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Abstract: The accurate forecasting of time, intensity, and spatial distribution is fundamental
to weather prediction. However, the limitations of numerical weather prediction (NWP)
models, as well as uncertainties in inital conditions, often lead to temporal biases in
forecasts. This study addresses these biases by employing visible reflectance data from
the Himawari-9/AHI satellite and RTTOV (TOVS radiation transfer) simulations derived
from CMA-MESO model outputs. The time-shift method was applied to analyze two
precipitation events—20 October 2023 and 30 April 2024—in order to assess its impact
on precipitation forecasts. The results indicate the following: (1) the time-shift method
improved cloud simulations, necessitating a 30 min advance for Case 1 and a 3.5 h delay for
Case 2; (2) time-shifting reduced the standard deviation of observation-minus-background
(OMB) bias in certain regions and enhanced spatial uniformity; (3) the threat score
(TS) demonstrated an improvement in forecast accuracy, particularly in cases exhibiting
significant movement patterns. The comparative analysis demonstrates that the time-
shift method effectively corrects temporal biases in NWP models, providing forecasters
with a valuable tool to optimize predictions through the integration of high-temporal-
and spatial-resolution visible light data, thereby leading to more accurate and reliable
weather forecasts.

Keywords: Himawari-9; CMA-MESO; time shift

1. Introduction
Data assimilation (DA) and numerical weather prediction (NWP) constitute the pri-

mary methods employed in contemporary weather forecasting. With the increasing avail-
ability of observational data, improved computational performance, and the rapid devel-
opment of numerical models, the accuracy and resolution of weather forecasts have seen
substantial improvements. However, inherent model flaws and uncertainties in initial
conditions still lead to forecast errors [1]. Even high-resolution regional models cannot fully
resolve these issues. Conventional observational data are limited by spatial and temporal
resolution and coverage, while ground-based observations are relatively sparse, making it
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difficult to meet the spatial and temporal density requirements necessary for initializing
numerical weather prediction models. Satellite remote sensing observations, with extensive
temporal and spatial coverage, can overcome these limitations [2]. Satellite data now
contribute more to forecast accuracy than conventional ground-based observations [3].
By assimilating both conventional and unconventional data from sources like satellites
and radar, numerical forecasts can be significantly improved, yielding more accurate fore-
casting outcomes. The Global/Regional Assimilation and Prediction System (GRAPES),
now renamed CMA-MESO, developed under the auspices of the China Meteorological
Administration, has made significant advancements in key NWP technologies, such as
satellite data assimilation and scalable numerical algorithms [4]. Recent verification and
evaluation studies have shown promising results, with research focused on assessing the
performance of various regional models and precipitation diagnostic methods, significantly
contributing to the enhancement of precipitation prediction capabilities. Specifically, Tong
et al. [5], Zhang et al. [6], and Fan et al. [7] conducted studies on regional models and
precipitation-phase prediction methods, proposing several improvements that enhanced
the accuracy of precipitation predictions. Additionally, Liu et al. evaluated the performance
of the CMA-MESO and the Shanghai Regional Mesoscale Numerical Weather Prediction
System (CMA-SH9) using precipitation data from the extended Meiyu season (May to
September) of 2020. Their results indicated that the CMA-MESO ranked second or third in
terms of TS, and its Bias Score (BIAS) was close to 1 in most cases, highlighting its superior
capability to predict the precipitation range, with the second-best performance overall [8].
Wan et al., evaluated CMA-MESO during the Henan extreme rainfall event in July 2021.
The results showed that the model effectively predicted the shape of the rainfall band, the
duration of weak echoes, and the area and intensity evolution of the major convective
systems (MCSs) before and after the peak precipitation period [9].

