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Abstract: With the increasing number of human space activities, space surveillance systems
need to be developed to reduce the risk of collisions between space assets and space debris.
In this context, optical surveillance systems have gradually become a significant means
of space surveillance due to their various advantages. Generally, the sidereal tracking
mode is used to search for unknown moving targets, which appear as streaks in the
star image generated by the optical surveillance system. Typical matched filtering can
detect faint streak-like targets in star images, but it generates more false alarms and must
traverse all potential filters. In this paper, the layering approach is used to improve the
environment for detecting faint targets, in which dual-threshold segmentation is proposed
to separate bright objects while maintaining the completeness of faint targets. Second,
a streak-like matched filter unit and a dual-step search approach are recommended to
lower the computational cost of matched filtering. Finally, perpendicular cross filtering is
provided to further eliminate false positives. Experiments performed with both simulated
and real data demonstrate that the proposed method has excellent detection performance
for detecting multiple faint streak-like targets in a single star image.

Keywords: star image processing; multiple space targets; faint target detection

1. Introduction
The increasing number of human space activities not only increases the space assets

in Earth’s orbit year by year but also inevitably brings more space debris, increasingly
deteriorating the space environment [1,2]. The need for safe and sustainable space activities
requires the development of strong space situation awareness capabilities in an increas-
ingly crowded space environment [3,4]. The space surveillance system, as an important
component of space situational awareness, can detect and track space targets. The optical
surveillance system is a significant means of space surveillance due to its advantages of
low energy consumption, light weight, high reliability, and long-distance observation [5,6].
The star images generated by optical surveillance systems are composed of stars, targets,
background, and noise. Stars and targets appear as points or streaks due to their great
distance. The background presents a great deal of low-intensity information. Noise is
produced by space stray radiation and detection devices, which lowers image quality [7,8].
The sidereal tracking mode (STM) is an important operational mode for space target ob-
servation. STM is continuously reoriented to be fixed to the stars, which are stationary
and appear as point-like objects. There is relative motion between the optical observation
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system and the targets, which appear as streak-like objects [9–11]. As most unknown targets
lack knowledge about their orbital parameters, STM is better suited to detect unknown
targets [12,13]. In STM, the movement of the target disperses the energy more, making
the streak-like target fainter [14,15]. While automatically detecting faint streak-like targets
from optical star images is a challenge, better faint streak-like target detection can better
detect fainter space targets or allow for the use of lower-cost detectors [16,17].

In recent decades, many methods have been developed to detect streak-like targets
from star images, which can be classified into two categories: multi-frame detection and
single-frame detection. Multi-frame detection signifies that each detection requires the
analysis of successive star images containing the same streak-like targets, and the perfor-
mance of some approaches may be dependent on the number of successive star images.
Leu et al. [18] proposed a segmentation-based approach for detecting space objects in star
image sequences through comparing the differences between two successive images. Then,
two sets of moving objects are examined in three successive images to identify potential
targets. Schildknecht et al. [19] proposed that a mask produced from star image sequences
is applied to the star image to be processed, followed by segmentation to detect moving
targets. These methods cannot improve the signal-to-noise ratio (SNR) of the targets, so
they do not work well for detecting faint targets. The Space-Based Visible (SBV) sensor [20]
on the Midcourse Space Experiment (MSX) satellite performs Moving Target Indicator
(MTI) algorithms and a 2D velocity-matched filter search to detect streak-like targets.
Gural et al. [21] proposed shifting and stacking frames based on a supposed motion speed
and direction, then thresholding the multi-frame sum in space and time to identify targets
that match the supposed motion. Similarly, Yanagisawa et al. [22] presented a complicated
shift-and-co-add method. Various shift values for targets must be applied to ensure that
targets are located on the same pixels in subimages, after which field stars are removed and
background noise is reduced by the median filter. Danescu et al. [23] proposed a method
based on the characteristic that streak-like targets tend to have a collinear trajectory in
successive frames. Zhang et al. [24] presented a method based on the movement charac-
teristics to extract and correlate targets from consecutive frames in celestial coordinates.
These approaches are mainly based on evaluating each potential motion that could occur in
star images. There are also many other multi-frame detection approaches that significantly
improve the SNR of moving targets, but the related computing load will rapidly increase
as the supposed set grows due to the unknown position, speed, and direction of targets.
Furthermore, the image-processing steps in multi-frame detection involve storing a large
number of intermediate imagery products that require significant amounts of computer
resources. In addition, there may be image shift and rotation, as well as considerable
changes in the brightness of the same target between two successive star images. These
changes may challenge these approaches based on star image sequences.

Single-frame detection signifies that streak-like targets can be detected in a single
image. Stoveken et al. [25] proposed using a star catalog to classify pixels segmented
from star images. The pixels corresponding to the star catalog are removed, and the
remaining pixels are identified as belonging to targets. Kouprianov et al. [26] presented
a logical filtering method based on the bit mask to join these fragments generated by
segmentation together. Li et al. [27] developed an approach based on target characteristics.
Its operator is used to find local maximum points in each potential target segmented from
the star image, and pixels in the same potential target are grouped according to three
domains—space, intensity, and distribution—to identify whether it contains a streak-like
target. However, these approaches based on segmentation and then classification are better
suited for detecting brighter targets. Integrating spatial distribution energy to improve the
response intensity of streak-like targets is an effective approach for detecting faint targets.
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Yanagisawa et al. [28] developed the line detection method, which assumed the line’s
direction and integrated the pixel intensity along this direction to enhance the response of
a faint target. Zimmer et al. [29] employed the typical Radon transform to identify linear
features in star images. The key idea is that faint target detection is equivalent to detecting
the local maximum value in the Radon transform domain. Hickson et al. [30] provided a
method that combines one-dimensional projection with a fast discrete Radon transform; it
projects the image along the perpendicular direction to the track and searches for a local
maximum based on the point spread function (PSF) in this one-dimensional projection.
These approaches essentially integrate energy along the line distribution, but the length
of the line must be sufficiently long. Therefore, it cannot work well for short streak-like
targets. Ciurte et al. [31] proposed a method to detect short streak-like targets using the
Radon transform in smaller windows, which are then recombined to provide potential
targets. A set of additional rules would next be used to determine whether the potential
targets are the real targets. Tagawa et al. [32] improved the detection of streak-like targets
by compressing images along target directions. The compressed image will have the
highest responses if the compression angle and width match the target direction and length,
respectively. Nir et al. [33] also present an efficient implementation of the fast Radon
transform, which is extended to detect short targets and multiple targets. However, these
approaches also require the faint targets to have adequate lengths in order to be detected.
At the same time, these methods assume that any residual sources in the image have been
eliminated; otherwise, they will result in incorrect results.

