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Abstract: Remote sensing (RS) spectral time series provide a substantial source of infor-
mation for the regular and cost-efficient monitoring of the Earth’s surface. Important
monitoring tasks include land use and land cover classification, change detection, forest
monitoring and crop type identification, among others. To develop accurate solutions
for RS-based applications, often supervised shallow/deep learning algorithms are used.
However, such approaches usually require fixed-length inputs and large labeled datasets.
Unfortunately, RS images acquired by optical sensors are frequently degraded by aerosol
contamination, clouds and cloud shadows, resulting in missing observations and irregular
observation patterns. To address these issues, efforts have been made to implement frame-
works that generate meaningful representations from the irregularly sampled data streams
and alleviate the deficiencies of the data sources and supervised algorithms. Here, we
propose a conceptually and computationally simple representation learning (RL) approach
based on autoencoders (AEs) to generate discriminative features for crop type classification.
The proposed methodology includes a set of single-layer AEs with a very limited number
of neurons, each one trained with the mono-temporal spectral features of a small set of
samples belonging to a class, resulting in a model capable of processing very large areas in
a short computational time. Importantly, the developed approach remains flexible with
respect to the availability of clear temporal observations. The signal derived from the
ensemble of AEs is the reconstruction difference vector between input samples and their
corresponding estimations, which are averaged over all cloud-/shadow-free temporal ob-
servations of a pixel location. This averaged reconstruction difference vector is the base for
the representations and the subsequent classification. Experimental results show that the
proposed extremely light-weight architecture indeed generates separable features for com-
petitive performances in crop type classification, as distance metrics scores achieved with
the derived representations significantly outperform those obtained with the initial data.
Conventional classification models were trained and tested with representations generated
from a widely used Sentinel-2 multi-spectral multi-temporal dataset, BreizhCrops. Our
method achieved 77.06% overall accuracy, which is ∼6% higher than that achieved using
original Sentinel-2 data within conventional classifiers and even ∼4% better than complex
deep models such as OmnisCNN. Compared to extremely complex and time-consuming
models such as Transformer and long short-term memory (LSTM), only a 3% reduction
in overall accuracy was noted. Our method uses only 6.8k parameters, i.e., ∼400x fewer
than OmnicsCNN and ∼27x fewer than Transformer. The results prove that our method is
competitive in terms of classification performance compared with state-of-the-art methods
while substantially reducing the computational load.
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1. Introduction
Spectral observation of the Earth’s surface using remote sensors has been used for a

long time for crop type mapping given the quantity and availability of spectral-temporal
images. Multi-spectral time series from sensors such as Landsat or Sentinel-2 (S2) have
provided very cost-effective data for achieving the reliable identification and monitoring
of large cropping areas [1–6]. While a large number of data sources and supervised
classification algorithms have been used for crop mapping [4,7–15], limited efforts have
been made in feature learning or in the use of un- and self-supervised learning algorithms
to alleviate the missing data issue produced by clouds. Notable overviews and examples
are provided in [16–20].

The use of temporal series of multi-spectral observations for crop type classification
is advantageous as the spectral differences in the crop growth, composition and structure
over time are exploited [1,6,17,21]. Each crop type has a distinct seasonal spectral behavior
depending on local weather and growth conditions [3,6,12]. Therefore, many researchers
center their works on making use of multi-temporal information instead of using single
acquisitions [1,10,22,23].

The most common methods for crop type classification are based on supervised learn-
ing algorithms [4,12,14,15,21,24–32]. The aim of these algorithms is to train a discriminative
model using labeled data. However, it is often complicated to find tagged datasets for
the region of interest, since it requires human intervention. Examples of supervised ma-
chine learning (ML) models include decision trees (DT) [33], extreme gradient boosting
(XGBoost) [34], random forest (RF) [35], support vector machines (SVM) [36] and artificial
neural networks (ANNs) [37]. The mentioned algorithms usually provide similar classifica-
tion performance, but often require extensive preprocessing steps such as compositing and
gap filling when incomplete (e.g., cloud-corrupted) time series are analyzed.

To mitigate the reliance on large labeled datasets, unsupervised learning aims to first
derive (latent) representations from the abundant unlabeled spectral data. Representa-
tion learning (RL) is a broad subfield in machine learning which is a set of techniques
focused on automatically learning and identifying meaningful features from the input
data. The derived representations encode the internal structure of the data, so that any
subsequent classification needs fewer labels to be trained. In extreme cases, this leads to
approaches such as few-shot learning or even one-shot learning. To derive representations
that efficiently encode the original data, a large number of algorithms have been developed
over the past years, as, for example, summarized in the work of Balestriero et al. [38].