Compared to longwave (infrared) and microwave radiation, shortwave radiation
remains underutilized in NWP [10–12]. This is due to significant OMB differences, a con-
sequence of the complex sensor sensitivities to clouds, aerosols, and surface features, the
limitations in modeling complex cloud processes, and several other contributing factors [13].
Additionally, shortwave observations are limited to daytime, which further restricts their
applicability [3]. However, visible-wavelength observations provide valuable information
on clouds (especially low-level clouds) and aerosols, because the clear atmosphere mini-
mally absorbs shortwave radiation, providing an advantage over infrared and microwave
data [14–16]. Visible channels can help distinguish between cirrus and high cumulus clouds,
crucial for improving initial conditions in cloudy and precipitation regions to enhance
NWP capabilities [17]. In the visible spectrum, scattering and absorption by molecules,
water droplets, ice crystals, and aerosol particles play significant roles. Polar-orbiting
satellites typically observe a given location twice per day at lower latitudes, which limits
their ability to provide high-temporal-frequency observations. In contrast, geostationary
satellites, such as Himawari, maintain a consistent temporal resolution across latitudes
by performing full-disk scans every 10 min, ensuring continuous hemispheric coverage.
Schröttle et al. found that combining visible and infrared satellite radiances significantly
improved precipitation forecasts within an 8 h lead time [18]. Scheck et al. demonstrated
that assimilating visible reflectance improved cloud cover and reduced temperature and
humidity errors [19]. Stefan et al., emphasized the usefulness of visible channels for model
evaluation and improvement through comparisons in observation space using synthetic
satellite images generated by forward operators [20]. Accurate radiative transfer models
like RTTOV (radiative transfer for TOVS) can simulate visible observations under scattering
conditions. Comparing simulated and satellite images can reveal discrepancies in both
RTTOV and weather forecast models [21,22].
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Accurate prediction of the timing, intensity, and location of weather phenomena
necessitates the simultaneous consideration of all three factors. However, due to inherent
limitations in numerical weather prediction models and uncertainties in initial conditions,
forecasts often exhibit time biases (i.e., the forecasted results occur either too early or too
late compared to actual conditions) [8,23,24]. Such time biases can significantly affect the
accuracy of weather forecasts. For instance, Cai et al. [25] evaluated precipitation forecasts
from the CMA-MESO model during the summer of 2021 and found that while the forecast
frequencies of 3 h precipitation in the complex terrain of western Sichuan were relatively
close to the observations, the forecasted precipitation amounts were less accurate, and
the peak precipitation occurred too early. Similarly, Chen et al. [26] pointed out that the
precipitation forecast frequencies in South and East China were much higher than observed,
especially for nighttime precipitation, which was notably overestimated. To investigate this
issue, the present study utilizes visible channel data from the Himawari-9/AHI satellite and
RTTOV-simulated results from CMA-MESO to correct time biases in precipitation forecasts
for China using the time-shift method. The primary objective of this study is to demonstrate
the effectiveness of the time-shift method in correcting time biases, while offering new
insights into reducing forecast discrepancies by incorporating visible reflectance data.
Moreover, this method holds significant practical value for forecasters. By leveraging
the high temporal resolution and extensive spatial coverage of data from geostationary
satellites, forecasters can assess model forecast results in real time and make necessary
adjustments. This improves the accuracy of timing predictions for weather phenomena.
Such adjustments can substantially enhance the precision, reliability, and applicability of
weather forecasts, enabling regions to better prepare for upcoming weather events.

2. Materials and Methods
2.1. Schema

In operational weather forecasting, the CMA-MESO model is initiated at time T0,
where the forecaster receives the model output at time T1 and issues the final forecast
at time T2 (Figure 1). Due to the inherent limitations of numerical weather prediction
models and uncertainties in the initial conditions, forecasts may exhibit deviations in terms
of timing, intensity, and spatial location. Therefore, during the period between T1 and
T2, when forecasters conduct potential and error analyses, they may identify temporal
biases in the model output (such as forecasts being too early or too late). In such cases,
high-temporal-resolution and wide-spatial-coverage satellite data, such as Himawari-9
albedo data, can be used to evaluate and correct the model’s predictions, resulting in more
accurate forecasts by T2, thus enhancing overall forecast accuracy. This paper proposes
a time-shifting method, where actual satellite imagery is compared and matched with
simulated observations from adjacent time periods to identify the time that minimizes the
difference between observation and simulation (i.e., minimizes the OMB), thus refining
the forecast outcomes. This method provides forecasters with an innovative method for
correcting the model’s time bias between T1 and T2.

2.2. Radar Composite Reflectivity

Radar Composite Reflectivity (CREF, dBZ) is the measurement of radar waves reflected
by clouds at various altitudes within a defined range of the meteorological radar. It is
utilized for estimating cloud thickness and height, as well as predicting severe convective
weather events, such as intense rainfall and storms. This study examined two precipitation
events and employed Radar Composite Reflectivity data to elucidate the characteristics
and evolution of the precipitation processes.
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2.3. Precipitation Integration Products

The National Meteorological Information Center has issued the CMA Multi-source
Precipitation Analysis System (CMPAS) hourly precipitation fusion analysis product, fea-
turing a spatial resolution of 0.05◦ × 0.05◦. This product corrects systematic biases in
radar-estimated and satellite-derived precipitation using the Probability Density Function
Matching method. Subsequently, the Bayesian Model Averaging (BMA) technique is em-
ployed to merge radar and satellite precipitation products, forming a background field
covering China. Finally, ground observation data are integrated using Optimal Interpo-
lation [27]. The system dynamically calculates errors from various data sources within
different spatiotemporal windows, assigning weights that vary across regions and times,
thereby enhancing the accuracy of local weight distribution. CMPAS encompasses nine
components: data acquisition, data preprocessing, data fusion, product generation, product
evaluation, product dissemination, system monitoring, data management, and operational
scheduling. It can sequentially generate various 1 km and 5 km precipitation fusion data
and graphical products based on the timeliness requirements for product generation, along
with real-time quality assessment results. In this study, the precipitation product data were
primarily utilized as observed precipitation data.

2.4. CMA-MESO

The Global/Regional Assimilation and Prediction Enhanced System (GRAPES), de-
veloped by the China Meteorological Administration, is a numerical prediction and data
assimilation system that began development in 2001, and was first operationally imple-
mented in 2006. With continuous updates to its versions, the horizontal resolution has
improved from 30 km in 2006 to 3 km in 2021. On 1 October 2021, GRAPES-MESO was
renamed CMA-MESO.