Another single-frame detection strategy is the well-known spatial matched filtering,
which can integrate all the distributed energy of streak-like targets to improve detection
sensitivity in a single image. The idea is that the filter that best matches the streak-like
target should give the highest convolution answer. Levesque et al. [34] developed a
spatially matched filtering approach to detect known streak-like targets. The streak-like
targets should remain after several iterations of matched filtering, while additional residual
objects would be attenuated in each iteration of matched filtering. For faint streak-like
targets, the detection’s performance is limited by false alarms. A method improved by
false alarm rejection has been presented [35], in which the length, orientation, and intensity
of streak-like target features are used to distinguish between targets and false alarms,
and the false alarms can be eliminated further. However, these approaches rely on prior
knowledge of the targets, which cannot be obtained in advance for unknown targets.
Vananti et al. [36,37] presented a method to detect unknown streak-like targets via spatially
matched filtering. Filters of various lengths and directions are generated to convolute a
star image, and an overall threshold can be set to accept or reject the responses. To avoid
excessive answers caused by filters partially covering streaks or remaining stars, a set
of additional accepted criteria has been developed to be used in this method. However,
this approach generates a huge number of streak-like filters with various directions and
lengths to match the targets, which is time-consuming and computationally intensive.
In addition, with the rapid development of machine learning and deep learning, they have
also achieved notable results in target detection. Guo et al. [38] introduced a CSAU-Net
network for real-time target detection and segmentation based on spatial image features.
Zhao et al. [39] developed a deep learning neural network based on the YOLOv5 model
to detect and extract targets. Guo et al. [40] also presented a method based on YOLOv8
that can reduce the model parameters while enhancing the faint target detection accuracy.
However, these methods typically require a large number of labeled star images as training
data, and their robustness and generality to complex background environments that were
not included in the training data are limited.
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A spatially matched filter that perfectly matches the shape, length, and orientation
of a streak-like target should lead to the best detection sensitivity [37,41]. However, it
is also sensitive to residual stars and background noise, which may result in many false
positives [34–37,41]. Meanwhile, for implementing spatially matched filtering, a blind
search is performed on all possible filter lengths and directions due to unknown targets.
These significantly increase decision-making difficulties and computational complexity.
A good detection method should have excellent detection sensitivity, high decision accu-
racy, and a reasonable computational effort. Therefore, this study focuses on optimizing
the spatially matched filtering to preserve high sensitivity and reduce computing com-
plexity while minimizing false alarms. The contributions of this study are described in
the following:

(1) A star image is separated into three layers: a saturated layer, a bright layer, and a dark
layer. The dark layer, which excludes saturated or bright objects, can provide a better
environment for detecting faint targets. Dual-threshold segmentation (DTS), which
is proposed to separate the dark layer, can ensure the completeness of faint targets in
the dark layer. As a result, DTS can effectively reduce false positives caused by bright
objects while retaining target detection accuracy.

(2) Improved streak-like matched filtering is proposed to lower the high computational
complexity of matched filtering by optimizing filters for length and direction. A streak-
like matched filter unit based on the imaging characteristics of streak-like targets is
presented to reduce the number of filters generated for all possible lengths. Mean-
while, a dual-step search is used to reduce the number of searches for all possible
filter directions.

(3) A perpendicular cross filter (PCF) is proposed to eliminate false positives generated
by the residual stars and background noise in the dark layer. The PCF is designed to
respond differently to streak-like targets and residuals so it can distinguish between
them. Therefore, the PCF can further reduce false alarms in the target detection.

The rest of this paper is organized as follows: Section 2 briefly introduces the character-
istics of star images. Section 3 describes the essential principles of the proposed detection
methods in detail. Section 4 details the implementation and verification of the proposed
methods. Experiments and discussion are presented in Section 5, and conclusions are
provided in Section 6.

2. Imaging Characteristics
A star image generated by optical instruments is composed of targets, stars, back-

ground, and noise. It can be expressed simply as

I(i, j) = T(i, j) + S(i, j) + B(i, j) + N(i, j), (1)

where I(i, j) is the total intensity value, and T(i, j) and S(i, j) represent space targets and
stars, respectively. In STM, stars appear as point-like objects, while targets appear as
streak-like objects and can be regarded as the convolution of a point-like object with
linear kernels [27]. B(i, j) refers to the background, which is often non-uniform due to
the influences of the ecliptic, stray light, and so on. Noise, N(i, j), is generated by space
radiation and optical devices, so it is a combination of several kinds of noise [42]. Hot pixels,
flicker noise, and other types of similar noise appear as isolated spike noise. Photon noise,
dark current, readout noise, and so on all roughly have Poisson or Gaussian distributions
and can be approximated as Gaussian noise.
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2.1. Distribution of Point-like Stars

Because the stars are fixed relative to the optical system and have a long distance
between them, they are imaged as point sources in an exposure period. PSF approximates
the energy distribution of each star on the image sensor using a two-dimensional Gaussian
function. The energy distribution can be expressed as

S0(i, j) =
I0

2πσ2
PSF

exp

(
− (i − i0)2 + (j − j0)2

2σ2
PSF

)
, (2)

where I0 is the total intensity of a star, which is proportional to the total energy transferred
from the star to the sensor and can be calculated using the number of electrons collected
during the exposure time. σPSF is the standard deviation of the Gaussian distribution
function, which is determined by the optical system’s PSF, and (i0, j0) is the center position
of the star. When karea represents a single pixel area, the intensity value of the star spread
across each pixel can be expressed as

S(i, j) =
I0

2πσ2
PSF

∫∫
karea

exp

(
− (i − i0)2 + (j − j0)2

2σ2
PSF

)
didj. (3)

2.2. Distribution of Streak-like Targets

Due to the relative motion between the optical observation system and the targets,
the energy is dispersed into several pixels along the direction of motion, generating streaks
that extend along the motion. The position of the target presented by (i0(t), j0(t)), which
varies with time, is not fixed. The energy distribution can be expressed as

T0(i, j) =
1
E

∫ E

0

I0

2πσ2
PSF

exp

(
− (i − i0(t))2 + (j − j0(t))2

2σ2
PSF

)
dt, (4)

where E is the exposure time. Similar to point-like stars, the intensity value of the target
distributed across each pixel can be expressed as