To cope with missing data in temporal observations, within the field of representation
learning, different approaches have been developed, as we will outline in Section 1.1.

Autoencoders (AE) have the objective of compressing data into a lower dimensional
space, known as code, and then reconstructing the input [39]. The code is regarded as
a set of features, also called representations, which condense the necessary information
to recover the original data [40]. If spectral observations from a given location/pixel are
tagged with the corresponding information regarding the time of observation (e.g., day of
year), an autoencoder can in principle also learn to encode inputs along the time axis.

Typically, this feature of AEs is used for change detection, where the sought events
are seen as anomalies in the reconstruction difference [41–43]. In technical terms, this can
be framed as if the event-specific observations depart from the “normal” object-specific
manifold within the embedding space. The use of ensembles of AEs—each trained on
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different object classes—where the resulting vectors of temporal reconstruction differences
are subsequently used for classification purposes, has not been widely studied.

In this work, we propose training a light-weight deep learning model with individual
time-tagged spectral signatures while bypassing gap-filling and compositing methods. In
our framework, we use an ensemble of AEs to generate new informative and discriminative
features. The features are evaluated in this work with respect to crop type classification.
Here, we arbitrarily choose one simple AE per class, but other choices would also be possi-
ble. We calculate the AEs’ reconstruction difference vectors between the input and output
and concatenate them to form a vector of representations. We evaluate the performance of
the derived representations by comparing classification performance using as input data
Sentinel-2 time series and the representations generated by our method on conventional
classifiers, RF, SVM, XGBoost and a simple fully connected network (FCN). In addition, we
compare the outcomes against a number of more complex benchmark approaches using
the same dataset.

1.1. Related Work

Russwurm et al. [12] presented a satellite image time series dataset for crop type
mapping named BreizhCrops. They generated top-of-atmosphere (TOA) and bottom-of-
atmosphere (BOA) time series from Sentinel-2 and used the dataset to benchmark seven
classifiers for crop type mapping. A particularity of this dataset is the extremely limited
number of samples for certain classes, with two minority crop types (sunflower and nuts)
having much fewer samples than the other classes. This challenges models’ capacity to
effectively generalize to underrepresented classes. The difficulty in correctly classifying the
minority classes was even noted by the authors for high-complexity benchmark models
such as Transformer and long short-term memory (LSTM) approaches.

Paris et al. [11] proposed an approach based on an LSTM model. They addressed the
problem of cloud-corrupted multi-temporal data by constructing a large training dataset
from three full Sentinel-2 tiles, with orbital overlap area, to create monthly composite
images. However, this approach depends on numerous cloud-clear temporal observations
to generate trustworthy composites. Moreover, inaccurate cloud masks induce incorrect
composite values, which compromises classification performance. The practical usage of
this approach is mainly limited due to the demand of high-complexity models for a large
number of computational resources.

He et al. [18] proposed a crop type classification method, trying to improve model per-
formance by merging spectral, textural and environmental features. One major downside
of this approach is that, while feature learning/selection methods attempt to reduce data
redundancy, combining a large number of features easily induces redundancy, affecting
classification performance. Furthermore, collecting and processing these additional fea-
tures is time consuming and computationally expensive, potentially limiting the method’s
scalability in larger or more diverse locations.

Lisaius et al. [44] proposed a novel representation learning approach for remote
sensing data based on a twins network. They derived representations from a Spectral-
Temporal Barlow Twin (STBT) and, afterwards, assessed the quality of the representations
within supervised crop type classification. This method uses sparse temporal sampling
as the only augmentation strategy addressing cloud-corruption issues. However, the lack
of additional augmentation types restricts the model’s capacity to manage other types of
data corruption. As with other approaches, this method assumes that cloudy observations
are totally removed from the data, which is not optimal in real-world circumstances with
poor-quality cloud masks.
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Kalinicheva et al. [43] proposed a particularly interesting approach with AEs. Re-
construction losses of joint AEs were used to detect non-trivial changes between two
co-registered images in a satellite image time series. This method depends on patch-wise
reconstruction errors, and, hence, the approach has difficulty capturing fine features for
objects that are only 1–2 pixels wide. Moreover, joint autoencoder models, particularly
convolutional autoencoders, need a significantly long training time, which makes the
method unsuitable for real-time or large-scale applications.