CMA-MESO, built upon international research findings and numerical weather pre-
diction principles, is a numerical prediction model with a uniform latitude–longitude
grid. The operational system consists of three main components: the observational data
preprocessing subsystem, the main model subsystem, and the postprocessing subsystem.
The observational data preprocessing subsystem includes a radar data preprocessing mod-
ule (mosaic_v4) and other data retrieval modules (obs_rafs). The main model subsystem
comprises several modules: global forecast data preprocessing, observational data prepro-
cessing (including conventional radiosonde, surface, aircraft, ship, cloud-drift wind, radar
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radial wind, wind profiler radar, and GPS/PW observations), data assimilation, and model
forecasting. The postprocessing subsystem includes diagnostic calculation modules and
graphical product generation modules.

The data assimilation employs the GRAPES global-regional integrated variational
assimilation system, with the regional model utilizing a three-dimensional variational
assimilation option. The forecast region covered 10.0◦N to 60.01◦N and 70.0◦E to 145.0◦E,
with a spatial resolution of 0.03◦ (approximately 3 km). The model consisted of 50 layers,
extending up to 33,000 m (10 hPa). The model output variables included height, tempera-
ture, precipitation, and the mixing ratios of cloud water, rainwater, ice crystals, snow, and
graupel. The dynamical framework was based on fully compressible primitive equations,
a semi-implicit semi-Lagrangian time integration scheme, an Arakawa-C grid on a uni-
form latitude–longitude grid, and vertical terrain-following coordinates [28]. The model
provided forecast results for up to 36 h.

2.5. Himawari-9

Himawari-9, launched by the Japan Meteorological Agency (JMA), is a third-
generation geostationary meteorological satellite equipped with the Advanced Himawari
Imager (AHI), one of the most advanced geostationary imagers in the world. The AHI
on Himawari-9 completes a scan every 10 min, covering five regions: the full disk (the
entire Earth as seen from the satellite), the Japan area, the target area, and two landmark
areas. The AHI offers significantly higher spectral and spatial resolution than the previous
generation of geostationary satellites, with 16 observational channels that greatly enhance
cloud-detection capabilities (Table 1). This provides an enhanced and highly effective tool
for mesoscale weather monitoring and forecasting. The channel near 0.65 µm is commonly
used to monitor cloud information [29]. Thus, this study focused on the third channel
(0.64 µm) of the Himawari-9 satellite.

Table 1. Himawari-9/AHI instrument channel parameters.

Spectrum Channel Central Wavelength/µm Spatial Resolution/km

Visible
1 0.47 1
2 0.51 1
3 0.64 0.5

Near-infrared
4 0.86 1
5 1.6 2
6 2.3 2

Infrared

7 3.9 2
8 6.2 2
9 6.9 2
10 7.3 2
11 8.6 2
12 9.6 2

13 10.4 2
14 11.2 2
15 12.4 2
16 13.3 2

In this study, we used Level 1 NC (Network Common Data Format) full-disk observa-
tions from the Himawari-9 meteorological satellite (Table 2), including satellite zenith angle
(SAZ), azimuth angle (SAA), solar zenith angle (SOZ), azimuth angle (SOA), and visible
channel albedo data. These data were calibrated and atmospherically corrected, making
them ready for direct use.
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Table 2. Himawari L1 grid data.

Data Type Full Disk

Projection method EQR
Observation area 60◦S–60◦N, 80◦E–160◦W
Time resolution 10 min

Data

Albedo of Bands 01–06
Brightness temperature of Bands 07–16

SOZ; SOA; SAZ; SAA
Observation Hours (UT)

2.6. RTTOV

RTTOV (radiative transfer for TOVS) is a fast radiative transfer model initially de-
signed for the TIROS Operational Vertical Sounder (TOVS) instruments aboard NOAA
polar-orbiting satellites, based in Washington, USA [14]. Over time, the applicability of
RTTOV has expanded to various satellite instruments, enabling the simulation of top-
of-atmosphere radiance for passive visible, infrared, and microwave downward-looking
satellite radiometers. A key feature of the RTTOV model is its ability to perform not only
forward (direct) radiative transfer calculations but also compute tangent linear, adjoint,
and Jacobian matrices. These matrices provide the radiative response to perturbations in
the profile variables, assuming a linear relationship for a given atmospheric state. Given a
state vector x, the radiative vector y is computed as

y = H(x) (1)

where H represents the radiative transfer model (also known as the observation operator).
Fast radiative transfer models are critical for satellite remote sensing atmospheric parameter
retrievals and the direct assimilation of satellite radiance data, and they have been widely
used in operational meteorological satellite retrieval products and numerical weather
prediction both domestically and internationally [30], demonstrating significant success.

