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Abstract: Advancements in aviation technology have made intelligent navigation systems
essential for improving flight safety and efficiency, particularly in low-visibility conditions.
Radar and GPS systems face limitations in bad weather, making visible–infrared sensor
fusion a promising alternative. This study proposes a salient object detection (SOD) method
that integrates visible and infrared sensors for robust airport runway detection in complex
environments. We introduce a large-scale visible–infrared runway dataset (RDD5000) and
develop a SOD algorithm capable of detecting salient targets from unaligned visible and
infrared images. To enable real-time processing, we design a lightweight dual-modal
fusion network (DCFNet) with an independent–shared encoder and a cross-layer attention
mechanism to enhance feature extraction and fusion. Experimental results show that the
MobileNetV2-based lightweight version achieves 155 FPS on a single GPU, significantly
outperforming previous methods such as DCNet (4.878 FPS) and SACNet (27 FPS), making
it suitable for real-time deployment on airborne systems. This work offers a novel and
efficient solution for intelligent navigation in aviation.

Keywords: intelligent navigation; salient object detection; dual-modal fusion; airport
runway detection; deep learning; lightweight network

1. Introduction
The development of advanced intelligent navigation systems [1–4] for aircraft has

become a crucial focus in modern aviation, aiming to enhance safety, efficiency, and situa-
tional awareness, particularly in low-visibility conditions. One of the critical components
of such systems is the ability to detect and identify airport runways accurately and re-
liably during various flight phases, particularly during takeoff, landing, and approach.
Traditional navigation systems, such as radar and GPS-based technologies, often encounter
limitations when it comes to precise runway detection under adverse weather conditions
like fog, heavy rain, or nighttime operations. These systems struggle with reduced visibility
and contrast, making it difficult to accurately identify runways.

To address this issue, this paper presents a novel approach for integrating visible and
infrared (IR) sensors into aircraft navigation systems. Specifically, we propose a fusion
strategy utilizing visible and IR sensors, coupled with a dual-modal salient object detection
(dual-modal SOD) algorithm, to improve airport runway detection and recognition. Salient
object detection (SOD) identifies the most prominent regions in an image, mimicking the
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human visual system [5–7]. Dual-modal SOD extends this concept by combining data
from two different modalities (e.g., visible and infrared) to enhance detection accuracy
under challenging conditions. The synergy between visible light and infrared imaging
can enhance runway visibility across a broader range of environmental conditions. Visible
sensors, providing rich scene information like color and texture, are highly effective under
clear daylight conditions. However, their performance deteriorates in low-visibility scenar-
ios, such as fog, haze, or overcast skies, where light scattering and reduced contrast impair
scene clarity. In contrast, infrared sensors, especially those operating in the 900–1700 nm
wavelength range, perform exceptionally well in low-visibility environments, such as night-
time operations and foggy weather, as they can penetrate atmospheric disturbances better
than visible light. Therefore, this paper aims to combine the strengths of both modalities to
achieve comprehensive runway detection.

In visual navigation systems for approach and landing, simulating the pilot’s visual
experience is essential. The system must quickly focus on the airport runway, which
becomes a “salient object” for navigation. Therefore, leveraging the SOD method to extract
the airport runway region aligns well with cognitive processes.

Recent research in deep-learning-based dual-modal SOD has garnered substantial
attention, particularly in RGB-T [8–23] and RGB-D [24–28] fusion methods. These methods
improve object detection accuracy under challenging conditions by learning features from
multiple sources such as visible, infrared, and depth imagery. Their success relies on
large-scale, real-world RGB-T and RGB-D datasets [29–35] and the computational power
of deep learning models [36–39]. However, these datasets typically require pre-aligned
images, which involve additional labor costs in practical applications.

Meanwhile, cross-view matching [40–42] and visible–thermal person re-identification
(VI Re-ID) [43] have emerged as significant research areas. Cross-view matching focuses
on identifying and matching objects or scenes across different viewpoints, while VI Re-ID
leverages multimodal data to recognize individuals under varying conditions. Although
our study primarily addresses runway detection from a single perspective, our approach
inherently aligns with the broader objectives of cross-view matching and VI Re-ID. Specifi-
cally, by processing pairs of visible and infrared images that may be captured at different
times or from different angles, our method aims to enhance consistency and accuracy in
object detection across diverse viewpoints, thereby contributing to the advancement of
these related fields.

However, when dual-modal SOD is applied to airport runway scenarios, it still faces
numerous challenges. Firstly, due to the sensitivity and inaccessibility of airport areas, the
creation of large-scale, publicly accessible datasets related to airport runways remains a
significant challenge. Although several studies [44–46] have constructed airport runway
datasets using remote sensing imagery, these are captured from a ground-based viewpoint,
making them unsuitable for aircraft landing applications. Moreover, some recent studies
provide datasets based on aircraft landing perspectives; however, these datasets are simula-
tions generated using X-Plane [47,48] or Unreal Engine 4 [49], which differ from real-world
data (as shown in Figure 1). To date, no visible–infrared dual-modal dataset for airport
runway detection is available. To address this research gap, we have created a large-scale,
real-world RGB-IR airport runway dataset (RDD5000), captured in actual scenes.

Secondly, most existing dual-modal SOD algorithms rely on strictly aligned datasets
for training. However, in the multimodal dataset we use (RDD5000), the visible and infrared
images of the same scene are not perfectly aligned due to variations in shooting conditions
and camera parameters (as shown in Figure 2). This misalignment is common in real-world
applications, where obtaining perfectly aligned images is often impractical. Recently, there
has been growing attention on non-aligned dual-modal SOD methods [14,50–52], and
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several non-aligned multimodal datasets [50,51] have been introduced. It has been shown
that models trained on aligned datasets perform poorly on non-aligned data, such as our
RDD5000 dataset. To address this challenge, we propose a practical multimodal SOD
algorithm that eliminates the need for manual data alignment, thus avoiding the additional
labor costs associated with image alignment.
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Third, although deep-learning-based dual-modal SOD methods generally offer high
accuracy, they are often accompanied by large computational costs and bulky model
sizes. This can become a performance bottleneck in practical applications, particularly in
intelligent navigation tasks that require real-time processing. To address this challenge, we
proposed a dual-modal fusion network with a lightweight MobileNetV2 backbone [53].
The design focuses on algorithm optimization and system integration, aiming to achieve
more efficient real-time processing and decision support.

To effectively address the above limitations, this paper proposes a dual-modal cross-
level fusion network (DCFNet) based on visible light and infrared RGB-IR images. The
network exploits the complementary attributes of visible and infrared image data to facili-
tate reliable identification of salient targets on airport runways under various conditions.
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In summary, our main contributions are as follows:

• We created a large-scale visible–infrared dual-modal airport runway dataset (RDD5000)
captured in real-world scenarios.

• We designed a lightweight deep learning model, DCFNet, for salient object detection,
which is deployable in airborne environments.

• We proposed an independent–shared dual-stream encoder structure to efficiently fuse
visible and infrared image information.

• We introduced a multi-scale, multi-level attention fusion decoder module that effec-
tively improves the accuracy of the model.