Windrim et al. [45] proposed an approach using AEs for unsupervised feature learning
with hyperspectral data. The method allows the evaluation of the separability of the feature
spaces for clustering tasks. Hyperspectral data are naturally high dimensional, and this
work recognizes that high-dimensional data present issues such as greater data variability
and computational complexity.

Other approaches in the state of the art address the problem of missing data with a
combination of optical and Synthetic Aperture Radar (SAR) data [5,24,46,47], fusion of
multiple sensors [8,48,49], data interpolation [12,50] or simply by using only a subset of
partially cloud-free observations, as demonstrated by Zhiwei et al. [17] and Shan et al. [18].
Table 1 summarizes the related works explained before for crop types classification, high-
lighting the satellites used, time ranges, methods, number of classes and feature selection
techniques employed.

Table 1. Summary of relevant works related to crop type classification and representation learning.

References (Year) [Citation] Satellite Time
Range Method Number

of Classes
Feature

Selection

Kalinicheva et al. (2019) [43] SPOT-5 2002
2008 AEs Not specified N/A

Windrim et al. (2019) [45]
AVIRIS

and
others

Not specified AEs Not specified N/A

Paris et al. (2020) [11] Sentinel-2 01/09/2017
31/08/2018 LSTM 12 N/A

Russwurm et al. (2020) [12] Sentinel-2 01/01/2017
31/12/2017 ANNs 9 N/A

Zhiwei et al. (2020) [17] Sentinel-2 23/04/2019
20/09/2019 RF 8 Spectro-temporal

Shan et al. (2022) [18] MODIS 01/01/2009
31/12/2009 KS 4

Spectral
textural

environmental

Leikun et al. (2020) [16] Sentinel-2 01/04/2018
31/10/2018 RF 3 Spectro-temporal

Lisaius et al. (2024) [44] Sentinel-2 01/01/2017
31/12/2018 STBT 8 Spectro-temporal

Proposal in this work Sentinel-2 01/01/2017
31/12/2017 AEs 9 N/A

In summary, major issues in the state of the art are (1) the use of highly complex
models, (2) the infeasibility of scaling to large areas, (3) the reliance on interpolation
methods, (4) the dependency on reliable cloud masks and (5) the handling of a huge
number of data. Most of the machine-learning-based approaches need extremely deep
models, leading to high computational costs and processing time and therefore limiting
scalability to the processing of large areas of interest. Approaches that rely on interpolation
methods exploit the smooth changes between data points but fail if data gaps become overly
long. Many approaches also require fixed-length sequences, which restricts the model’s
flexibility in dealing with irregular inputs. Sensor fusion approaches, on the other hand,
face the challenge of handling huge numbers of data, which leads to high computational
load and increases in processing time.
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1.2. Contributions

The main contributions of this work are the following:

1. To tackle cloud-corrupted time series analysis, the proposed framework processes in-
dividual time-tagged spectral signatures for feature extraction and thereby completely
avoids the use of gap-filling and compositing methods.

2. The proposed methodology uses neural networks with a reduced number of neu-
rons to keep the computational load low, thereby facilitating the processing of large
geographic areas.

3. The proposed pixel-wise framework provides a robust solution with respect to the
number of available cloud-free observations while achieving competitive results even
when limited observations are available. By avoiding the use of spatial convolutions,
the approach focuses on the information within the specific pixel location and thus
can also be applied to regions with very small object sizes.

The remainder of this work is organized as follows: Section 2 presents the concept
of RL and the respective mathematical definitions, as well as a brief description of AEs.
In Section 3, the problem statement of this work and the mathematical formulation of the
proposed framework are introduced. Section 4 describes the quantitative and qualitative
experimental results. Sections 5 and 6 present the discussion and conclusions, respectively,
of the results obtained in our experiments.

2. Materials and Methods
2.1. Representation Learning

Representation learning (RL), also called feature learning, is a subfield of machine
learning that aims to automatically learn and identify meaningful features, or represen-
tations, from the input data. Representations are expected to be more informative for
downstream tasks such as clustering, regression or classification while also offering advan-
tages in terms of model generalization and transferability [51].

In crop type classification, RL provides various benefits, especially in agricultural
applications, where managing high-dimensional and complex datasets is crucial [52]. RL
models first learn hierarchical features, beginning with low-level details such as edges
and textures and advancing to higher-level characteristics like specific crop patterns. This
hierarchy is critical for differentiating between different crop varieties [24]. Furthermore,
representations derived with RL from the abundant unlabeled data mitigate the reliance on
large labeled datasets, which are usually costly and time consuming to produce in agriculture.