In this study, the optical properties of liquid water clouds were parameterized using
the “Deff” scheme [31], while the optical properties of ice clouds were computed using the
cirrus scheme developed by Baran et al., which is not explicitly dependent on ice particle
size [32]. Therefore, this scheme simplified the analysis of results, and the effective radius
of ice particles was excluded from further analysis. The effective particle radius of liquid
water can be approximated using the liquid water cloud mixing ratio qw and concentration
Nw, as per Thompson et al. [22,33]:

Rw =
1
2
×

(
6ρaqw

πρwNw

) 1
k

(2)

where ρa and ρw are the densities of the air and liquid water cloud particles, respectively.
ρa is obtained from the equation of state, while ρw and Nw are constants set to 1000 kg/m3

and 300 cm3, respectively. The constant k is set to 3.
When simulating visible channel reflectance with the RTTOV model, atmospheric

state variables needed to be collected to gather information regarding the location, surface
type, and atmospheric conditions (Table 3). These data were subsequently entered into
the Bidirectional Reflectance Distribution Function (BRDF). Using the satellite’s position
and Coordinated Universal Time (UTC), key parameters including the solar zenith angle,
solar azimuth angle, satellite zenith angle, and satellite azimuth angle were determined.
Once the simulation scene was set, it was entered into the RTTOV model to generate
simulated outcomes.
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Table 3. Initial variables for RTTOV input.

Variable Types Variables Units

Profile Variables

Temperature K
Pressure hPa

Water Vapor kg/kg
Cloud Liquid Water Content kg/kg

Cloud Ice Water Content kg/kg
Total Cloud Cover

Effective Radius of Liquid Water Cloud Particles µm

Surface Parameters

2m Surface Temperature K
2m Surface Pressure hPa

10m U and V Wind Components m/s
Surface Temperature K

Surface Pressure hPa
Terrain Height m
Surface Type

Satellite Parameters

Solar Azimuth Angle (SOA) ◦

Solar Zenith Angle (SOZ) ◦

Satellite Azimuth Angle (SAA) ◦

Satellite Zenith Angle (SAZ) ◦

2.7. NWP Model Time Shifts

Forecasts may exhibit time biases in certain cases due to the limitations of numerical
weather prediction models and the uncertainty of the initial field. This study investi-
gated the potential of high-temporal-resolution visible data from geostationary satellites
in correcting forecast-time biases by examining two cases. One case involved Typhoon
Sanba, where a time bias in the model forecast was identified during the 0000 UTC weather
briefing on 20 October 2023, and the corresponding time was chosen for analysis. The
second case involved a squall line that fully developed at 0220 UTC on 30 April 2024,
but the model forecast was issued later than anticipated, making this time the focus of
the study. Both cases were provided by the Central Weather Bureau. This study utilized
high-temporal-resolution Himawari-9 satellite data to compare and align actual satellite
images with simulated observations from neighboring time intervals, identifying the time
point that minimized the difference between observation and simulation (i.e., the time-shift
method). This correction method enables forecasters to adjust the forecast prior to manual
release, thereby improving forecast accuracy.

Since correlation was primarily dependent on the similarity in the shape, size, and lo-
cation of clouds between the observed and simulated data, this study employed correlation
as the criterion for determining the optimal time shift. The optimal time shift, ∆toptical , was
defined as the time when the correlation was maximized, i.e., when ∆toptical = rmax.

Additionally, the Himawari-9 satellite data incorporates real atmospheric changes,
such as friction, energy dissipation, and vertical transport, with a data interval of 10 min.
Consequently, the time-shift increment was set to 10 min. To maximize the search space and
optimize the use of available data, the time-shift window was defined as 6 h. Furthermore,
to avoid errors induced by variations in temperature, humidity, and other factors that
may alter the albedo in clear-sky areas (since Taiwan is a clear-sky area, this effect is
not considered), this study initially defined the study area based on observed visible
cloud images. Given that the locations of the two precipitation events differed, the areas
considered for the two cases varied slightly. Subsequently, terrestrial albedo was extracted
using a sea–land mask to reduce external errors.
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The correlation formula is as follows:

r =
∑
(
Xi − X

)(
Yi − Y

)√
∑
(
Xi − X

)2
∑
(
Yi − Y

)2
(3)

where Xi and Yi represent the ith simulated and observed albedo data points, and X and Y
are the mean values of the simulated and observed albedo data, respectively.

2.8. Methods for Analyzing Errors

To further investigate the effect of time shifts, this study compared the probability
density function (PDF) distribution and spatial distribution of the OMB before and after the
time shifts. The PDF is a key tool for describing the probability distribution of continuous
random variables. It visually illustrates the distribution pattern of the variable of interest.
The mean determines the central location of the distribution, while the standard deviation
dictates its width. In contrast, spatial distribution offers a more intuitive visualization of
the variations at different locations.

2.9. Threat Score

In this study, precipitation thresholds of 0.1, 10, 25, 50, 100, and 250 mm were selected,
and the 3 h TS (threat score), also known as the Critical Success Index (CSI), was calculated
to evaluate whether the time shifts could correct precipitation biases. Since the main
precipitation events occurred in Guangdong Province, for the purpose of TS calculation,
the subsequent precipitation validation was carried out exclusively within the Guangdong
Province region. A higher TS value indicated greater forecast accuracy, and the closer the
TS was to 1, the higher the forecast accuracy.