The remainder of this paper is organized as follows: Section 2 reviews related works on
airport runway detection and dual-modal SOD methods. Section 3 describes the proposed
DCFNet architecture in detail. Section 4 presents the experimental results and analysis.
Finally, Section 5 concludes the paper and discusses future work.
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2. Related Works
2.1. Airport Runway Detection and Related Datasets

Airport runway detection has been an essential focus in computer vision, driving
improvements in aviation safety and efficiency. Traditionally, various methods have been
employed for runway detection, including edge detection [54–57], template-based ap-
proaches [58–60], and color-based segmentation [61,62] techniques. However, these ap-
proaches rely on low-level features, require the manual feature design for specific sce-
narios, and even involve extensive post-processing, which limits their effectiveness in
complex environments.

In recent years, with the rapid development of deep learning, an increasing number
of researchers have begun to apply deep learning methods to runway detection tasks.
These approaches typically involve using deep convolutional neural networks, such as
ResNet101 [63] and VGG-19 [64], to extract features from remote sensing images, or employ-
ing two-stage networks like R-CNN [65], YOLO series [66], and DeepLabv3 [45] models to
identify candidate regions of interest in airport images. Despite the significant potential
of deep learning, the lack of large-scale real-world airport runway datasets has become a
major challenge limiting the application of deep learning in this field.

Although earlier studies [44–46] have constructed runway datasets, most of these
datasets are based on remotely sensed imagery, which is mainly used for detecting runways
from the Earth’s point of view, and is not suitable for detection tasks in aircraft landing
scenarios. Recently, some studies have attempted to construct runway datasets based
on the aircraft landing perspective. For example, Cheng et al. [47] presented the BARS
dataset, collected using the X-Plane simulation platform, which contains 10,256 images and
30,201 instances; Wang et al. [48] developed the X-Plane-based Runway Landing Dataset
(RLD) for runway instance segmentation tasks; and Weng et al. [49] combined Unreal
Engine 4 (UE4) with Cesium software (Cesium for Unreal) to create a dataset that closely
resembles real airport runway scenes, called RAW. However, despite their efforts, these
simulated datasets still lack sufficient real-world relevance, limiting their effectiveness
when applied to actual environments.

We have constructed a benchmark dataset named RDD5000, which, unlike existing
datasets, consists of 5000 pairs of RGB and infrared images directly captured from real-
world scenarios. This dataset aims to advance the application of deep learning in SOD for
airport runways.

2.2. Deep-Learning-Based Dual-Modal SOD Method

Currently, deep-learning-based dual-modal SOD methods have become mainstream.
Recent works, such as [67–69], have explored advancements in fusion techniques, highlight-
ing their effectiveness in improving object detection accuracy under challenging conditions.
These methods include CNN-based dual-modal SOD approaches, Transformer-based meth-
ods, and the latest SAM (Segment Anything Model)-based approaches, along with various
combinations of these methods. CNN-based models [70,71] typically employ specialized
network architecture to fuse multimodal information, focusing on fusing features from
different modalities for object detection.

The self-attention mechanism of Transformer models [72] can flexibly capture long-range
dependencies between data, offering significant advantages over traditional CNNs when
handling dual-modal SOD tasks. As a result, recent works [11,14,15,18,22,23,73–75] employed
Transformer-based backbones for dual-modal SOD. However, Transformer architectures typi-
cally require large model sizes and more computational resources, which leads to challenges
such as longer training times and slower inference speeds. Fortunately, the introduction
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of variant models like Swin Transformer [11,14,23] has achieved a better balance between
efficiency and performance.

Moreover, the emergence of models like the Segment Anything Model (SAM) has
further advanced the development of dual-modal SOD technologies. SAM-based mod-
els [76,77] achieve higher precision in salient object detection by incorporating advanced
image segmentation and object recognition techniques.

Datasets are the foundation of all dual-modal SOD methods. With the increasing
demand for dual-modal SOD, several relevant datasets have been released. For example,
the VT821 [29], VT1000 [30], and VT5000 [31] datasets provide visible–infrared image pairs,
making them suitable for RGB-T dual-modal SOD research. Currently, many RGB-T SOD
methods [8–23] have achieved outstanding results on these datasets. Additionally, datasets
such as NJU2K [32], NLPR [33], STERE [34], and SIP [35] are also widely used in RGB-D
SOD research. However, all of the datasets mentioned above are manually aligned, and
methods based on these aligned datasets cannot directly handle misaligned dual-modal
image pairs. The additional registration process not only increases manual labor but also
imposes a significant computational burden.

In practical applications, misaligned multimodal images are the norm. Tu et al. [14]
were among the pioneers in recognizing the misalignment issue in dual-modal SOD. They
simulated weakly aligned data using affine transformations, which, while differing from
real-world misalignment scenarios, still offered theoretical insights and practical value.
Since the work of Tue et al., an increasing number of researchers have focused on the
misalignment problem in multimodal data, leading to the development of non-aligned
multimodal datasets [50,51] and the proposal of corresponding non-aligned dual-modal
SOD models [50–52].

Song et al. [50] constructed the UAV RGB-T 2400 dataset for unaligned RGB-T salient
object detection from drone perspectives and proposed the MROS model, which improved
bimodal interaction and spatial alignment but had high computational costs, limiting
real-time use. Wang et al. [51] developed the UVT2000 dataset with 2000 pairs of unaligned
RGB and thermal images and introduced the SACNet model to improve unaligned RGB-T
SOD. Lyu et al. [52] proposed AlignSal, an efficient Fourier filter network using contrastive
learning to align modalities, reducing model complexity. However, these methods still
suffer from high computational cost and large parameter sizes, limiting their use in real-
time, low-power applications like airborne edge devices.

To address these challenges, this paper proposes a lightweight dual-modal SOD
method for unaligned RGB-IR image pairs, focusing on detection accuracy and computa-
tional efficiency. The effectiveness of the approach is demonstrated on the RDD5000 dataset.

3. Proposed Method
3.1. Overall Architecture

We adopt an encoder–decoder framework to address the problem of visible–infrared
dual-modal SOD. Figure 3 illustrates the overall architecture of the proposed DCFNet,
which consists of a combined independent–shared encoder network and a multi-scale,
multi-level decoder network. The encoder extracts features from visible and infrared
images, while the decoder fuses these features to produce the final saliency map.

Independent–Shared Encoder Network. DCFNet’s encoder consists of dual-modal in-
dependent encoding layers (IELs) and dual-modal shared encoding layers (SELs), forming
a dual-stream convolutional neural network (CNN). In this structure, the IELs are responsi-
ble for extracting low-level features from visible light and infrared images, respectively,
while the SELs enable feature matching between the two modalities in a unified space,
generating high-level features. From the perspective of lightweight design, we selected Mo-
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bileNetV2 [53] with a 5-stage structure as the encoder backbone, and optimally configured
the number of independent and shared encoding stages in the two-stream network, which
is finally configured as 2 for the independent layer and 3 for the shared layer, achieving an
optimal balance between performance and efficiency.
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Multi-Scale and Multi-Level Decoder Network. The decoder network of DCFNet
includes two key modules: the multi-scale feature enhancement module (MFEM) and the
multi-level attention fusion module (MAFM). To effectively address potential resolution
differences and misalignment between visible and infrared images, we propose the MFEM.
This module extracts and enhances features from both modalities at multiple scales, en-
abling robust fusion even when the input image pairs exhibit resolution differences or
misalignment. The MAFM, on the other hand, enhances the model’s sensitivity to details
and small targets by introducing an adaptive multi-level attention mechanism that fuses
features from different levels in a bottom-up manner. Inspired by the modality-cooperative
decision-making approach in VI Re-ID, we jointly consider the target annotations from
both modalities and weight the fusion of detection results from visible and infrared images.