T(i, j) =
1
E

I0

2πσ2
PSF

∫∫
karea

[∫ E

0

I0

2πσ2
PSF

exp

(
− (i − i0(t))2 + (j − j0(t))2

2σ2
PSF

)
dt

]
didj. (5)

2.3. Object SNR

The SNR is a useful parameter for evaluating the signal quality and mapping the
performance of target detection in star images. Target detection becomes more challenging
as the SNR decreases. In star images, the object SNR may have different definitions
depending on the application environment. Figure 1a illustrates an ideal SNR for a known
real signal (S) and noise (σ). In star images, the intensity of the object is distributed across
several pixels under the PSF effect, so the ideal SNR is less used. Figure 1b illustrates a
peak SNR, which is the ratio of an object’s brightest pixel value to its noise. However,
objects with the same peak SNR may have pixels with significantly different intensities
around the center pixel. As the peak SNR is only related to the pixel with the highest
intensity, it does not take into account the intensity of surrounding pixels. Thus, it cannot
effectively reflect the object’s overall quality. The average SNR involves multiple pixels
of the object. As shown in Figure 1c, the different sizes of the average operators provide
different results for the same objects. In this study, the size of the local average operator is
uniformly defined as the half-height PSF width as shown in Figure 1d. The σPSF of the PSF
in this study is approximately 1.274, derived from the acquired real star images, and its
corresponding half-height PSF width is about 3 pixels.
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(a) (b)

(c) (d)

Figure 1. Different definitions of the object’s SNR. (a) Ideal SNR; (b) peak SNR; (c) average SNR;
(d) average SNR of half-height PSF.

3. Proposed Detection Method
3.1. Image Layering

The saturated region has an adverse impact on star image processing, such as denois-
ing and background estimation, as well as matched filtering. Bright stars or targets can
also have an adverse impact on the matched filtering. As shown in Figure 2a,b, bright
stars or targets may cause false positives in their surroundings because their energy is
strong enough that even partially matched filtering generates higher responses than the
perfectly matched filtering of faint streak-like targets. Meanwhile, as shown in Figure 2c,
the bright stars around the streak-like target may make it difficult to correctly determine the
matched filter’s direction. To reduce the negative impact on the detection of faint targets,
it is necessary to separate a star image into three layers: a saturated layer, a bright layer,
and a dark layer. The saturated layer only includes saturated regions of the star image;
the bright layer only includes bright objects of the star image; and the dark layer is the
star image after excluding saturated and bright regions. In Figure 2, the gray circular area
represents bright stars; the gray streak-like area represents targets; the region surrounded
by the blue line represents the filter; and the black dot represents the center of the filter.

(a) (b) (c)

Figure 2. The influence of bright objects on faint target detection based on matched filtering.
(a) Bright stars cause false positives in their surroundings. (b) Bright targets cause false positives in
their surroundings. (c) Bright stars around the streak-like target generate higher responses in the
incorrect direction.
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3.1.1. Saturated Region Extraction

A normal star image that can be processed successfully should only have a few or no
saturated areas. The saturated layer is separated as follows: Firstly, the saturation intensity
threshold (TSat_Mag) can be estimated according to the star image’s grayscale, and then
the star image is segmented to obtain saturated pixels. Secondly, the region-growing
method is applied to the saturated pixels to obtain each saturated object. If the size of
these objects exceeds the size threshold (TSat_Area), they are classified as saturated objects.
Finally, the saturated layer is composed of expanded saturated object regions to avoid
leaving residues.

In Figure 3 (left), the gray circular area represents saturated stars, and the gray grid
area shows saturated pixels caused by isolated spike noise. Figure 3 (middle) shows the
six potential saturated objects that were extracted from the star image by the segmentation
and region-growing methods. Object 2 and Object 3 meet the size requirement, so they are
classified as saturated objects. Figure 3 (right) shows that the saturated layer consists of
Object 2 and Object 3. Object 1 and Object 4 are stars in critical saturation, which means
their distribution profiles have not suffered significant damage. Therefore, they will be
classified as bright objects and separated into bright layers. Object 5 and Object 6, which do
not meet the size requirement, are eliminated as spike noise in the star image preprocessing.

Figure 3. The saturated layer is separated from the star image. (Left) Initial saturated star image.
(Middle) Connecting area of saturated pixels. (Right) Saturated objects are separated.

3.1.2. Dual-Threshold Segmentation

After the saturated layer separation, background removal, and denoising, the star
image can be separated into bright and dark layers. As the intensity of bright objects is high,
they can be segmented directly with traditional threshold segmentation (TTS). However,
streak-like targets near the threshold may be broken into one or more discontinuous
fragments, resulting in incomplete streak-like targets or the misclassification of some
fragments as stars. In Figure 4a, Object 1 is a faint star; Object 2 is a streak-like target near
the threshold; Object 3 is a bright star; Object 4 is a bright streak-like target; Object 5 is a star
near the threshold; and Object 6 is a faint streak-like target. The results of TTS are shown in
Figure 4b. Object 3 and Object 4 can be completely segmented. Object 1 and Object 6 are
separated into the dark layer. Object 5 is not segmented, so it is left in the dark layer due to
its tiny area. Object 2 is improperly segmented into two new objects: Object 7 and Object 8.
Object 7 is difficult to detect as a streak-like target due to the severe damage. Object 8 is
likely to be misidentified as a star, resulting in the loss of the observed targets. Therefore,
the faint streak-like targets near the threshold may be damaged by TTS.

The basic idea of DTS is that two thresholds, a high threshold and a low threshold,
are used to segment the same object, resulting in two areas of different sizes. The ratio
between the two areas of the same object, presented as a size-extended ratio, is used to
determine which layer it belongs to. For a fainter target, there are no or only very small
areas in the results of high-threshold segmentation, so it can be directly separated into
the dark layer without considering its results in low-threshold segmentation. For a bright
object, the area obtained by low-threshold segmentation is a natural extension of the area
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obtained by high-threshold segmentation, so the size-extended ratio is not sharp. For an
object near the threshold, the area obtained by low-threshold segmentation includes not
only the natural extension of the area obtained by high-threshold segmentation but also its
fragments that were not in the results of high-threshold segmentation, so its size-extended
ratio is sharp. Therefore, it is possible to determine whether an object belongs to the bright
layer or the dark layer by comparing its area in the results of low-threshold segmentation
to that of high-threshold segmentation.

Figure 4. Separate bright and dark layers. (a) Initial star image including multiple objects. (b) Bright
objects separated by TTS (objects separated by DTS with the high threshold). (c) Objects separated by
DTS with the low threshold. (d) Bright objects separated by DTS.