The formula for the TS is defined as follows:

TS =
H

H + F + M
(4)

where H represents the number of hits, which refers to instances where precipitation
was both forecasted and occurred; F represents the number of false alarms, which refers
to instances where precipitation was forecasted but did not occur; and M represents
the number of misses, which refers to instances where precipitation occurred but was
not forecasted.

3. Results
3.1. Precipitation Bias

On 20 October 2023, heavy rainfall occurred in Guangdong, Guangxi, and the sur-
rounding areas under the influence of Typhoon Sanba. From 0000 UTC on the 19th to
2200 UTC on the 20th, extremely heavy rainfall amounts of 250–450 mm were observed
in areas such as Maoming, Zhanjiang, and Yangjiang in Guangdong, with some localities
in Beihai exceeding 500 mm (according to the Central Weather Bureau: Weather Bulletin).
Radar reflectivity at 0000 UTC on the 20th shows that areas with reflectivity values above
35 dBZ are concentrated in western Guangdong and eastern Guangxi, indicating heavy
precipitation in these regions. Reflectivity values between 15 and 35 dBZ were mainly
observed in southern Hunan and parts of Fujian, where the precipitation intensity was
relatively weak (Figure 2).

On 30 April 2024, heavy rainfall and strong convection occurred in Jiangnan and
South China. Between 1600 UTC and 2200 UTC on 29 April, squall lines formed from
northern Guangxi to northern Fujian and continued moving southeastward due to pressure
gradients. From 0000 UTC on April 30 to 0000 UTC on 1 May, most of Zhejiang, southern
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Jiangxi, central and southern Fujian, eastern Guangxi, and north–central Guangdong
experienced heavy to torrential rainfall. In southern Fujian and northern Guangdong,
rainfall ranged from 100 to 180 mm, with some areas experiencing short-term intense
precipitation (maximum hourly rainfall of 30–60 mm, occasionally exceeding 80 mm in
certain locations) (according to the Central Weather Bureau: Weather Bulletin). Radar
reflectivity at 0224 UTC on April 30 shows that areas with reflectivity values above 35 dBZ
were concentrated in the southeastern coastal regions of Guangdong and Fujian, while the
precipitation intensity in areas such as Jiangxi and Hubei was relatively weak (Figure 2).
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Figure 3 shows the spatial distribution of observed precipitation (from the CMPAS
precipitation fusion product) and simulated precipitation (from the CMA-MESO model) in
East and South China during the periods of 0000–0100 UTC on 20 October 2023 (Case 1)
and 0200-0300 UTC on 30 April 2024 (Case 2). In Case 1, the observed heavy precipitation
is mainly concentrated in the southern part of Guangdong Province and along its coastal
areas, with rainfall exceeding 20 mm and a relatively wide coverage. Additionally, smaller
areas of rainfall are observed in Guangxi, Jiangxi, and Hunan. Although the simulation
also predicted the main precipitation area, there were differences in both the intensity and
distribution of precipitation compared to the observed results. The simulated heavy rainfall
area is more concentrated in the southwest of Guangdong, which does not correspond
well to the actual observed precipitation. In Case 2, the observed heavy precipitation is
mainly concentrated in the southeastern coastal regions, with a wide coverage, especially
in the coastal areas of Guangdong and Fujian provinces. In contrast, the simulation result
is significantly more inland, with notable differences in both the intensity and distribution
of precipitation compared to the observed data. Comparing the spatial distribution of
observed and simulated precipitation for both cases, it is evident that there are certain devi-
ations in both precipitation events, particularly in Case 2, where the forecasted precipitation
appears to be clearly delayed.

3.2. Optimal Time-Shifted NWP Model

To explore the potential of high-temporal-resolution visible data from geostationary
satellites in correcting forecast-time biases in the two aforementioned cases, this study
employs a time-shifting method to analyze the correlation between observed albedo at fixed
times (20 October 2023, 0000 UTC, and 30 April 2024, 0220 UTC) and simulated albedo at
different times (Figure 4). Through correlation analysis, we identify the simulated time most
strongly correlated with the observed albedo. We hypothesize that when the difference
between simulated and observed albedo is minimized—i.e., when the simulated and
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observed albedo are closest at each grid point, corresponding to the maximum correlation—
this time aligns with the actual observation time, enabling forecast timing correction.
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20 October 2023 and 0220 UTC on 30 April 2024 and the simulated albedo at various times. Due to the
unavailability of satellite observation data, the data for 0240 UTC on 20 October 2023 and 0240 UTC
on 30 April 2024 were excluded from the analysis.
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Since visible reflectance data are only available during the day, and the solar zenith
angle is low before 0700 UTC, a 6 h time window from 2300 UTC on 19 October 2023, to
0500 UTC on 20 October 2023, was selected for Case 1 in order to maximize the search space
and make optimal use of the available data. The correlation between simulated albedo at
different times and the observed albedo at the fixed time (20 October, 0000 UTC) was then
analyzed. The figure shows that the simulated albedo at 2330 UTC on 19 October 2023,
exhibits the highest correlation with the observed albedo at 0000 UTC on 20 October 2023,
with a correlation coefficient of 0.463. Considering that the correlation may be influenced
by similarities in cloud shape, size, and position, we inferred that the forecast tends to be
too early. Thus, we recommend adjusting the forecast forward by 30 min to correct the bias.
In Case 2, where it is already known that the forecast is biased toward being too slow, the
fixed time of 0220 UTC on 30 April 2024, was selected, and a time window from 0220 UTC
to 0820 UTC on 30 April 2024, was used for analysis. The figure shows that the simulated
albedo at 0550 UTC on 30 April 2024, exhibits the highest correlation with the observed
albedo at 0220 UTC, with a correlation coefficient of 0.388. Therefore, we suggest adjusting
the forecast backward by 3 h and 30 min to correct this bias.