3.2. Independent–Shared Encoder Network

Considering that the visible and infrared image pairs input to our model are raw
data directly captured from the onboard platform without manual alignment, significant
cross-modal discrepancies exist. These discrepancies not only manifest as distinct dif-
ferences in color, texture, and appearance between visible and infrared images but also
include target variations caused by platform motion and viewpoint changes. From this
perspective, the cross-modal challenges resemble those encountered in visible–infrared
person re-identification (VI Re-ID) and cross-view matching tasks. Inspired by these tasks,
we propose a dual-stream CNN architecture with both independent and shared feature
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learning, which is designed to effectively handle the modality differences while allowing
for effective cross-modality feature fusion.

A key assumption in our method is that the visible and infrared images must de-
pict the same target, although precise registration is not required. This implies that the
two modalities may capture the target at different times or from different perspectives. This
assumption is motivated by the practical challenges associated with image registration,
which is often computationally expensive and error-prone, especially in real-world scenar-
ios where misalignment between modalities is common. By relaxing the requirement for
precise alignment, our method significantly reduces the complexity of the dual-modal SOD
pipeline. This not only improves the efficiency of the approach but also enhances its appli-
cability to real-world scenarios where perfect inter-modal alignment is rarely achievable.

Specifically, the different modalities of visible and infrared images differ significantly
in the low-level features (e.g., color, texture, edges, etc.), while in the high-level features,
although visible and infrared images are different in appearance, the semantic information
they express (e.g., shape, structure, category of the target, etc.) is usually similar. Therefore,
we employ independent network structures for low-level feature extraction, which better
captures the unique information of the respective modalities. A shared network structure
is used on the high-level feature extraction to help the model fuse the semantic features of
the two modalities and improve the cross-modal representation.

Feature extraction follows a ’first independent, then shared’ approach. However, the
choice of encoder backbone and the specific division between independent and shared
layers has a direct impact on the performance and efficiency of the dual-stream encoder
network. The following sections will describe each of these aspects in detail.

3.2.1. Lightweight Backbone

Some lightweight backbone networks, such as MobileNets [53,78], ShuffleNets [79,80],
and EfficientNet [81], are specifically designed for environments with limited computational
resources. MobileNetV2, with its innovative inverted residuals structure and bottleneck
layer, is able to effectively preserve feature representation capabilities while maintaining
high efficiency, making MobileNetV2 the lightweight backbone of choice for many CV tasks.
We have chosen MobileNetV2 as the backbone network in our proposed model, given
the real-time requirements of visual navigation tasks. The ablation study in Section 4.3
also compares the performance of DCFNet with different lightweight backbone networks,
which confirms the rationale behind our choice of MobileNetV2.

3.2.2. Independent and Shared Layers Architecture

Another key factor of the dual-stream network is the design of the independent encod-
ing layers (IELs) and shared encoding layers (SELs), which directly affects the performance,
complexity, and efficiency of our model.

The IELs we designed are primarily responsible for extracting low-level features from
the visible light and infrared modalities. Of course, the different modalities can adopt
different network structures. The ablation experiments in Section 4.3.1 also compare the
performance of different backbones in the IELs for the visible and infrared modalities.
To simplify the description, we use the same network architecture for the IELs of both
streams. The SELs designed by us are mainly responsible for the extraction and fusion of
high-level features.

The division between low-level and high-level features is typically determined by the
depth of the convolutional layers in the network. In the case of the ResNets, for example,
they can be divided into five main stages, each consisting of a number of convolutional
layers, with the lower features coming from the early stages of the network and the higher
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features coming from the later stages of the network. The layer configuration of the IELs
and SELs needs to be balanced according to the performance and efficiency of the task.

We also divide MobileNetV2 into five stages (to adapt it to the SOD task, we remove
the global average pooling layer and the final fully connected layer from the backbone)
and compare its structure with that of ResNet18, as shown in Table 1. Based on insights
from Liu et al. [43] and the experimental results in Section 4.3.2, we have determined the
optimal configuration: IELs for the first two stages of the backbone (stages 1–2) and SELs
for the last three stages (stages 3–5). This configuration provides the best balance between
performance and efficiency.

Table 1. Configuration of dual-modal independent and shared encoding layers. #Params. (M)
denotes the number of parameters in millions.

Layers Output Size
ResNet18 MoblieNetV2

Channels RGB Image IR Image Channels RGB Image IR Image

Input 512 × 256 3 / / 3 / /

Stage 1 256 × 128 64 7 × 7, 64,
stride = 2

7 × 7, 64,
stride = 2 16

3 × 3, 32,
stride = 2

Dwise 3 × 3, 16

3 × 3, 32,
stride = 2

Dwise 3 × 3, 16

Stage 2 128 × 64 64
3 × 3, max

pool, stride = 2
[3 × 3, 64] × 4

3 × 3, max
pool, stride = 2
[3 × 3, 64] × 4

24
Dwise 3 × 3,
24, stride = 2

Dwise 3 × 3, 24

Dwise 3 × 3,
24, stride = 2

Dwise 3 × 3, 24

Stage 3 64 × 32 128 [3 × 3, 128] × 4 32 Dwise 3 × 3, 32, stride = 2
[Dwise 3 × 3, 32] × 2

Stage 4 32 × 16 256 [3 × 3, 256] × 4 96
Dwise 3 × 3, 64, stride = 2

[Dwise 3 × 3, 64] × 3
[Dwise 3 × 3, 96] × 3

Stage 5 16 × 8 512 [3 × 3, 512] × 4 320
Dwise 3 × 3, 160, stride = 2

[Dwise 3 × 3, 160] × 2
[Dwise 3 × 3, 320]

#Params. (M) 11.7 3.4

In our proposed model, the IELs for the visible light and infrared branches, as well
as the SELs, can utilize either the same or different lightweight backbone networks. For
clarity, we describe the processing steps assuming MobileNetV2 as the backbone network.

Visible Branch in the IELs:

• Input: RGB image of size 512 × 256.
• Feature Extraction: The first two layers of MobileNetV2 are used to extract low-level

features at two different scales:

Stage 1: Output feature of size 256 × 128 with 16 channels, denoted as V1.
Stage 2: Output feature of size 128 × 64 with 24 channels, denoted as V2.
Infrared Branch in the IELs:

• Input: IR image of size 512 × 256.
• Feature Extraction: Similar to the visible branch, the first two layers of MobileNetV2

extract low-level features:

Stage 1: Output feature of size 256 × 128 with 16 channels, denoted as R1.
Stage 2: Output feature of size 128 × 64 with 24 channels, denoted as R2.
Feature Fusion:
The feature maps V2 and R2 are concatenated to form the joint feature F2:

F2 = Concat
(

V2, R2
)

, (1)
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Shared Encoding Layers (SELs):
The concatenated feature F2 is then passed through the shared encoding layers to

extract high-level features:
Stage 3: Output feature of size 64 × 32 with 32 channels, denoted as F3.
Stage 4: Output feature of size 32 × 16 with 96 channels, denoted as F4.
Stage 5: Output feature of size 16 × 8 with 320 channels, denoted as F5.
Handling Different Backbones:
If the IELs for visible light and infrared use different backbones (e.g., MobileNetV2 for

visible light and ResNet-18 for infrared), the infrared feature R2 is first compressed to 32
channels using a 1 × 1 convolution before concatenating with V2:

F2 = Concat(V2, Conv1BR(R2)), (2)

The resulting feature F2 is then passed through the SELs for high-level feature extraction.