Figure 4c shows the results of low-threshold segmentation, and Figure 4d shows the
DTS results. The areas of Object 3 and Object 4 in the results of low-threshold segmentation
are natural outward extensions of their corresponding high-threshold areas, so they can
be separated into the bright layer. Object 1 is left in the dark layer because it is not in the
results of high-threshold segmentation. Similarly, Object 6 is left in the dark layer. Object 5
is left in the dark layer due to its tiny area in the results of the high-threshold segmentation.
Object 2 is broken into two areas by high-threshold segmentation. When they are compared
with their corresponding areas by low-threshold segmentation, their size-extended ratios
are sharp, so Object 2 is retained in the dark layer. By comparing Figure 4b,d, Object 3 and
Object 4 are successfully separated into the bright layer; Object 1, Object 5, and Object 6
are correctly separated into the dark layer by TTS or DTS. Only DTS can separate Object 2
completely into the dark layer, while TTS cannot.

At present, the star image is separated into three layers. Point-like stars and streak-
like targets in the bright layer can be identified by their characteristics and structure.
After removing the saturated layer and bright layer from the star image, the dark layer
is obtained, which only contains faint objects. Thus, the image layering eliminates the
influence of saturated and bright objects and protects the completeness of faint streak-like
targets, making it better suited for the streak-like target detection of matched filtering.

3.2. Improved Streak-like Matched Filtering

The idea of streak-like matched filtering is that the filter that best matches the streak-
like target should produce the highest response. It convolves the star image I(i, j) with all
possible streak-like filters F(l, θ) [37] and compares the response to a threshold η as
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arg max(l,θ)(I(i, j) ∗ F(l, θ))

σF
> η. (6)

σF represents the filtered image noise, and it is calculated according to the matched filter [37].
The l represents the streak-like filter’s length, and θ represents its direction. Due to the
lack of prior information for unknown targets, all possible filters (with variable lengths
and angles) must be produced in advance, which can result in significant computational
costs in filtering. Therefore, streak-like matched filtering can be improved by decreasing
the number of possible filters based on these two factors.

3.2.1. Streak-like Matched Filter Unit

The generation of the streak-like matched filter reveals that the distribution of the filter
in the direction of the perpendicular to the filter’s orientation is nearly identical, with the
exception of both ends of the streak-like filter as shown in Figure 5a,b. A streak-like
matched filter can be approximated by combining several streak-like matched filter units.
The longer the streak-like matched filter, the higher the detection sensitivity; however, it
needs to meet the requirement that there must be a faint target with the same length in the
star image. Figure 5c shows the filter results for the streak-like matched filter unit. The filter
response obviously increases as the target SNR increases, but it changes slightly with the
length of the target. When the target length is nearly the same as the length of the filter unit,
the energy at both ends of the target will be lower than that of the longer target. Therefore,
there is a drop in the response of the matched filter unit to the 21-pixel-long target. It can
be concluded that the detection sensitivity is almost determined by the length of the filter
unit and is not related to the length of the target. Therefore, the length of the streak-like
matched filter unit can be determined based on the detection sensitivity requirements and
the detected target’s minimum length. For σPSF = 1.274, a 7 × 7 window contains 99% of
the energy of a point-like object. Its three-times width, 21 pixels, is chosen as the minimum
detectable length for the streak-like target in this paper. As the streak-like matched filter
unit has a defined length, the search for the matched filter is limited to only all possible
directions, avoiding the need to search all potential lengths.

3.2.2. Dual-Step Angle Search

The matched filter’s direction search is to find the matched direction of the streak-like
target within the range of 0◦ to 180◦. Because the filtering response in adjacent directions
of the matched direction is also related to the maximum filtering response, a dual-step
search can be proposed to simplify the direction-blind search. The first phase is a large-step
coarse search to determine a small direction range that includes the matched direction.
The second phase is a small-step fine search to find the matched direction within this range.
As shown in Figure 6, the gray short dash represents all of the responses to various angles
in the large-step coarse search. And the gray dotted line, which is the maximum response,
represents the result of the large-step coarse search. Expanding it to both sides results in
the small search range. And a small-step fine search in the range is performed to obtain
the matched direction represented by the green long dash. The step size of coarse search
impacts the validity of direction search, computational complexity, and implementation
convenience. The comparison of the response ratio and search times for different large-step
sizes with a directional resolution of 1◦ is shown in Table 1. The response ratio in Table 1 is
the ratio of the maximum response of the large-step coarse search to the maximum filtering
response of the blind search, and the search times in Table 1 is the number of search times in
a dual-step angle search. The lower the response ratio, the worse the relevance. The fewer
the search times, the lower the computational cost.
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(a) (b)

(c)

Figure 5. The distribution and filtering response of a streak-like matched filter unit: (a) A streak-
like matched filter with a length of 21 pixels. (b) A streak-like matched filter with a length of
41 pixels. (c) The responses of a streak-like matched filter unit of 21-pixel length filtering the same
SNR streak-like targets with various lengths.

Figure 6. The dual-step search for the matched direction.

Table 1. The response ratios and search times for different large-step sizes.

Step size 1 2 3 4 5 6

Response ratio 100% 99.58% 98.98% 98.19% 97.06% 95.71%
Search times 180 92 64 51 44 40

Step size 9 10 12 15 18 20

Response ratio 90.13% 87.93% 83.09% 75.45% 67.88% 63.19%
Search times 36 36 37 40 44 47
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3.3. Perpendicular-Cross Filtering

After layering and matched filtering, faint streak-like targets can be well detected in
the dark layer, but the residual faint stars and noise may still cause false positives. In order
to further reduce these false positives, PCF based on the differences in response to the
perpendicular direction of matched filters between stars and streak-like targets is proposed.
The difference in response for a star between the direction of the filter with maximum
response (MFMAX) and perpendicular to it (MFPC) is caused by noise, and the difference is
limited to a specified range that is related to noise as shown in Figure 7a. The difference
in response for a streak-like target between the direction of the matched filter (MFMAX)
and perpendicular to it (MFPC) is mainly determined by the structure of the target itself,
and the difference will be greater than that of the star as shown in Figure 7b. The response
ratio of PCF is defined as

RPCF =
MFMAX
MFPC

. (7)

For example, in an ideal environment, for a streak-like matched filter with a length of 21 pixels,
the RPCF of stars is roughly 1, while the RPCF of a streak-like target is approximately 4.5.
Therefore, the PCF can be used to further eliminate false alarms caused by residual stars
and noise, which only requires one additional filtering calculation. In Figure 7, the region
enclosed by the solid line represents the matched filter, and θ represents the direction of
the matched filter. The region enclosed by the dashed line represents the perpendicular
cross filter corresponding to the matched filter, and θ-90 represents the direction of the
perpendicular cross filter. The gray areas represent point-like stars and streak-like targets.
The black dot represents the center of the filters.