RL therefore has the potential to improve crop classification by automating feature
extraction, enhancing generalization, reducing the need for large labeled datasets and ad-
justing to environmental variability. With its scalability, speed and capacity to combine
geographical and temporal data, it is an effective tool for developing robust, accurate
and scalable crop classification models.

Mathematically, RL is defined as a function f : X → Z, which transforms the input
data X = {x1, . . . , xS} into features Z = {z1, . . . , zS}, where each vector xs ∈ Rn and
its image zs ∈ Rp, and Rp denotes the representation space (See Figure 1). The objective
function f leads the model to learn meaningful representations of the input data, preserving
information, reducing redundancy and generally reducing dimensionality.

In recent years, many RL methods have been proposed from different perspectives and
for different families [38], e.g., contrastive learning methods (InfoNCE [53–55]), deep metric
learning (SimCLR [56,57], NNCLR [58], etc.) and non-contrastive methods (VICReg [59],
Barlow Twins [44,60], etc.), among others. Such approaches are particularly useful in cases
where the observed data are generated by a limited set of variables [61]. However, RL is
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not limited to these families of methods, and conventional neural network models, such as
autoenconders (AEs), can also form a representation learning method.

Figure 1. Illustration of representation learning (RL) as a function f , mapping vectors from a
dimensional space to a representation space.

These approaches can also be seen as belonging to the field of self-supervised learning
(SSL). Indeed, self-supervised learning techniques enable models to be pre-trained on
unlabeled data, reducing reliance on labeled datasets. Furthermore, data augmentation
techniques (rotations, translations, etc.) applied in these types of models have been proven
to improve performance without increasing the number of training data.

2.2. Autoencoders

Autoencoders are a specific type of ANN used for unsupervised learning (Figure 2) [62,63].
They have applications in various research fields, such as anomaly detection, data compres-
sion and feature learning. Their aim is to encode the input into a compressed representation,
and then reconstruct the input from this representation so that the reconstruction is as
similar as possible to the input [51,64].

Although AEs are not in principle designed for detection and classification tasks, sev-
eral works have demonstrated their potential to ease these tasks by using AE-derived data
for change detection and binary classification models [41–43]. Since AEs are trained to com-
press and afterwards reconstruct the input data, they basically learn from model samples
belonging to a certain joint distribution, leading the model to learn class-specific properties.

Code

Figure 2. Example of an autoencoder architecture with mathematical definition as a function. In the
present work, the reconstruction difference between the input and output is used as a representation
and not the code itself.

The aim of the AEs, formally defined in [65], is to learn the functions fE : Rn → Rp

and fD : Rp → Rn, where fE denotes the encoder function, fD is the decoder function, n
is the dimension of the input and output spaces and p denotes the dimension of the code
space. Generally, p ≪ n, leading to the learning of the compressed features of the data.
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3. Proposed Method
Consider an annual multi-spectral time series dataset acquired by an optical sensor,

i.e., each sample has been acquired at different times. From the entire set of observations,
only a subset will usually be useful, as weather conditions such as clouds, cirrus, cloud
shadows and snow, among others, occasionally obstruct the land surface. Missing data
resulting from these conditions commonly lead to poor performance on particular tasks,
such as land use/land cover classification or change detection. Therefore, it is of utmost
importance to extract and use only the land-related information, either by filtering the data
or generating new features (often in the form of composites).

3.1. Problem Statement

Let X ∈ RP×B×T be a multi-spectral time series dataset represented as a third-order
array, where P represents the number of geographic points on the Earth’s surface, B is
the number of spectral bands, T denotes the number of temporal observations and each
geographic point is denoted as a vector x ∈ RB·T and x ∈ X . The aim is to transform each
vector x into a representation vector z ∈ RR, where R is the number of new features, named
representations. The representation vector z addresses label scarcity and the missing data
issue produced by clouds, and permits downstream tasks such as crop type classification
(see Figure 3).

Clouds
detection

Representation
learning

Classification

P

P

Figure 3. First level of the proposed workflow. A scene classification product provided by the
European Space Agency (ESA) is used to mask out cloudy samples from a geographic point (pixel)
shaped as a T × B array.

3.2. Methodology

The methodology of this work consists of four processes: data downloading and
preprocessing, model training, inference (representations formation) and, as a downstream
task to evaluate the quality of the derived representations, classification. The proposed
framework is shown in more detail in Figure 4.