Figure 5 shows the spatial distribution of measured albedo data from the CH03 channel
of the Himawari-9/AHI, alongside simulated data before and after time-shift adjustments.
The first row depicts the measured albedo data, the second row shows the simulated albedo
data at the time of the measurements, and the third row presents the simulated albedo data
after the time-shift adjustment. In Case 1, the position of the cloud map changed minimally
before and after the time shift and aligned with the measured cloud map. This is attributed
to the influence of cold air moving southward on the northern side and Typhoon Sanba on
the southern side, which caused the position of the cloud tops to remain nearly unchanged,
remaining concentrated over Guangdong Province and other regions of southern China. In
Case 2, the progression of the measured cloud map was considerably faster than that of the
simulation, with the cloud layer already extending to coastal areas such as Guangdong and
Fujian, while the simulated cloud map remained inland. After the time-shift adjustment,
the simulated cloud top position aligned with the actual situation, thereby correcting the
cloud position in the simulation.

3.3. Error Analysis

To further investigate the role of the time-shift method in correcting cloud biases, this
study examines the PDF and spatial distribution of the OMB before and after the time shift,
as shown in Figure 6. In Case 1, the mean OMB before the time shift is 0, with a standard
deviation of 0.06. After the time shift, the mean OMB increases to 0.08, while the standard
deviation decreases to 0.05. This suggests that although the standard deviation of the
bias is reduced during the time-shifting process, a degree of systematic bias is introduced.
Regarding spatial distribution, the bias before the time shift exhibits a relatively uniform
spatial distribution, with both positive and negative deviations and relatively small bias
values. After the time shift, the deviations are predominantly positive. In Case 2, the mean
OMB before the time shift is 0.04, with a standard deviation of 0.18. After the time shift,
the mean OMB decreases to 0, and the standard deviation reduces to 0.16. This indicates
that both the mean and standard deviation of the OMB are reduced following the time
shift. In terms of spatial distribution, the spatial homogeneity of the bias improves after
the time shift, with an overall reduction in bias, particularly in the coastal areas along the
Guangdong–Fujian border.

Errors are significantly larger under cloudy or precipitating conditions compared to
clear skies, often arising from deficiencies in the forecast model. In particular, forecast errors
related to humidity, clouds, and precipitation tend to be larger than those related to dy-
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namical variables such as temperature or potential. Furthermore, radiative transfer models
exhibit greater errors under cloudy and rainy conditions than under clear skies [20,34,35].
Geer et al., noted that discrepancies between brightness temperatures simulated by the RT-
TOV model and observed values result not only from errors in the RTTOV model itself but
also from inaccuracies in cloud water and cloud ice data simulated by the NWP model [36].
The limited predictability of small-scale clouds and precipitation in NWP models often
impacts the error budget in model–observation comparisons, especially with regard to
imperfections in the shape, size, and intensity of clouds and precipitation. In addition to
errors in the model and RTTOV simulations, aerosols can also affect cloud simulations.
While molecular absorption at the 0.64 µm wavelength is negligible, the overall effect of
aerosols on reflectance is expected to be small, less than 2% [11].
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The simulated data used in this study are derived from biased CMA-MESO model
forecasts, with additional errors arising from the radiation transfer model calculations.
As a result, this study primarily focuses on the changes in bias before and after the time
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shifts, rather than on the specific causes of OMB bias. The results show that the time-shift
method can partially mitigate cloud biases. However, precipitation is a complex process,
and merely correcting cloud biases does not fully reflect its impact on precipitation. Thus,
the impact of time shifts on precipitation bias warrants further investigation.

3.4. Precipitation TS and Spatial Distribution Analysis

To investigate the impact of the time-shift method on precipitation bias, this study
focuses on precipitation data from Guangdong Province between 0000 and 0300 UTC,
calculating the three-hour accumulated precipitation threat score, as shown in Figure 7. The
threat score quantifies the agreement between the forecasted and observed precipitation,
with higher scores indicating greater forecast accuracy. Additionally, Figure 8 illustrates
the spatial distribution of the three-hour accumulated precipitation, with the first row
corresponding to the observed precipitation, the second row showing the simulated results
without time-shift correction, and the third row depicting the simulated results after time-
shift correction.
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In Case 1, the impact of the time-shift method varies across different precipitation
thresholds. At the 0.1 mm threshold, the TSs before and after the time shift are both close to
0.5, indicating good forecast accuracy at this threshold. At the 10 mm threshold, the threat
score before the time shift is 0.162, slightly higher than the score of 0.152 after the time
shift. At the 25 mm threshold, the threat score after the time shift is higher than that before.
However, at the 50 mm threshold, the threat score before the time shift (0.531) is higher
than the post-shift score (0.483). In Case 2, the time-shift method significantly improves
forecast accuracy for high-precipitation events. At the 0.1 mm threshold, the threat scores
before and after the time shift are both near 0.76, indicating very high forecast accuracy. As
the precipitation threshold increases, the threat score gradually decreases. At the 10 mm
threshold, the threat score before the time shift is 0.39, slightly higher than the score of
0.30 after the time shift. At both the 25 mm and 50 mm thresholds, the threat score after the
time shift is higher than before, though the overall scores are lower, indicating a reduction
in forecast accuracy.