(a) Stars (b) Targets

Figure 7. The PCF is used for the stars and the streak-like targets.

4. Implementation and Verification
The entire process of detecting multiple targets in a star image is described as schemat-

ically illustrated in Figure 8. The saturated layer is first separated from the raw star image,
followed by image preprocessing to remove background and noise. Secondly, the prepro-
cessed image is enhanced, and then DTS is used to separate the bright and dark layers.
The typical geometry-based classification method is used to identify bright targets in the
bright layers. In the dark layer, the improved streak-like matched filtering is used to identify
faint targets, and then PCF is used to further eliminate false alarms. Finally, the detected
streak-like targets in a single star image are composed of bright targets and faint targets.
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Figure 8. The workflow of detecting multiple targets in a single star image. The targets detected
in the bright layer are shown by green-line rectangles. The false positives removed in the dark
layer are shown by blue-dash rectangles. The targets detected in the dark layer are shown by
yellow-dot rectangles.

4.1. Separation of Saturated Layer

As stated in Section 3.1.1, because the star image’s grayscale is 16-bit, the saturation
intensity threshold (TSat_Mag) can be set to 60, 000. Additionally, the saturated object area
threshold (TSat_Area) is set to 4 pixels due to the fact that the smaller objects are critically
saturated stars or spike noise. As shown in Figure 9, the saturated layer containing
six saturated objects is separated from the star image.

(a) (b)

Figure 9. Separating the saturated layer from the raw star image: (a) the raw star image; (b) the
saturated layer.

4.2. Star Image Preprocessing

It is required to preprocess the star image to suppress or eliminate the interfer-
ence of the non-uniform background and noise on target detection. This section de-
tails the approaches to background estimation, noise statistics, and spike noise removal.
Figure 10c shows the preprocessed star image, which is used as the input for subsequent
target detection.
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(a) (b) (c)

Figure 10. Star image preprocessing: (a) background estimation; (b) spike noise; (c) star image after
removing background and spike noise.

4.2.1. Background Estimation

If the background is not properly estimated, it may result in two problems. The first
is that a portion of the target signal is removed along with the background, weakening
the responses of faint targets and leading to detection failure. Another problem is that the
residual background may lead to excessive responses in target detection, resulting in false
positives. The median filter is a popular background estimation method. One advantage of
the median filter is that it can better keep the initial image’s faint object. However, the size
of the operator kernel is difficult to determine. If the size is set too small, it will destroy
the objects. Alternatively, setting the size too large will raise the computational cost and
damage the local feature. After removing the saturated layer, there will be no large-sized
interested stars or targets in the star image. The operator kernel size is usually 5∼10 times
the width of the PSF; thus, a median filter of 15 × 15 is chosen in this study. Figure 10a
shows the background estimation.

4.2.2. Noise Statistics

After the saturated layer and the background have been removed, the presence of
bright stars, bright targets, and spike noise in the star image can deteriorate the accuracy
of noise statistics. In this study, two iterations of statistics are adopted to counteract these
deteriorations in noise statistics. The specific steps are as follows:

(1) Noise statistics are estimated from the star image I′(i, j), which is the star image af-
ter removing the saturated layer and background, and the mean and variance are
obtained as

µ0 =
∑M

i=1 ∑N
j=1 I′(i, j)

NI
σ0 =

√
∑M

i=1 ∑N
j=1(I′(i, j)− µ0)2

NI − 1
. (8)

(2) The first segmentation of the star image generates a binary image, such as

B(i, j) =

{
1 I′(i, j) > Tth0

0 else
Tth0 = µ0 + kσ0. (9)

(3) The star image containing noise is

ñ(i, j) = I′(i, j) ∗ (1 − B(i, j)), (10)

which is used to calculate the mean and variance of the noise as follows:

µn =
∑M

i=1 ∑N
j=1 ñ(i, j)

Nn
σn =

√
∑M

i=1 ∑N
j=1(ñ(i, j)− µn)2

Nn − 1
. (11)
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4.2.3. Spike Noise Removal

The spike noise in the star image may be misunderstood as objects; thus, it must
be eliminated at this stage. Under the effect of PSF, the object’s energy spreads into the
surrounding area, and the intensity of the surrounding pixels has a relationship to the
center pixel. This relationship does not exist in spike noise. Spike noise is a single pixel
with exceptional brightness far above the main distribution, which can be easily identified
and removed. Hence, a simple but efficient filter was designed to detect and remove this
spike noise. The filter is shown in Figure 11. When a pixel C0 has an intensity greater
than 5σn and its neighboring pixels Bi have intensities less than 3σn, the pixel C0 can be
identified as spike noise and should be removed. To be appropriate for continuous spike
noise detection, the neighbor’s maximum intensity of the requirement is optimized to
the neighbor’s second maximum intensity. Figure 10b shows the spike noise detection
results in a simulated star image containing 200 randomly generated spikes. The average
probability of eliminating spike noises in these 100 simulated star images is 99.39%.

Figure 11. Principle of spike noise removal.

4.3. Separation of Bright and Dark Layers

Following the removal of the saturated layer and preprocessing, a typical Gaussian
kernel that corresponds to the PSF is utilized to enhance the image for better separating the
bright and dark layers. The objects in the bright layer are classified using a typical geometry-
based classification method, which examines the lengths of the semi-major and semi-minor
axes of the objects. At this stage, bright objects have been classified as streak-like targets,
point-like stars, or other objects that fail to meet the requirements of the first two types,
and these objects are left in the dark layer for further analysis. As shown in Figure 12,
the green rectangle represents the detected streak-like targets; the yellow circle represents
the detected stars; and the red-dash square represents the area where the streak object is
mistakenly detected as a point-like object by TTS. Figure 12a shows that two faint targets
are mistakenly detected as stars, while these two objects are left in the dark layer by DTS
without being damaged as shown in Figure 12b. As mentioned in Section 3.1.2, DTS can
effectively maintain the completeness of streak-like targets. To evaluate the performance of
the proposed method, four metrics are defined as follows:

The star elimination probability is

Pse =
the number of stars correctly identified

the total number of stars
. (12)
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The target recognition probability is

Ptr =
the number of complete targets correctly identified

the total number of targets
. (13)

The false alarm probability is

Pf a =
the number of false targets
the total number of stars

. (14)

The target damage probability is

Ptd =
the number of damaged targets that are incomplete or incorrectly identified

the total number of targets
. (15)

(a) (b)

Figure 12. Separate the bright and dark layers: (a) separation of bright and dark layers by TTS;
(b) separation of bright and dark layers by DTS.