P

P

Clouds
detection

Autoencoders
Split per

class

Compute
difference

Concatenation

DOY

Average
per

pixel

Classification
FCN

Distance
metrics

Metrics

Report

Evaluation

Training

Representations

Reconstruction

Original data 
(level-L2A)

Labels

Y

^

Y

Classification
report

Data Preprocessing

Models

Representations GenerationDOY

Figure 4. Proposed framework block diagram. The full methodology is composed of four main
blocks: data preprocessing, model training, representation generation and evaluation.
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3.2.1. Data Downloading/Preprocessing

Reference crop type labels are extracted from a public benchmark dataset named
BreizhCrops [12] (field level). Google Earth Engine (GEE) is used to download full multi-
temporal multi-spectral data from a region of interest (ROI) (see Figure 5).

RS image
database GEE API

Create image
collection of ROI Download Spectral

images

Figure 5. Dataset downloading process using the Google Earth Engine (GEE) database.

Given the multi-spectral time series, a scene classification product (e.g., ESAs sen2cor)
is used to obtain a cloud/non-cloud mask for each sample x, i.e., for each temporal obser-
vation at the pixel level. Cloudy samples are excluded from the dataset. This creates a set
of pixels with a variable number of cloud-free (temporal) observations. Only the cloud-free
observations of a pixel are used as inputs to generate a representations vector. This makes
our model flexible and independent with regard to the number of clear observations.

To leverage the temporal information for the particular task of crop type classification,
we add temporal embeddings to each sample, with the aim of extending the vector space
to one where similar spectral curves of different crop types at different growth stages are
separable. We use the sine and cosine functions to model the annual periodic phenomenon
presented by the cyclical character of the natural seasons and crops’ evolution between
planting and harvest. As day 1 and 365 are, in principle, distant, but with similar natural
conditions, we embed time by scaling the acquisition day of year (DOY) to the (0, 1) range
by dividing by 365 and then placing them on a real value scale by computing the sine and
cosine. This makes each scaled DOY a unit vector that is decomposed into two orthogonal
vectors, regarded as the spring–fall axis (sine) and the summer–winter axis (cosine), giving
our method the capacity to perform correctly in different Earth latitudes [66].

Hence, each sample x̃ ∈ RF has F features, i.e., B spectral bands plus two values
denoting the sensing DOY, computed as follows:

doysin =

(
sin

(
2πdoy

365

)
+ 1

)
/2 (1)

and

doycos =

(
cos

(
2πdoy

365

)
+ 1

)
/2, (2)

where doy denotes the DOY as a numeric value from 1 to 365, and doysin and doycos are in
the range of 0 to 1.

3.2.2. Model Training

The principle of this work is to train a set of C independent AEs with vectors x̃c, which
are individual time-tagged spectral signatures of cloud-/shadow-free observations that
belong to a particular class c for c = 1, . . . , C, resulting in C semi-supervised trained models
able to reconstruct samples from the same class, bringing the reconstruction difference
towards the zero vector, while using the ensemble of reconstruction difference vectors to
derive the representations (see Figure 6).
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Figure 6. Example of the expected output for positive and negative samples. The difference from the
ensemble of autoencoders (AEs) constitutes the representations for the downstream task.

The training process of the AEs can be semi-supervised, given a labeled dataset, as in
this work, or unsupervised, with no ground truth data (e.g., by training a set of random
AEs not associated with specific crop types or classes). The scope of this work addresses
the semi-supervised approach, with a crop type dataset labeled as pairs (x, y), where y is
an integer value which indicates the class that x belongs to. Samples are split into as many
subdatasets as classes and each subdataset is used to train a different AE. This process is
graphically represented in Figure 4 as model training and further illustrated in Figure 7.
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Figure 7. Autoencoder (AE) training. Each autoencoder is trained with a finite set of individual
spectral curves belonging to one of the crop types. The reconstructions from the C classes are used to
calculate the difference vector across the ensemble that is the final set of representations.