From a spatial distribution perspective, the correspondence of precipitation areas in
Case 1 before and after the time shift shows limited improvement, primarily due to the
combined influence of southward-moving cold air and Typhoon Sanba, which caused the
cloud system to persist over Guangdong Province with minimal positional change. As
a result, the time-shift method has a relatively limited impact on Case 1. In contrast, in
Case 2, the forecast’s correspondence with strong precipitation areas improves markedly
after the time shift. However, forecast accuracy in medium- and weak-precipitation areas
declines, consistent with the trend observed in the threat score. The precipitation maps
indicate significant cloud positional deviations in Case 2, with squall lines rapidly moving
and exhibiting notable positional shifts. Therefore, the time-shift method exerts a more
pronounced corrective effect in Case 2 than in Case 1.

4. Discussion
In weather forecasting, time, intensity, and location are three critical elements. To

achieve accurate weather forecasts, all three must be considered simultaneously. However,
due to the inherent limitations of NWP models and uncertainties in initial conditions,
forecast results often exhibit time biases, with predictions occurring either too early or
too late in comparison to actual conditions. This time bias can lead to spatiotemporal
discrepancies between observations and model outputs, affecting the reliability of forecasts.
Typically, time bias is not discussed separately but is addressed through adjustments to
parameterization schemes or data assimilation techniques, which aim to improve the sim-
ulation accuracy of precipitation timing, intensity, and location. For example, Ma et al.,
addressed the complexities of clouds in NWP models by proposing a scale-aware cumulus
parameterization scheme and a local cloud fraction and microphysical scheme. They com-
bined the CMA-MESO model (formerly GRAPES-MESO) with multi-source observational
data to improve the model’s performance in heavy-precipitation forecasting [37]. Similarly,
Shen et al., employed the 3DVar data assimilation (DA) method with the WRF model
to assimilate radiance from two water vapor channels of the FY-4A satellite in clear-sky
conditions, forecasting three typhoon events that made landfall in the western Pacific [38].
Their results showed improved precipitation forecasts and reduced errors in thermal and
moisture fields. Wang et al. used the WRF model and the WRFDA system, studying the
direct assimilation of three water vapor channel radiance data from the AHI (Advanced
Himawari Imager) on the Himawari-8 satellite. They found that the assimilation of satellite
data significantly contributed to the relative humidity increments in central Jilin Province,
ultimately improving the 3 h precipitation forecast [39]. While these methods enhance
precipitation forecast accuracy, they are relatively complex and difficult to implement. As a
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result, the time-shifting method has been proposed as a simpler and more effective tool to
reduce the time difference between the model and observations, thus improving forecast
accuracy. For instance, Gert Mulder et al. [40] used time-shifting to find the best match
with InSAR data, showing a 40% reduction in model errors (one sigma) when a weather
front was present, with smaller reductions in other situations.

Satellite observations provide high temporal and spatial coverage, offering valuable
observational information for high-resolution limited-area models, particularly for data
assimilation and model validation. Polar-orbiting satellites typically observe a region
no more than twice a day, whereas geostationary satellites can complete full-disk scans
every hour, offering higher temporal resolution and broader spatial coverage. This study
aims to leverage time-shifting techniques with visible light reflectance data to explore
their potential in correcting time biases in NWP. By utilizing the high temporal resolution
and wide spatial coverage of geostationary satellites, forecasters can effectively assess
and correct time biases in NWP model outputs, improving forecast accuracy. To identify
the optimal time-shift moment, we used correlation as the optimization criterion, as it
effectively reflects the similarity between observed and simulated data in terms of cloud
shape, size, and position. Therefore, the moment with maximum correlation is typically
closest to the actual observation time, allowing for an effective correction of forecast times.
This method not only improves forecast accuracy but also helps regions better cope with
weather events. Despite the time lag between Himawari-9 observational data and the first
NC data generation, the time-shifting method still proves effective in utilizing satellite data
for evaluation and correction. By comparing available satellite images with adjacent model
forecast outputs, forecasters can preliminarily identify whether a time bias exists, making
this method valuable even in the presence of time delays.