3.3. Multi-Scale and Multi-Layer Decoder Network

Although there has been a substantial amount of research on decoders [26,38,82–84],
most approaches suffer from complex designs and low efficiency. Therefore, this paper
proposes a lightweight multi-scale fusion decoder that not only effectively integrates multi-
level features but also emphasizes improving efficiency. The decoder consists of two key
modules: the MFEM and MAFM.

3.3.1. Multi-Scale Feature Enhancement Module

Compared to large CNNs, lightweight backbone networks have inherent disadvan-
tages, especially in complex scenarios. For example, the MobileNetV2 model only performs
a 3 × 3 convolution operation on a 320-dimensional channel. To address this challenge, this
paper proposes a multi-scale feature enhancement module (MFEM), as shown in Figure 3c,
which enhances the semantic feature F5 output by the last layer of the encoder, resulting
in an enhanced feature D5 of the same size as F5. This design not only improves the
feature representation, but also provides an additional input D5 (in addition to F5) for the
subsequent MAFM Block 4. This design ensures structural consistency across the four
attention fusion modules, improving model stability.

The MFEM employs depthwise separable convolutions [85] to process the input feature
maps in parallel using three different expansion rate strategies [85] to enhance the capture
of contextual information. Additionally, a 1 × 1 convolution layer is used to perform a
linear transformation of the feature map, further improving the feature representation.
Finally, the module sums the four output feature maps at different scales pixel-wise and
integrates them further through convolution, batch normalization (BN) [86], and ReLU
activation functions [87], enhancing the non-linear expression. The overall process can be
formally expressed as:

D5 = Conv1BR

(
3

∑
i=1

DWConv3BR(i)
(

F5
)
+ Conv1BR

(
F5
))

, (3)

where F5 and D5 represent the input and output feature maps, respectively.
Conv1BR(·) represents a 1 × 1 convolution followed by batch normalization and

ReLU activation.
DWConv3BR(i)(×) refers to the i-th depthwise separable convolution with a 3 × 3 ker-

nel and a dilation rate i, followed by batch normalization and ReLU activation.
The lightweight nature of the MFEM is primarily attributed to the combination of

depthwise separable convolutions and dilation convolution strategies. Depthwise separable
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convolutions decompose traditional convolutions into depthwise convolutions and point-
wise convolutions, significantly reducing the number of parameters and computational
complexity, thus improving the network’s efficiency. At the same time, dilation convolu-
tions introduce holes (dilations) into the convolutional kernels, allowing the network to
capture a larger receptive field without adding extra computational overhead.

3.3.2. Multi-Level Attention Fusion Module

Many SOD models carefully design the encoder to extract dual-modal features, while
the decoder typically employs simple upsampling strategies to recover feature maps.
Differentiating from the existing methods, we design a multi-level attention fusion module
(MAFM) in the decoder, positioned after the MFEM. The MAFM not only considers the
complementary nature of features from different network layers but also integrates features
from various scales and receptive fields. More importantly, we introduce the contribution
weights of features from different levels, combined with multiple attention mechanisms
(attention modules, AM). By guiding low-level detail features with high-level semantic
features, the MAFM progressively refines the salient objects, optimizing them from coarse
localization to precise boundaries.

The proposed framework of the MAFM is illustrated in Figure 4. The input to the
MAFM consists of two components: (1) high-level feature maps Fi (where i = 2, 3, 4, 5) out-
put laterally by the encoding module; and (2) low-level feature maps Di (where i = 2, 3, 4)
produced by the previous MAFM stage, along with the enhanced feature map D5 (where
i = 5) specifically generated by the MFEM. As mentioned in the previous section, the
MFEM is designed not only to enhance the features of the lightweight encoding network,
but also to provide inputs to MFEM Block 4 that lack support from the upper level, thus
allowing MAFM Block 4 to also fuse features from different levels (i.e., F5 and D5). The joint
design of the MFEM and MAFM ensures the consistency of the structure of MAFM Blocks
1–4, simplifies the process of multi-level feature fusion and improves the maintainability of
the system, and allows the flexibility to stack, expand, or replace MAFMs as required.
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Figure 4. The proposed MAFM framework.

Figure 4 clearly depicts the details of feature fusion and attention allocation in the
MAFM. Our feature fusion process is implemented through the attention fusion block (AFB).
First, we concatenate the feature maps Di and Fi from different layers along the channel
dimension, rather than simply adding them pixel-wise. This approach aims to preserve the
complete information from both different-level features to the greatest extent. To maintain
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dimensional consistency and improve model efficiency, we apply a 1 × 1 convolution layer
and batch normalization before concatenation, reducing the number of channels by half.
The concatenated feature map DFi is then passed into the AFB for fusion processing.

DFi = Concat
(

Conv1BR
(

Di
)

, Conv1BR
(

Fi
))

(4)

AFB first preprocesses the input feature map DFi using a 1 × 1 convolutional layer,
followed by batch normalization to enhance the non-linear representation of the features.
Then, the feature map DFi is passed through multiple depthwise separable convolution
layers (DWConvBR) with different dilation rates (D) in parallel to capture contextual
information at different scales. The depthwise separable convolutions use 3 × 3 kernels,
and the dilation rates D are set to 1, 2, 3, or 1, 3, 5 to accommodate feature maps at different
depths. To facilitate network convergence and alleviate the vanishing gradient problem,
the AFB introduces residual connections by adding the input feature DFi to the features
processed in parallel, resulting in the fused feature map DFm. This process can be formally
described as:

DFm =
3

∑
i=1

DWConv3BR(i)
(

Conv1BR
(

DFi
))

⊕ DFi (5)

Finally, we apply an attention mechanism to the preliminary fused feature DFm to
further optimize the representation of the saliency prediction map. In our model, we
employ two different attention mechanisms based on the different levels of feature maps.
Specifically, for high-level feature maps (i = 3, 4), where the number of channels is relatively
large, we use a channel attention (CA) mechanism to emphasize important channels and
suppress noisy or redundant ones. For low-level feature maps (i = 1, 2), where the spatial
dimensions are gradually recovering, we apply a spatial attention (SA) mechanism to better
focus on regions containing effective details, resulting in clearer saliency boundaries. To
improve efficiency, we incorporate a CBAM (convolutional block attention module) [88],
an easy-to-plug-and-play module that integrates both spatial and channel attention. It is
worth noting that the model framework is highly flexible, allowing for the use of alternative
spatial or channel attention mechanisms based on specific requirements.

In the equation, AM(·) represents the attention mechanism.

Fi−1
o = AM(DFm)⊗ DFm (6)

In summary, the MAFM enhances the expressive power of the saliency prediction map
through carefully designed non-linear transformations, multi-scale receptive field capture,
residual connections, and flexible application of attention mechanisms at different layers,
all while maintaining computational efficiency.

3.4. Loss Function

The outputs of MAFM Blocks 1–4 are denoted as Di (for i = 1, · · · 4). These outputs
are first passed through a 1 × 1 convolutional layer to reduce the number of channels to
1. Then, bilinear interpolation is applied to resize the feature maps to match the original
input image dimensions. Finally, a Sigmoid function is applied to normalize the pixel
values to the range [0, 1], resulting in four saliency prediction maps Si (for i = 1, · · · 4), as
shown in Figure 3. For both visible and infrared modalities, the ground truth is derived by
concatenating the visible light and infrared ground truth, and is denoted as G. This cascade
supervision mechanism allows the model to better integrate information from both visible
and infrared images, thereby improving the accuracy of saliency object detection.