As shown in Figure 13, DTS has a lower Pse than TTS under the same conditions.
The stars near the segmentation threshold that are obtained in the results of the high-
threshold segmentation but fail to meet the requirement of the size-extended ratio cannot
be eliminated by DTS. But they will be further eliminated in the dark layer. It can also be
seen that Pse is independent of the target SNR and length but is only affected by the star
SNR. Figure 13a shows that DTS can eliminate all stars in the bright layer when the star
SNR exceeds 3.5. Therefore, DTS can also successfully eliminate stars in the bright layer.

As shown in Figure 14, the Ptr of DTS, similar to Pse, is lower than that of TTS under the
same conditions. But these targets that are not detected by DTS will be further detected in
the dark layer. Figure 14a shows that Ptr is independent of the star SNR. Figure 14c shows
that Ptr increases as the target SNR increases. Figure 14b shows that the Ptr of targets near
the segmentation threshold decreases as the target length increases. This is because targets
near the segmentation threshold are more easily segmented into multiple fragments as the
length increases. Once the target SNR increases beyond the range around the segmentation
threshold, Ptr is no longer affected by length. As shown in Figure 14b,c, DTS can detect all
targets when the target SNR exceeds 2.8. Therefore, DTS can also successfully recognize
targets in the bright layer.

The Pf a values of DTS and TTS are nearly zero. The saturated objects are separated
in the saturated layer, and the stars and residual noise obtained by DTS or TTS in the
bright layer can hardly meet the requirements of the typical geometry-based classification.
Therefore, there are almost no false positives in the bright layer.
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(a) (b)

(c)

Figure 13. Comparison of Pse between TTS and DTS. (a) Pse with different star SNR; (b) Pse with
different target lengths; (c) Pse with different target SNR.

Figure 15a shows that Ptd is independent of the star SNR. Figure 15c shows that TTS
can cause significant damage to targets with an SNR ranging from 1.0 to 2.2. This is because
these faint targets are segmented into many fragments by TTS under the influence of
noise, which can be misidentified as one or more incomplete targets or stars. Figure 15b
shows that the Ptd of TTS grows as the target length increases. This is because faint
targets with longer lengths are more likely to be segmented into fragments. As shown in
Figure 15, the maximum Ptd of DTS is less than 1% at various target SNRs and lengths.
However, TTS can exceed 90%, which implies that TTS has significant adverse effects on
the detection ability of faint targets. Because the fragments of targets obtained by high-
threshold segmentation fail to meet the requirement of the size-extended ratio in DTS, they
are left completely in the dark layer without being damaged.

In summary, the faint targets near the segmentation threshold may be misidentified as
incomplete targets or stars by TTS, while they are almost preserved completely in the dark
layer by DTS. DTS not only effectively recognizes bright targets and removes bright stars
but also successfully ensures the completeness of faint targets. Therefore, DTS has greater
advantages in separating the bright and dark layers.
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(a) (b)

(c)

Figure 14. Comparison of Ptr between TTS and DTS. (a) Ptr with different star SNR; (b) Ptr with
different target lengths; (c) Ptr with different target SNR.

(a) (b)

(c)

Figure 15. Comparison of Ptd between TTS and DTS. (a) Ptd with different star SNR; (b) Ptd with
different target lengths; (c) Ptd with different target SNR.

4.4. Filtering Response of Faint Streak-like Target

As described in Section 3.2, matched filtering is performed to detect faint streak-like
targets in the dark layer based on Equation (6), and all filters should be created in advance
according to Equation (5). The improved streak-like matched filter unit is intended to lower
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computational costs by reducing the number of filters required for matching. For example,
filters are set to a length set {L} of 21–121 pixels with a step size of 2 pixels and an angle
set {θ} of 1–180◦ with a step size of 1◦. The number of filter iterations for the typical
matched filtering is 9180, while that of the improved matched filtering is reduced to 44.
According to Section 3.2, the length of the improved streak-like matched filter unit is set
to 21 pixels, and the detection sensitivity on this condition will be evaluated in Section 5.
When the filter length is determined, the dual-step search in directions can be verified by
comparing the filtering responses and the computing time to the typical matched filtering
in the object regions. A blind search of the typical matched filters’ direction is performed
with a resolution of 1◦. The large-step sizes of the dual-step search are 2◦, 3◦, 4◦, 5◦, 6◦,
9◦, and 10◦, respectively, and the small-step size of the dual-step search is 1◦, which is the
same resolution as the blind search. The response consistency ratio and the computation
cost ratio are defined as follows:

Rrc =

the number of pixels with the same response between
the dual-step search and the blind search

the total number of pixels
(16)

Rcc =
the time of the dual-step search

the time of the blind search
, (17)

which are used separately to evaluate the negative impact on filter response and the positive
impact on computational cost.

As shown in Figure 16, when the large-step size is set to 2◦, the computational cost
is higher due to the greater number of searches, and its Rrc is also lower than 3◦’s Rrc.
The smaller small-step search range determined by the large-step size can increase the
probability that the small-step search range does not include the matched angle, so its Rrc

is lower. Therefore, the large-step size cannot be set too small. When the large-step size
is set to 9◦ or 10◦, the computational cost is lower, but the Rrc is very poor. The filtering
response of the large-step search is sharply reduced as the large-step size increases, which
may result in an incorrect large-scale search result, causing a significant reduction in Rrc.
Therefore, the large-step size cannot be set too large. In this study, the large-step size is set
to 5◦, which can help to balance the effect between Rcc and Rrc. Under this condition, Rrc is
99.88% and Rcc is 25.17%, indicating that the method has lower computational costs while
maintaining the same filtering responses.

Figure 16. Dual-step search with different large-step sizes for the direction search of streak-like
matched filter units.