In this study, we selected two weather phenomena—one with relatively weak move-
ment (Case 1) and the other with more pronounced movement (Case 2)—to compare and
illustrate the applicability of the time-shifting method in different scenarios. In Case 1, the
interaction between the southward-moving cold air from the north and Typhoon Samba re-
sulted in limited cloud movement, with a relatively small deviation between the forecasted
and observed cloud positions. In contrast, Case 2 is characterized by the rapid movement
of the cirrus line, a significant positional shift, and large forecast errors, primarily due to
the storm line’s rapid formation and the numerical weather prediction model’s inability
to respond in time, leading to delayed forecasts. In this case, applying the time-shifting
method adjusted cloud positions—particularly in the precipitation region—thereby im-
proving forecast accuracy. The improvement in the spatial distribution of OMB and the
overall PDF distribution in regions such as Guangdong and Fujian (as shown in Figure 6,
Case 2) indicates that the time-shifting method can partially correct cloud positions and
distributions. Additionally, TS results demonstrate that the precipitation correction effect
in Case 2 is significantly better than in Case 1, suggesting that the time-shifting method is
particularly effective in mitigating temporal biases in fast-moving precipitation systems.
We plan to conduct further analysis using additional data to assess the extent of the cor-
rection effect. However, the ability of the time-shifting method to correct cloud positions
and precipitation areas is constrained by the fact that visible reflectance data primarily
provide information on cloud tops, while precipitation is a complex, multi-level process. It
is important to acknowledge the limitations of using visible data for forecast correction.
Relying solely on cloud-top heights to estimate precipitation areas can be problematic,
especially in processes involving mid- and low-level clouds, where changes in cloud-top
heights may not accurately reflect the actual distribution and intensity of precipitation.
Adjusting model timing based on observed data may improve performance in some regions,
but it could also introduce prediction errors in other areas, leading to spatial and temporal
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discrepancies. In future research, we plan to incorporate data from more cases for a more
comprehensive evaluation. Applying the methodology throughout the entire forecast cycle,
with continuous adjustments at subsequent time points (e.g., 15, 18, 21, and 24 h), will allow
for a more thorough assessment of its effectiveness. This will be a key focus of future work.
Furthermore, we will explore the nonlinear evolution of weather systems and investigate
how the time-shifting method can be adapted to better handle such processes, thereby
improving its generalizability and accuracy.

Under cloudy conditions, due to negligible molecular absorption and minimal aerosol
impact, the 0.6 µm channel can capture the basic features of clouds. However, it exhibits
a low sensitivity to changes in cloud height, primarily reflecting high reflectance from
both low-level and high-level clouds, with greater sensitivity to water clouds. This study
considers only a single channel, which is relatively simple, and therefore has limitations
in analyzing complex cloud systems. Consequently, supplementary analysis using other
channels is necessary. Infrared channels can effectively complement visible light data,
addressing limitations in cloud height and cloud type identification. For example, radia-
tion at 7.3 µm is highly sensitive to mid-level clouds but less so to low-level clouds [13],
while the 1.6 µm channel exhibits higher sensitivity to ice clouds [41], providing detailed
information on high-level and ice clouds. Additionally, the cloud-top height data pro-
vided by infrared channels aids in analyzing the vertical structure of clouds, supporting
more accurate weather forecasts. The combination of visible and infrared data enables a
more comprehensive identification and resolution of deficiencies in numerical weather
prediction models, such as excessive high-level cirrus clouds, weak shallow convection,
excessively strong deep convection, or excessive cloud ice production [20]. Consequently,
the integration of multi-channel data not only improves cloud system identification and
classification but also aids in more accurate corrections of forecast results for complex
weather systems. Future research should focus on integrating multi-channel data (e.g.,
visible and infrared channels) to improve forecast corrections. Moreover, incorporating
high-frequency radar observation data can provide more real-time data for forecasting,
particularly in monitoring precipitation and cloud dynamics. By calculating the weights of
various variables and applying the time-shift method, more precise bias corrections can be
achieved, thus improving the accuracy and reliability of weather forecasts.

5. Conclusions
By applying the time-shift method, we observed a significant improvement in cloud

simulation. Specifically, in Case 1, the forecast was improved by shifting it 30 min ahead,
while in Case 2, the forecast was delayed by 3 h and 30 min. The time-shift method
effectively corrected these forecast-time biases.

An analysis of the PDF and spatial distribution of the OMB biases, both before and
after the application of time-shifting, reveals that the method reduces the standard devia-
tion of the biases, enhances spatial homogeneity, and lowers the forecast model error in
certain regions. This demonstrates the effectiveness of the time-shift method in correcting
cloud biases.

TS results indicate that the time-shift method improves precipitation forecast accuracy,
especially when significant movement patterns are involved. A comparison of forecast
outcomes in different scenarios clearly shows that the time-shift method can address
temporal bias in precipitation predictions within numerical weather prediction models.

Overall, the time-shift method offers a novel approach for addressing time bias in
numerical weather prediction models. The study suggests that future research should focus
on integrating multichannel data (e.g., visible and infrared) with high-frequency radar
observations to further enhance correction accuracy.
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CMPAS CMA Multi-source Precipitation Analysis System
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DA data assimilation
EQR Equidistant Quadrilateral Projection
GRAPES Global/Regional Assimilation and Prediction System
JMA Japan Meteorological Agency
NWP Numerical weather prediction
OMB observation-minus-background
PDF probability density function
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SOZ solar zenith angle
TS threat score
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