G = Concat(GRGB, GIR) (7)
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In this section, we define the objective function used to train the proposed model. The
objective function combines binary cross-entropy (BCE) loss and Dice loss to effectively
optimize the saliency object detection task. Therefore, the loss for each saliency prediction
map Si can be expressed as:

L(Si, G) = LBCE(Si, G) + LDice(Si, G), (8)

where Si and G represent the saliency prediction map and the ground truth, respec-
tively. LBCE

(
Si, G

)
represents the binary cross-entropy loss, and LDice

(
Si, G

)
represents the

Dice loss.
BCE loss is widely used in SOD tasks, as it computes the classification error for each

pixel in the image but does not account for the global structure of the image. Therefore, we
incorporate the Dice loss in the objective function to measure the spatial overlap between
the predicted result and the true target. By using both loss functions simultaneously, the
model is more comprehensively constrained during training. The specific loss functions
are defined as follows:

LBCE(Si, G) = −∑ Glog(Si) + (1 − G)log(1 − Si), (9)

LDice(Si, G) = 1 − 2 × ∑(Si × G) + ϵ

∑ (Si)+∑(G) + ϵ
, (10)

where ϵ (set to 1 × 10−5) is a small constant used to avoid division by zero.
To optimize the model, we employ multi-scale supervision to accelerate convergence.

This approach improves predictive accuracy by delivering gradient signals at various levels
of abstraction. During implementation, we compute the loss L

(
Si, G

)
for each channel in

the model’s output and aggregate the losses across all channels. The overall loss is the sum
of these individual losses:

L(S, G) =
4

∑
i=1

L(Si, G) (11)

During training, to better balance the ground truth information from both visible and
infrared modalities, we compute separate losses L(S, G) for each modality and introduce a
visible light weight parameter α for weighted summation. The final objective function is:

L = α × LRGB(S, G) + (1 − α)× LIR(S, G) (12)

We performed ablation experiments under different weight settings (see Section 4.3.5)
to determine the optimal weight value.

4. Experimental Results and Analysis
4.1. Experiment Setup
4.1.1. Datasets

We have constructed a specialized dataset for airport runway detection, named the
Runway Detection Dataset (RDD5000), which is a significant contribution of our research.
The RDD5000 dataset was collected using a DJI drone equipped with both visible light
(1920 × 1080 resolution) and infrared (640 × 512 resolution) cameras. The dataset consists
of 5000 pairs of visible and infrared images, which were carefully selected from real-world
airport runway scenes captured at Shenyang Faku Caihu Airport. A total of 16 GB of video
data was recorded during the collection process.

The dataset includes 10 sequences of clear visible light images and 10 sequences of
infrared images, each containing 500 images. Due to differences in shooting conditions and
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camera parameters, the visible light and infrared images in the RDD5000 dataset are not
aligned (as shown in Figure 2). This phenomenon is consistent with real-world conditions,
as perfectly aligned dual-modal images are difficult to obtain directly. Currently, existing
dual-modal datasets are typically aligned manually, which is a labor-intensive process.

All images were manually annotated with ground truth labels for runway detection.
Although the dataset was collected using a UAV, our proposed method is designed to
be applicable to real-world navigation systems. We acknowledge potential differences
between drone-collected data and data from actual navigation systems, particularly in
terms of environmental variations. For example, our drone dataset was collected under
clear weather conditions, whereas real navigation systems must operate in diverse and
complex environments, including adverse conditions such as fog, rain, or haze.

To address this gap and enhance the dataset’s realism, we employed a haze generation
method based on the MiDaS algorithm [89] to synthesize hazy conditions from the visible
light data collected by the drone. This approach simulates challenging weather scenarios,
thereby improving the robustness and generalizability of our method for real-world navi-
gation tasks. Specifically, we simulated four different levels of haze intensity (from light to
heavy) for each image in the 10 sequences, resulting in four additional sets of 5000 images
each. Figure 5 illustrates examples of haze image generation, showing the original visible
light images and their corresponding synthetic hazy versions at four intensity levels (light
to heavy). These variations allow for comprehensive training and evaluation of the model
under various low-visibility scenarios.
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To evaluate the effectiveness of our method, we conducted experiments on the
RDD5000 dataset and compared the results with the latest non-aligned dual-modal
SOD algorithms.
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4.1.2. Evaluation Metrics

We adopted four popular evaluation metrics to comprehensively evaluate the perfor-
mance of different methods, including the maximum F-measure (Fβ) [90], mean absolute
error (MAE), E-measure (Eξ) [91], and S-measure (Sm) [92].

1. F-Measure (Fβ).

Fβ is a combined metric that comprehensively considers both precision and recall, and
is commonly used to evaluate the accuracy of SOD results. It is formulated as:

Fβ =

(
1 + β2)× Precision × Recall

β2 × Precision × Recall
, (13)

where β2 is typically set to 0.3, as suggested in [6], to emphasize precision. Fβ is a ‘larger is
better’ type of metric. In our paper, we report the maximum Fβ under different binariza-
tion thresholds.

2. Mean Absolute Error (MAE).

The MAE is defined as the average pixel-wise absolute difference between the pre-
dicted saliency map and the corresponding ground truth. The calculation formula is:

MAE =
1

W × H

W

∑
i=1

H

∑
j=1

∣∣Sij − Gij
∣∣, (14)

where W and H represent the width and height of the image, respectively, with W × H
being the total number of pixels in the image. Sij and Gij are predicted saliency map and
ground truth, respectively. MAE is a ‘smaller is better’ type of metric.

3. E-measure (Eξ).

Eξ [91] is a recently proposed enhanced alignment metric. This metric, based on
cognitive vision, jointly captures image-level statistics and local pixel matching information.
It is computed by:

Eξ =
1

W × H

W

∑
i=1

H

∑
j=1

f
(

2φG ◦ φF
φG ◦ φG + φF ◦ φF

)
, (15)

where φ is the bias matrix, representing the distance between each pixel-wise value of the
ground truth and its image-level mean. f (·) denotes the enhanced-alignment matrix [91].
Eξ is a ‘larger is better’ type of metric.

4. Structure-Measure (Sm) [92].

The Sm simultaneously evaluates region-aware and object-aware structural similarity
between a saliency map and the ground truth. Sm is calculated as:

Sm = α × S0 + (1 − α)× Sr, (16)

where α ∈ [0, 1], and we set α = 0.5 as recommended in [92]. S0 and Sr denote the object-
aware and region-aware structure similarities, respectively. Sm is a ‘larger is better’ type
of metric.

In addition, we evaluate all methods by PR curves via binarizing the saliency map
with a threshold sliding from 0 to 255 and then comparing the binary maps with the
ground truth.

4.1.3. Implementation Details

1. Training Set and Data Augmentation.
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To address potential resolution differences between visible and infrared images, both
modalities are resized to a uniform resolution of 512 × 256 pixels before being fed into the
network. For data augmentation, we use horizontal flips, random cropping, and multi-scale
operations to process input image pairs. These steps enhance the diversity and robustness
of the training data, ensuring that the extracted features from both modalities are aligned
and suitable for fusion.