4.5. False Alarm Removal

The faint targets can be identified by segmenting the matched filtering response,
but residual stars and noise can cause some false positives. As mentioned in Section 3.3,
the PCF is developed to reduce these false positives, so the impact of the PCF on target
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detection performance is necessary to be verified. The removal probability of false alarms
and the retention probability of true targets are defined as follows:

Pf ar =
the number of false positives removed with PCF
the total number of false positives without PCF

(18)

Pttr =
the number of targets correctly identified with PCF

the number of targets correctly identified without PCF
. (19)

As shown in Figure 17a, when the star SNR is less than 1.5, the Pf ar decreases as the
star SNR increases; when the star SNR is close to 1.5, it reaches its lowest value. In this
situation, most false positives are difficult to meet the requirements of PCF since they are
largely dominated by noise rather than faint objects. Therefore, the total number of false
positives detected by matched filtering increases rapidly as the star SNR increases, while
the number of false positives removed does not increase so rapidly. When the star SNR
exceeds 1.5, the number of such false positives that can meet the requirements of PCF
begins to rapidly increase since they are largely dominated by the faint objects. Figure 17
shows that when the star’s SNR is equal to 1.5, the lowest value of Pf ar can still be greater
than 77%. Most of the false positives can be successfully removed by PCF.

(a) (b)

(c)

Figure 17. Pf ar of the perpendicular-cross filtering. (a) Pf ar with different star SNR; (b) Pf ar with
different target lengths; (c) Pf ar with different target SNR.

Figure 18a shows that Pttr is independent of the star SNR. Figure 18c shows that PCF
has a significant negative impact on the detection of faint targets when the target SNR is
less than 1.0. Because the filtering responses of very faint targets are largely dominated
by noise, these targets may not meet the target requirements of PCF and so be deleted.
Moreover, the number of true targets detected by matched filtering without PCF is also low
in such a situation. When the target SNR exceeds 1.0, the Pttr is greater than 98.5% and
fluctuates slightly around 99% as the target length increases as illustrated in Figure 18b,c.
This little negative impact on target detection is worthwhile and negligible compared to its
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contribution to reducing false positives. When the target SNR exceeds 1.6, the Pttr is almost
100% and is independent of the target length. Therefore, for targets with an SNR greater
than 1.0, PCF can be well used to reduce false positives with little or even no negative
impact on faint target detection.

(a) (b)

(c)

Figure 18. Pttr of the perpendicular-cross filtering. (a) Pttr with different star SNR; (b) Pttr with
different target lengths; (c) Pttr with different target SNR.

5. Experiment and Discussion
As the characteristics of the simulated targets are precisely known, it was possible to

draw exactly the figure of performance. Real star images were used to confirm the detection
capability and reliability of the proposed method. The experimental environment was as
follows: CPU is Intel Core i7-1355U (basic frequency 1.70 GHz and max turbo frequency
5.0 GHz), internal storage is 32 GB, and the program is coded in Matlab R2021a.

5.1. Simulated Star Images

The simulated star image is 1024 × 1024 in size and has 16-bit gray scales. The stray
light in the star image is simulated by a powerful source at [−50,−50]. The background’s
mean and standard deviation are 6000 and 570, respectively. In the star image, 200 points
of spike noise are randomly generated. Each star image includes 75 stars and 5 streak-like
targets, with the star SNR ranging from 0.5 to 5 in steps of 0.5, the target SNR ranging
from 0.6 to 5.0 in steps of 0.2, and the target length ranging from 21 pixels to 121 pixels
in steps of 10 pixels. And the directions of five streak-like targets are −60◦, −15◦, 0◦, 45◦,
and 90◦, respectively. The baseline for comparison consists of the traditional threshold
segmentation and the typical streak-like matched filtering, abbreviated as “TTS & SMF
without PCF”. The method proposed in this paper consists of dual-threshold segmentation,
improved streak-like matched filtering, and perpendicular cross filtering, abbreviated as
“DTS & ISMF with PCF”. Target recognition probability (Ptr), false alarm probability (Pf a),
and computational cost are used to evaluate the performance of the proposed method.
The definitions of them are described in Section 4.3.
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5.1.1. Target Recognition Probability

Figure 19 shows that the Ptr of the two methods is only related to the SNR and length
of the target. The higher the target SNR, the greater the response of the matched filtering,
and the lower the probability of the target being divided into multiple fragments; hence,
the Ptr of the proposed method increases as the target SNR increases. As implemented and
validated in Section 4.3, TTS cannot maintain the completeness of faint targets that may
seriously deteriorate the Ptr, so the Ptr of the baseline method has a significant drop when
the target SNR ranges from 1.0 to 2.4 in Figure 19b,c.

(a) (b)

(c)

Figure 19. Comparison of experimental results on target recognition probability. (a) Ptr with different
star SNR; (b) Ptr with different target lengths; (c) Ptr with different target SNR.

As shown in Figure 19b, when the target SNR is equal to 1.6, the Ptr of the proposed
method is 100%, and it is not affected by the length of the target since the filtering response
of the target can well meet the recognition requirements of matched filtering. When the
target SNR is less than 1.6, the proposed method’s Ptr for the 21-pixel length target is
significantly lower than that of other length targets as shown in Figure 19a,b. As discussed
in Section 3.2.1, when the target’s length is close to that of the matched filtering unit,
the filtering response is smaller than that of other length targets. For the baseline method,
when the target SNR is equal to 1.6, the Ptr is severely damaged by TTS, and the longer
the target length, the higher the probability of damage. Therefore, the Ptr of the baseline
method will significantly deteriorate as the target length increases. When the target SNR is
near 1.0 or more than 2.4, the Ptr is not significantly impacted by the target length because
the target SNR is outside the range of the damage caused by TTS.

The baseline method severely deteriorates the detectability of faint targets since TTS
may damage them. In contrast, the proposed method has a stable and good Ptr, allowing
it to be applied to a wide range of SNR targets, whether bright or faint. Meanwhile, it
can be seen that the Ptr of the proposed method can reach over 95% for targets with SNR
greater than 1. When the SNR is greater than 1.2, the Ptr can reach over 99%. Therefore,
the proposed method completely maintains the advantages of matched filtering in terms of
high sensitivity and also provides a better environment for detecting faint targets.
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5.1.2. False Alarm Probability

Figure 20 shows that Pf a is primarily impacted by the star SNR, and slightly changes
as the target SNR or length changes. As mentioned in Section 3, the higher the SNR of
stars in the dark layers, the more likely they are to be recognized as false positives, so Pf a

increases as the star SNR increases. However, as the star SNR further increases, they will
be separated into the bright layer, and the residual stars in the dark layers will decrease.
Therefore, when the star SNR ranges from 1.5 to 2.0, the Pf a reaches its peak, then gradually
declines before stabilizing as the star SNR increases as shown in Figure 20a.

(a) (b)

(c)

Figure 20. Comparison of experimental results on false alarm probability. (a) Pf a with different star
SNR; (b) Pf a with different target lengths; (c) Pf a with different target SNR.

