Daily Scale. Sci. Total
Environ. 2022, 834, 155327. [CrossRef]

31. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Greenwave
Effect) of Natural Vegetation; Texas A&M University Remote Sensing Center: College Station, TX, USA, 1974.

32. Onyia, N.N.; Balzter, H.; Berrio, J.C. Normalized Difference Vegetation Vigour Index: A New Remote Sensing Approach to
Biodiversity Monitoring in Oil Polluted Regions. Remote Sens. 2018, 10, 897. [CrossRef]

33. Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
34. Marino, S.; Alvino, A. Vegetation Indices Data Clustering for Dynamic Monitoring and Classification of Wheat Yield Crop Traits.

Remote Sens. 2021, 13, 541. [CrossRef]
35. McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J.

Remote Sens. 1996, 17, 1425–1432. [CrossRef]
36. Liuzzo, L.; Puleo, V.; Nizza, S.; Freni, G. Parameterization of a Bayesian Normalized Difference Water Index for Surface Water

Detection. Geosciences 2020, 10, 260. [CrossRef]
37. Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping Maizewater Stress Based on UAV Multispectral Remote Sensing. Remote Sens.

2019, 11, 605. [CrossRef]
38. Dhaloiya, A.; Denis, D.; Duhan, D.; Kumar, R.; Singh, M.; Malik, A. Monitoring Vegetation Health, Water Stress, and Temperature

Variation through Various Indices Using Landsat 8 Data. Indian J. Ecol. 2023, 50, 802–810. [CrossRef]
39. Ashok, A.; Rani, H.P.; Jayakumar, K.V. Monitoring of Dynamic Wetland Changes Using NDVI and NDWI Based Landsat Imagery.

Remote Sens. Appl. 2021, 23, 100547. [CrossRef]
40. Lasko, K. Gap Filling Cloudy Sentinel-2 NDVI and NDWI Pixels with Multi-Frequency Denoised C-Band and L-Band Synthetic

Aperture Radar (SAR), Texture, and Shallow Learning Techniques. Remote Sens. 2022, 14, 4221. [CrossRef]
41. Gessner, U.; Reinermann, S.; Asam, S.; Kuenzer, C. Vegetation Stress Monitor—Assessment of Drought and Temperature-Related

Effects on Vegetation in Germany Analyzing MODIS Time Series over 23 Years. Remote Sens. 2023, 15, 5428. [CrossRef]
42. Colton Flynn, K.; Lee, T.; Endale, D.; Franzluebbers, A.; Ma, S.; Zhou, Y. Assessing Remote Sensing Vegetation Index Sensitivities

for Tall Fescue (Schedonorus arundinaceus) Plant Health with Varying Endophyte and Fertilizer Types: A Case for Improving
Poultry Manuresheds. Remote Sens. 2021, 13, 521. [CrossRef]

43. Holz, M.; Zarebanadkouki, M.; Benard, P.; Hoffmann, M.; Dubbert, M. Root and Rhizosphere Traits for Enhanced Water and
Nutrients Uptake Efficiency in Dynamic Environments. Front. Plant Sci. 2024, 15, 1383373. [CrossRef]

44. Carminati, A.; Zarebanadkouki, M.; Kroener, E.; Ahmed, M.A.; Holz, M. Biophysical Rhizosphere Processes Affecting Root Water
Uptake. Ann. Bot. 2016, 118, 561–571. [CrossRef] [PubMed]

45. Sahaar, S.A.; Niemann, J.D. Estimating Rootzone Soil Moisture by Fusing Multiple Remote Sensing Products with Machine
Learning. Remote Sens. 2024, 16, 3699. [CrossRef]

46. Llamas, R.M.; Guevara, M.; Rorabaugh, D.; Taufer, M.; Vargas, R. Spatial Gap-Filling of ESA CCI Satellite-Derived Soil Moisture
Based on Geostatistical Techniques and Multiple Regression. Remote Sens. 2020, 12, 665. [CrossRef]

47. Wang, P.; Zeng, J.; Chen, K.S.; Ma, H.; Zhang, X.; Shi, P.; Peng, C.; Bi, H. Global-Scale Assessment of Multiple Recently
Developed/Reprocessed Remotely Sensed Soil Moisture Datasets. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4403518. [CrossRef]

48. Yu, T.; Jiapaer, G.; Bao, A.; Zhang, J.; Tu, H.; Chen, B.; De Maeyer, P.; Van de Voorde, T. Evaluating Surface Soil Moisture
Characteristics and the Performance of Remote Sensing and Analytical Products in Central Asia. J. Hydrol. 2023, 617, 128921.
[CrossRef]

https://doi.org/10.1016/j.rsase.2020.100347
https://doi.org/10.1007/s00271-022-00775-1
https://doi.org/10.3390/su141811538
https://doi.org/10.1016/j.envres.2022.113278
https://doi.org/10.1016/j.jhydrol.2021.126592
https://doi.org/10.1016/j.scitotenv.2022.155327
https://doi.org/10.3390/rs10060897
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.3390/rs13040541
https://doi.org/10.1080/01431169608948714
https://doi.org/10.3390/geosciences10070260
https://doi.org/10.3390/rs11060605
https://doi.org/10.55362/ije/2023/3973
https://doi.org/10.1016/j.rsase.2021.100547
https://doi.org/10.3390/rs14174221
https://doi.org/10.3390/rs15225428
https://doi.org/10.3390/rs13030521
https://doi.org/10.3389/fpls.2024.1383373
https://doi.org/10.1093/aob/mcw113
https://www.ncbi.nlm.nih.gov/pubmed/27345032
https://doi.org/10.3390/rs16193699
https://doi.org/10.3390/rs12040665
https://doi.org/10.1109/TGRS.2024.3361890
https://doi.org/10.1016/j.jhydrol.2022.128921


Remote Sens. 2025, 17, 708 26 of 26

49. Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.;
Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021,
13, 4349–4383. [CrossRef]

50. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.;
et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]

51. Siles, G. ERA5 Climatic Reanalysis: A Review on Its Use for Calculating Atmospheric Attenuation for Satellite Communication
Systems. Rev. Investig. Desarro. 2022, 22, 145–159. [CrossRef]

52. Tahmouresi, M.S.; Niksokhan, M.H.; Ehsani, A.H. Enhancing Spatial Resolution of Satellite Soil Moisture Data through Stacking
Ensemble Learning Techniques. Sci. Rep. 2024, 14, 25454. [CrossRef]

53. Bueno, M.; García, C.B.; Montoya, N.; Rau, P.; Loayza, H. Watershed Scale Soil Moisture Estimation Model Using Machine
Learning and Remote Sensing in a Data-Scarce Context. Sci. Agropecu. 2024, 15, 103–120. [CrossRef]

54. Xiao, C.; Wu, Y.; Zhu, X. Evaluation of the Monitoring Capability of 20 Vegetation Indices and 5 Mainstream Satellite Band
Settings for Drought in Spring Wheat Using a Simulation Method. Remote Sens. 2023, 15, 4838. [CrossRef]
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