2. Parameter Settings.

We utilize the popular PyTorch framework to implement the proposed network.
Unless otherwise specified, we use MobileNetV2 as our backbone. During the training
phase, we apply the Adam algorithm with a momentum of 0.9 and weight decay of 1 × 10−4

to optimize our network. The batch size is set to 4, and the number of epochs is set to
150. Training was performed on a desktop equipped with an Intel Core i7-13700 CPU, an
NVIDIA RTX 4060 GPU, and 16 GB of RAM, with a total training time of approximately
14 h. For image pairs with an input size of 512 × 256, the average inference time is 0.0065 s
(running at about 155 FPS).

4.2. Comparison with SOTA Methods on the RDD5000

We compare our method with two state-of-the-art non-aligned dual-modal SOD
methods, DCNet [14] and SACNet [51], on the provided RDD5000 dataset.

4.2.1. Quantitative Comparisons

As shown in Table 2 and Figure 6, we provide a comprehensive quantitative and visual
comparison of our method (DCFNet) against two other unaligned-based methods (DCNet
and SACNet) on the RDD5000 dataset.

Table 2. Quantitative comparison with two other unaligned-based methods on RDD5000 datasets.
↑ and ↓ indicate ‘larger is better’ and ‘smaller is better’, respectively. #Params. (M) denotes the
number of parameters in millions. The best results are highlighted in bold.

Metric DCNet23 [14] SACNet24 [51] Ours (DCFNet)

Backbone Res2Net-50 SwinB MobileNetV2
Input size 352 × 352 384 × 384 512 × 256

#Params. (M) ↓ 91.88 300.268 3.30
FPS ↑ 4.878 27 155

FLOPs (G) ↓ 207.31 143.787 2.548

RDD5000
Visible Light Test

Dataset

Fβ ↑ 0.9919 0.9851 0.9907
MAE ↓ 0.0034 0.0092 0.0053

Eξ ↑ 0.9964 0.9879 0.9939
Sm ↑ 0.9662 0.9663 0.9780

RDD5000
Infrared Test

Dataset

Fβ ↑ 0.6773 0.8646 0.9881
MAE ↓ 0.3470 0.1856 0.0108

Eξ ↑ 0.4233 0.7544 0.9885
Sm ↑ 0.3933 0.7156 0.9001

In the RDD5000 visible light dataset, DCFNet achieves competitive results, with an Fβ

of 0.9907, MAE of 0.0053, and Eξ of 0.9939. Although slightly behind DCNet in terms of Fβ

(0.9919) and Eξ (0.9964), DCFNet outperforms SACNet (0.9851, 0.0092, 0.9879) across all
three metrics. Additionally, DCFNet excels in the S-measure, scoring 0.9780, higher than
both DCNet (0.9662) and SACNet (0.9663), suggesting its superior overall performance in
the visible dataset.

In the RDD5000 infrared dataset, DCFNet demonstrates a clear advantage over both
DCNet and SACNet. It achieves a remarkable Fβ of 0.9881, MAE of 0.0108, and Eξ of 0.9885,
far surpassing the scores of DCNet (Fβ = 0.6773, MAE = 0.3470, Eξ = 0.4233) and SACNet
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(Fβ = 0.8646, MAE = 0.1856, Eξ = 0.7544). This highlights DCFNet’s robust performance
in handling unaligned bimodal datasets, particularly in the infrared modality where both
DCNet and SACNet struggle.
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In terms of real-time performance, DCFNet achieves an impressive 155 FPS, signif-
icantly outperforming DCNet (4.878 FPS) and SACNet (27 FPS), demonstrating its high
computational efficiency and suitability for real-world applications.

In addition, Figure 7 shows the overall evaluation results of the PR curve and F-
measure curve for our method and comparative methods on the RDD5000 visible dataset.
As seen from the figure, the performance curve of the proposed method demonstrates
superior overall distribution and trend, further validating the significant advantage of
DCFNet in terms of performance.
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RDD5000 visible dataset.

4.2.2. Qualitative Comparison

Figure 8 provides a visual comparison of the saliency maps predicted by our method
and other competing methods. The examples in Figure 8 are taken from the RDD5000
dataset and represent several challenging scenarios, including small objects (Rows 1 and 2),
medium objects (Rows 3 and 4), and large objects (Rows 5 and 6). From these intuitive
views, it is evident that our method performs best in terms of completeness and clarity.



Remote Sens. 2025, 17, 669 18 of 28

Furthermore, the object boundaries predicted by our method are clearer and sharper than
those predicted by other methods. These results demonstrate the effectiveness of our
approach. These visual comparisons further validate the effectiveness and robustness of
DCFNet in dealing with various challenging scenarios.
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4.3. Ablation Studies

Section 3 provides a detailed description of the DCFNet network architecture and
its components. We perform a series of ablation studies based on the RDD5000 dataset
to evaluate the contribution of each key component in our method. In each ablation
experiment, only one component is modified, and the same experimental settings as those
in Section 4.1.3 are used. The specific ablation experiments are as follows:

4.3.1. Different Backbone Designs in the Encoder

We analyzed the impact of different backbone network designs in the DCFNet encoder
component. Specifically, we modified the backbone networks for the visible and infrared
independent encoding layers, as well as the shared encoding layer. In the “Default”
configuration, MobileNetV2 was used as the backbone network for both the visible and
infrared independent and shared encoding layers, and this was used as the baseline. We also
explored several alternative backbone configurations, as detailed in Table 3, which involve
combinations of independent and shared encoding layers using different backbones. For
example, the “Mobile + Res + Mobile” configuration indicates that the visible independent
encoding layer uses MobileNetV2, the infrared independent encoding layer uses ResNet18,
and the shared encoding layer uses MobileNetV2. Other similar backbone configurations
follow the same pattern.

Table 3 evaluates the performance of different backbone designs in the encoder. The
default configuration, which uses MobileNetV2 as the backbone, achieves the best per-
formance on both the visible and infrared datasets, with Fβ scores of 0.9907 and 0.9866,
respectively. This confirms the effectiveness of MobileNetV2 for dual-modal feature extrac-
tion and fusion.
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Table 3. Evaluation of different backbone network designs in the encoder. ↑ and ↓ indicate ‘larger is
better’ and ‘smaller is better’, respectively. The best results are highlighted in bold.

Method
RDD5000 Visible Light Test Dataset RDD5000 Infrared Test Dataset

MAE ↓ Fβ ↑ Eξ ↑ Sm ↑ MAE ↓ Fβ ↑ Eξ ↑ Sm ↑

Default 0.0053 0.9907 0.9939 0.9780 0.0117 0.9866 0.9868 0.9072
Res + Res + Res 0.0092 0.9848 0.9907 0.9545 0.0280 0.9666 0.9701 0.8529

Shuffle + Shuffle + Shuffle 0.0056 0.9901 0.9939 0.9625 0.0256 0.9711 0.9713 0.8617
Shuffle + Shuffle + Mobile 0.0053 0.9902 0.9942 0.9625 0.0232 0.9746 0.9745 0.8710

Mobile + Res + Mobile 0.0053 0.9904 0.9940 0.9634 0.0140 0.9834 0.9848 0.8922
Res + Mobile + Mobile 0.0056 0.9905 0.9939 0.9627 0.0159 0.9818 0.9817 0.8892
Mobile + Mobile + Res 0.0065 0.9893 0.9928 0.9608 0.0346 0.9549 0.9598 0.8432

4.3.2. Independent and Shared Encoding Layers Configuration

The performance of the DCFNet model is highly influenced by the balance between
independent and shared encoding layers. Specifically, the total number of independent
and shared layers must be equal to the total number of layers in the backbone network
(e.g., MobileNetV2 has five layers). Consequently, increasing the number of independent
layers reduces the number of shared layers, and vice versa. This complementary rela-
tionship highlights the importance of selecting the optimal balance to achieve the best
model performance.