Figure 20a also shows that the Pf a of the proposed method is significantly better than
that of the baseline method at different SNR. Figure 20c shows a sudden change in the
Pf a of a streak-like target with a length of 121 pixels when the target SNR ranges from
1.6 to 2.4. According to Section 4.3, when the target SNR exceeds this range, most of the
targets are segregated into bright layers, and these target areas are not counted in the noise
statistics of the dark layer. While the target SNR falls below this range, these areas remain
in the black layer and are counted in the noise statistics. As the statistical intensity of noise
slightly decreases, the recognition threshold will also slightly decrease, resulting in more
false positives. For streak-like targets with a length of 21 pixels, the change in the Pf a is not
obvious because the target area is too small to have a little impact on noise statistics. This is
also the reason why Pf a slightly changes with the length of the targets. From Figure 20b,c,
it can also be seen that the Pf a of the proposed method is significantly better than that of
the baseline method.

Residual stars and noise may be misidentified as targets due to the high susceptibility
of matched filtering to interference. As shown in Figure 20, the Pf a of the baseline method
can reach about 12%. However, the proposed method will eliminate a large number of false
positives, lowering Pf a to less than 5% due to the use of PCF. Therefore, it can be concluded
that the proposed method can effectively reduce false alarms in various situations.
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5.1.3. Computational Cost

In order to evaluate the improvement effect of the proposed method in terms of
computational cost, a serial execution program instead of the built-in function in Matlab is
used to implement the matched filtering. The computational time for a single star image is
calculated with 100 simulated star images to evaluate the improvement in computational
complexity. The computational complexity of DTS is equivalent to twice that of TTS, and the
proposed approach includes an additional PCF, which is also a type of matched filtering.
However, the threshold segmentation requires a little calculation, and the computational
complexity of a PCF, a specific filter, only relates to the potential target areas. These
additional computations in the proposed method are negligible compared to the typical
matched filtering. The experimental results in Table 2, which show a 74.75% decrease in
computational cost, nearly equal to the 74.83% decrease in the matched filter in Section 4.4,
demonstrate that the time cost of both methods is mainly dominated by matched filtering,
and the proposed method has a significant computational cost advantage.

Table 2. Comparison of experimental results on computational cost.

Baseline Method Proposed Method
(TTS & SMF Without PCF) (DTS & ISMF with PCF)

Consumption Time 408.765 s 103.197 s

5.2. Real Star Images

The real star image is provided by the Xi’an Institute of Optics and Precision Mechanics
specifically for faint target recognition as shown in Figure 21. The size of the real star
image is 1024 × 1024, and its grayscale level is 16 bits. There are two faint streak-like
targets in the image, shown by the blue square in Figure 21. The endpoints of the first
target are located approximately at (417,477) and (411,507). Its length is approximately
32 pixels, and its direction is approximately 13◦. The other target’s endpoints are located
approximately at (900,768) and (858,780). Its length and direction are approximately
45 pixels and 73◦, respectively.

Figure 21. Raw real star image.

Both processes of the baseline and proposed methods are shown in Figure 22. The satu-
rated layer, background estimation, and spike noise are shown in Figure 22a–c, respectively.
The result of the baseline method has one more bright object represented by the blue square
than the improved method as shown in Figure 22d,g. Because this bright object is a space
target and its intensity is near the segmentation threshold, it is destructively split and
incorrectly detected as a star in the bright layer and a space target in the dark layer using
the baseline method. However, the same target is completely separated and correctly
detected in the dark layer using the improved method as shown in Figure 22g,h. The results
demonstrate that the improved method has the advantage of maintaining the completeness
of faint targets. The detected objects in the dark layer are shown by the yellow-dot rectangle
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in Figure 22e,h. It can be found that the problem of false positives caused by residual stars
and noise is serious in the dark layer using the baseline method. The proposed method can
effectively reduce false positives in the dark layer.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 22. The detection results of the real star image by the baseline and proposed methods.
(a) saturated layer. (b) Background estimation. (c) Spike noise. (d) Bright layer by the baseline
method. (e) Dark layer by the baseline method. (f) Detection results by the baseline method.
(g) Bright layer by the proposed method. (h) Dark layer by the proposed method. (i) Detection results
by the proposed method.

Because there are no targets in the bright layer, the identified targets in the dark
layer determine the final results in the real star image. Figure 22f shows the results of the
baseline method, which detects not only the two targets shown by the green-line rectangle
but also six false positives shown by the yellow-dot rectangle. In contrast, the proposed
method successfully detects two targets shown by the green-line rectangle with no false
positives as shown in Figure 22i. It can be seen that the proposed method maintains the
high detection sensitivity of typical matched filtering while effectively filtering out false
positives. Therefore, it is concluded that the method proposed in this study is superior to
the baseline method, and it can be successfully used for detecting multiple faint streak-like
targets in a single real star image.

6. Conclusions
This study presented an improved method for detecting multiple faint targets in

a single star image. The central concept of the method is matched filtering, which can
integrate all the distributed energy of streak-like targets to improve the detection sensitivity.
However, matched filtering is computationally intensive and prone to producing false
positives. The proposed method includes three improved approaches conducted in three
stages of matched filtering to address these issues. Firstly, image layering is performed
before matched filtering, which involves identifying and removing saturated and bright
targets. Using TTS to separate bright layers can damage targets, resulting in the targets
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being missed or identified as stars. DTS can reduce the target damage probability from 90%
to within 1%, compared with TTS. Secondly, reducing the complex calculations in matched
filtering is very important. The use of the streak-like matched filter unit and the dual-step
search can reduce the computational cost to within 1/4 that of traditional matched filtering.
Finally, false positives are eliminated through the use of the PCF after matched filtering.
The false alarm probability can be improved by 77%, while the negative impact on the
accuracy of target detection does not exceed 1.5%.

Experiments with simulated and real star images were conducted to test the end-to-end
performance of the improved method. When the target SNR was greater than 1.2, the target
recognition probability reached over 99%, and the false alarm probability was less than 5%
in the experiments using simulated star images. In the experiments using real star images,
both faint targets in a single star image were correctly detected without any false positives.
These experiments demonstrated that the proposed method has significant advantages
for detecting multiple faint targets in a single star image. In conclusion, the proposed
method enables enhanced target detection through improving the detection environment,
simplifying the matched filtering process, and removing false positives, resulting in high
detection accuracy, reasonable computational cost, and fewer false alarms. This method
is not only suitable for detecting multiple targets in a single star image but it also has
reference significance in the context of star image compression, star image registration,
and target characteristic extraction.
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