For MobileNetV2, we established the default configuration with two independent
layers and three shared layers as the baseline. To assess the impact of different layer
configurations, we varied the number of independent and shared layers (while keeping the
total at five) and evaluated their performance, as shown in Table 4.

Table 4. Evaluation of independent versus shared coding layer settings. ↑ and ↓ indicate ‘larger
is better’ and ‘smaller is better’, respectively. #Params. (M) denotes the number of parameters in
millions. The best results are highlighted in bold.

Method
#Params.

(M) ↓
RDD5000 Visible Light Test Dataset RDD5000 Infrared Test Dataset

MAE ↓ Fβ ↑ Eξ ↑ Sm ↑ MAE ↓ Fβ ↑ Eξ ↑ Sm ↑

IL 1, SL 4 3.29 M 0.0047 0.9913 0.9945 0.9652 0.0150 0.9833 0.9827 0.8892
IL 2, SL 3 3.30 M 0.0053 0.9907 0.9939 0.9780 0.0108 0.9881 0.9885 0.9001
IL 3, SL2 3.33 M 0.0055 0.9903 0.9939 0.9626 0.0150 0.9828 0.9835 0.8933
IL 4, SL 1 3.82 M 0.0061 0.9897 0.9932 0.9617 0.0146 0.9830 0.9840 0.8947

The results in Table 4 show that the configuration of two independent layers and
three shared layers (IL 2, SL 3) achieves the best performance for both visible and infrared
datasets. Specifically, for the RDD5000 visible light test dataset, this configuration yields an
MAE of 0.0053, Fβ of 0.9907, Eξ of 0.9939, and an Sm of 0.9780. Similarly, for the infrared
test dataset, it achieves an MAE of 0.0108, Fβ of 0.9881, Eξ of 0.9885, and an Sm of 0.9001,
outperforming other layer configurations.

Our analysis reveals that the interplay between independent and shared layers is
critical to model performance. With their sum fixed at five, it is essential to find a proper
balance. A higher number of independent layers enhances feature extraction but reduces
the number of shared layers, weakening cross-modal fusion. Conversely, increasing shared
layers improves fusion at the expense of reducing the capacity for feature extraction in
each modality. Ultimately, the IL 2, SL 3 configuration strikes the best balance between
performance and computational efficiency, ensuring optimal model output.
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4.3.3. Effectiveness of the MFEM

The MFEM is primarily designed to enhance the semantic features output by the
lightweight encoder. We conducted several ablation experiments, including removing the
MFEM (denoted as “w/o MFEM”), where the decoder receives the encoder output directly
via the MAFM; and comparing the effects of different dilation strategies in the MFEM,
where “MFEMT=123” and “MFEMT=135” represent parallel three 3 × 3 depthwise separable
convolution units with dilation rates T set to 1, 2, 3 and 1, 3, 5, respectively. Additionally,
another design of the MFEM module was tested, where parallel 3 × 3, 5 × 5, and 7 × 7
depthwise separable convolution kernels are used to process the input feature map, labeled
as “MFEMK=357”.

The experimental results, presented in Table 5, indicate a notable performance degra-
dation when the MFEM is removed, highlighting the importance of this module for the
overall model performance. The removal of MFEM (w/o MFEM) led to higher MAE values
and lower performance metrics across both visible and infrared test datasets. In contrast,
the configurations incorporating the MFEM consistently outperformed the baseline without
the MFEM, particularly the “MFEMT=123” configuration, which achieved the best results
for both visible and infrared datasets.

Table 5. Evaluation of the MFEM design. ↑ and ↓ indicate ‘larger is better’ and ‘smaller is better’,
respectively. #Params. (M) denotes the number of parameters in millions. The best results are
highlighted in bold.

Method
#Params.

(M) ↓
RDD5000 Visible Light Test Dataset RDD5000 Infrared Test Dataset

MAE ↓ Fβ ↑ Eξ ↑ Sm ↑ MAE ↓ Fβ ↑ Eξ ↑ Sm ↑

w/o MFEM 3.07 M 0.0103 0.9789 0.9807 0.9641 0.0455 0.9485 0.9528 0.9357
MFEMT=123 3.30 M 0.0053 0.9907 0.9939 0.9780 0.0108 0.9881 0.9885 0.9001
MFEMT=135 3.30 M 0.0049 0.9909 0.9946 0.9641 0.0144 0.9832 0.9836 0.8897
MFEMK=357 3.41 M 0.0054 0.9900 0.9941 0.9625 0.0167 0.9814 0.9792 0.8850

Regarding the MFEM design choices, different dilation strategies (MFEMT=123 and
MFEMT=135) and convolution kernel size combinations (MFEMK=357) showed only marginal
differences in model performance. For both visible and infrared datasets, the changes in
dilation rates and kernel sizes had minimal impact on key metrics such as MAE, Fβ, Eξ ,
and Sm. This suggests that the MFEM, in its current form, is already highly effective at
improving the model’s performance, with the dilation rates and kernel sizes playing a
secondary role.

Figure 9 depicts the training dynamics of the DCFNet model with and without the
MFEM on the RDD5000 dataset. The red curves represent the model with the MFEM, while
the blue curves correspond to the model without the MFEM. The figure consists of two
subplots: one illustrating the progression of the maximum F-measure score, and the other
showing the MAE throughout the training process. The results clearly demonstrate that the
model with the MFEM not only achieves higher F-measure scores at an accelerated pace
but also shows a substantial reduction in MAE during training. These findings underscore
the crucial role of the MFEM in enhancing the model’s performance, providing faster
convergence and more accurate predictions.

Figure 10 provides a visual comparison of the feature heatmaps generated by the
DCFNet model with and without the MFEM. The first column displays the original visible
light or infrared images of airport runways, the second column shows the corresponding
ground truth (GT), the third column presents the feature heatmaps when the MFEM is
used, and the fourth column shows the feature heatmaps without the MFEM.
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As shown in Figure 10, the model with the MFEM (third column) captures the airport
runway regions more accurately and confidently than the model without the MFEM (fourth
column). The feature heatmaps generated with the MFEM exhibit stronger activation in the
runway areas, indicating that the MFEM significantly enhances the model’s ability to extract
and focus on salient features. In contrast, the heatmaps without the MFEM show weaker
and less precise activations, particularly in challenging regions such as low-visibility or
complex backgrounds.

4.3.4. Attention Mechanisms in the MAFM

The MAFM optimizes saliency object detection performance by introducing attention
modules (AM) at multiple feature levels. To evaluate the contribution of these attention
mechanisms, we conducted ablation experiments to assess the performance of the model
with and without attention mechanisms, as well as with different combinations of attention
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mechanisms (e.g., channel attention (CA) and spatial attention (SA)). The experimental
results are presented in Table 6, and a visual comparison of the feature heatmaps with and
without AM is shown in Figure 11.

Table 6. Evaluation of AM design in the MAFM. ↑ and ↓ indicate ‘larger is better’ and ‘smaller is
better’, respectively. The best results are highlighted in bold.

Method
RDD5000 Visible Light Test Dataset RDD5000 Infrared Test Dataset

MAE ↓ Fβ ↑ Eξ ↑ Sm ↑ MAE ↓ Fβ ↑ Eξ ↑ Sm ↑

MAFM (CA1–4) 0.0054 0.9905 0.9940 0.9627 0.1140 0.9857 0.9840 0.8904
MAFM (SA1–4) 0.0051 0.9906 0.9944 0.9636 0.0242 0.9742 0.9740 0.8639

MAFM (SA1CA2–4) 0.0053 0.9903 0.9942 0.9632 0.0157 0.9836 0.9818 0.8877
MAFM (SA1–2CA3–4) 0.0053 0.9907 0.9939 0.9780 0.0108 0.9881 0.9885 0.9001
MAFM (SA1–3CA4) 0.0052 0.9905 0.9942 0.9638 0.0119 0.9857 0.9867 0.8961
MAFM (w/o AM) 0.0053 0.9901 0.9942 0.9625 0.0287 0.9644 0.9687 0.8525
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Table 6 evaluates the performance of different attention mechanism configurations
in the MAFM. Several configurations are compared, including models with only channel
attention (CA), only spatial attention (SA), and combinations of both. For example, the
configuration “MAFM (CA1–4)” refers to applying CA across all blocks (Block 1 to Block 4) in
the MAFM module, while “MAFM (SA1CA2–4)” uses SA in Block 1 and CA in Blocks 2 to 4.

The results in Table 6 demonstrate that removing the AM (“MAFM (w/o AM)”) leads
to a significant performance drop, demonstrating the critical role of attention mechanisms
in the MAFM. The “MAFM (SA1–2CA3–4)” configuration performed well on both the visible
and infrared test sets, particularly on the infrared dataset, where the Fβ and MAE scores
were 0.9881 and 0.0108, respectively. These results validate the effectiveness of the proposed
attention mechanism design in improving saliency detection accuracy.

Figure 11 provides a visual comparison of the output feature maps generated by the
MAFM with and without AM at different scales. The left side of the figure shows the output
feature maps at multiple scales, from coarse to fine, corresponding to Block 4, Block 3,
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Block 2, and Block 1, denoted as D4, D3, D2 and D1, respectively. The first and second rows
show the output feature heatmaps and saliency maps when AM is used, while the third
and fourth rows show the output feature heatmaps and saliency maps without AM. The
right side of the figure displays the original images and their corresponding ground truth
(GT) for intuitive comparison between the model outputs and the true salient regions.

The comparative results in Figure 11 clearly illustrate the positive impact of integrating
attention mechanisms into the MAFM module, improving both feature extraction quality
and saliency detection precision. By applying AM at different scales, the model is better
able to capture and emphasize key features within the image, thus improving the overall
performance of saliency object detection.

4.3.5. Loss Function Design

The proposed model uses a hybrid loss function that combines binary cross-entropy
(BCE) loss and Dice loss, along with a visible light weighting parameter α to balance the
contributions of visible and infrared modalities, as shown in Equation (16). We conducted
ablation experiments with different values of α, and the results are presented in Table 7.
In addition, we also tested the performance of the model using only BCE loss and only
Dice loss.

Table 7. Comparison of the performance of different loss functions. ↑ and ↓ indicate ‘larger is better’
and ‘smaller is better’, respectively. The best results are highlighted in bold.

Loss Setting
RDD5000 Visible Light Test Dataset RDD5000 Infrared Test Dataset

MAE ↓ Fβ ↑ Eξ ↑ Sm ↑ MAE ↓ Fβ ↑ Eξ ↑ Sm ↑

α = 0.5 0.0053 0.9907 0.9939 0.9780 0.0108 0.9881 0.9885 0.9001
α = 0.6 0.0052 0.9907 0.9940 0.9634 0.0155 0.9822 0.9835 0.8889
α = 0.4 0.0054 0.9904 0.9939 0.9632 0.0130 0.9859 0.9851 0.8947

BCE only 0.0059 0.9905 0.9934 0.9642 0.0112 0.9876 0.9873 0.9020
Dice only 0.0056 0.9893 0.9939 0.9608 0.0169 0.9736 0.9808 0.8929

The experimental results indicate that the model performs optimally when α = 0.5,
i.e., when the contributions of the visible and infrared data are balanced. Therefore, we
chose α = 0.5 as the default setting for network training. Further analysis revealed that
introducing Dice loss supervision improved the MAE by approximately 0.1% to 0.2%, but
had minimal impact on the Fβ score. Given that Fβ is the primary evaluation metric for
SOD and is mainly enhanced by BCE loss, we conclude that the hybrid BCE and Dice loss
function is a reasonable choice for the default setting.

4.4. Experimental Example of Our Method

In addition to runway detection, we have extended the application of the proposed
method to other aviation tasks, such as airport runway line instance segmentation. As
shown in Table 8, our method achieves competitive performance on both visible and
infrared datasets for runway area segmentation and runway line segmentation tasks. For
instance, on the RDD5000 visible light dataset, DCFNet attains an F1 score of 0.9940 for
runway area segmentation and an IoU of 0.6301 for runway line segmentation. These results
demonstrate the potential of our method for broader applications in aviation and remote
sensing. In future work, we plan to further explore the generalization of our approach to
other object detection tasks, such as aircraft detection and obstacle detection.
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Table 8. Performance analysis of DCFNet applied to other aviation tasks. ↑ and ↓ indicate ‘larger is
better’ and ‘smaller is better’, respectively.

Method

RDD5000 Visible Light Test Dataset RDD5000 Infrared Test Dataset

Runway Area
Segmentation

Runway Line
Segmentation

Runway Area
Segmentation

Runway Line
Segmentation

F1 ↑ IoU ↑ Accuracy ↑ IoU ↑ F1 ↑ IoU ↑ Accuracy ↑ IoU ↑
Ours

(DCFNet) 0.9940 0.9882 0.9818 0.6301 0.9676 0.9415 0.8855 0.3353

5. Conclusions
This study presents a novel approach for real-time runway detection by integrating

visible and infrared data through dual-modal saliency object detection (SOD) techniques,
addressing the critical need for improved detection accuracy in complex environments.
We propose an innovative dual-modal SOD algorithm that effectively extracts salient
objects from misaligned visible and infrared images, successfully overcoming the alignment
challenges inherent in traditional methods.

A key contribution of this work is the creation of the RDD5000 dataset, a large-scale
visible–infrared runway dataset captured from real-world scenarios. This dataset fills a
significant gap in publicly available datasets for airport runway detection from an aircraft
landing perspective and is expected to serve as a valuable resource for future research in
aviation safety.

Experimental results demonstrate the superior performance of our proposed dual-
modal cross-layer lightweight fusion network (DCFNet), achieving a maximum F-measure
of 99.07% and a mean absolute error (MAE) of 0.0053 on the RDD5000 dataset. The
lightweight version of DCFNet, based on MobileNetV2, operates at an impressive speed of
155 FPS on a single GPU, making it highly suitable for real-time use in airborne systems.
These results highlight the effectiveness of our method in improving both detection accuracy
and computational efficiency, which are critical for intelligent navigation systems.

Despite the promising results, the proposed method has certain limitations, such as
performance degradation under extreme weather conditions, reliance on GPU deployment,
and the need for further dataset scalability. Future work will focus on enhancing robustness
through multi-modal fusion, exploring deployment on low-power embedded systems,
expanding the dataset to include more data from real navigation systems, and extending the
method to other target detection tasks in aviation and remote sensing, enabling real-time
applications in more complex environments.

In conclusion, this research provides an effective solution for airport runway detec-
tion, and we look forward to its potential to make a greater impact within intelligent
transportation systems.
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