As mentioned in Section 2.2, an AE is formally defined as a composite function
fAE(x) = fD( fE(x)). For our input vectors x̃, each AE can be seen as a function:

fAE(x̃) = fD( fE(x̃))) = x̂ (3)

where fE(x̃) denotes the encoder function, which maps the input vectors, from the input
space RF to an embedding space RP, known as code, and fD(·) maps the code to an
estimated reconstruction x̂ of the input vector. Since our architecture has C AEs, it has
C composite functions f (c)AE, for c = 1, 2, . . . , C. Each AE is trained with a set of vectors

belonging to a single class, and, consequently, a particular f (c)AE is learned. In general,

x̂(c)c = f (c)AE(x̃c) (4)

where x̃c denotes the input vector belonging to class c, f (c)AE is the AE function associated

with the c-th class and x̂(c)c is the output vector delivered by the c-th AE.
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3.2.3. Representations Generation (Inference)

Given the C trained AEs, denoted as f (c)AE, the set of cloud-free observations of indi-
vidual geographic points (pixels) forms an array X̃ ∈ Rt×F, where t denotes the number
of cloud-free samples for a given pixel. X̃ is the input to the AEs’ functions, and the
reconstruction array is obtained from each AE as

X̂(c) = f (c)AE(X̃) (5)

where X̂(c) represents the reconstruction estimated by the c-th AE.
Then, the t difference vectors associated with a single pixel, which form an array D(c),

are computed by

D(c) =
∣∣∣X̃ − X̂(c)

∣∣∣abs
(6)

where d(c)ij = abs(x̃ij − x̂(c)ij ). Let d(c)
i be the rows of D(c). Then, the pixel mean reconstruc-

tion difference vector d̄(c) ∈ RF is computed by

d̄(c) =
1
t

t

∑
i=1

d(c)
i (7)

and the representation z of the pixel X̃ is formed by the concatenation of the C vectors
d̄(c) as

z = d̄(1) ⊕ d̄(2) ⊕ · · · ⊕ d̄(C) (8)

where ⊕ denotes the vector concatenation and z ∈ RR. The inference phase of our proposed
framework is presented in Figure 8.

Autoencoders

Compute
difference

Concatenation
Average

per
pixel

DOY

Figure 8. Inference workflow of the proposed framework. For each temporal set of cloud-free
reflectance spectra, the average reconstruction difference vector is calculated for each of the C
autoencoders (AEs) and concatenated to define the representations of this pixel.

4. Experimental Results
4.1. Dataset

The public benchmark dataset BreizhCrops presented in [12] was used for our ex-
periments and evaluation. This dataset is available at the GitHub repository (https:
//github.com/dl4sits/breizhcrops (accessed on 8 January 2025)). The provided multi-
temporal multi-spectra data are from the Brittany region in the northwest of France and
are composed of labeled Sentinel-2 images obtained between 1 January and 31 December
2017. Labels were assigned to the “average of reflectance values over the bounds of the
field geometry retrieved from the dataset” [12].

This dataset is organized in four regions (see Table 2), and each region contains
nine crop categories: barley, wheat, rapeseed, corn, sunflower, orchards, nuts, permanent

https://github.com/dl4sits/breizhcrops
https://github.com/dl4sits/breizhcrops
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meadows and temporary meadows. In [12], regions FRH01 and FRH02 were used for
training, FRH03 for validation and FRH04 for evaluation.

Table 2. Regions of Brittany (France) with number of field parcels and spectral data for the atmo-
spherically corrected surface reflectances at the bottom of the atmosphere (L2A) [12]. The regions
FRH01 and FRH02 were used for training, FRH03 for validation and FRH04 for evaluation.

FRH01

FRH02

FRH04

FRH03

Regions NUTS-3 L2A

Côtes-d’Armor FRH01 178,632
Finistère FRH02 140,782

Ille-et-Vilaine FRH03 166,367
Morbihan FRH04 122,708

Total 608,489

Table 3 describes the number of samples per class used for training, validation and
testing. It is worth noting that the dataset is highly imbalanced; the most abundant
class “temporary meadows” has >300 times more samples than the two minor classes
“sunflower” and “nuts”. This makes the classification model more sensitive to overfitting
and also makes an accuracy evaluation more difficult [67]. To ensure perfect comparability
with the previously published work [12] we have chosen to keep the dataset without
any modifications.

Table 3. Number of samples per class used for training, validation and testing.

Class Training Validation Test Total

Barley 23,787 7154 5981 36,922
Wheat 45,406 27,202 17,009 89,617

Rapeseed 7945 3557 3244 14,746
Corn 80,623 42,011 31,361 153,995

Sunflower 7 10 2 19
Orchards 1285 1217 552 3054

Nuts 28 10 11 49
Perm. Meadows 69,177 32,524 25,134 126,835
Temp. Meadows 91,156 52,682 38,414 182,252

It is worth mentioning that this dataset provides only spectral signatures in tabular
format for the center pixel in a field and not Sentinel-2 images.

4.2. AE Training

With the aim of developing an algorithm capable of processing relatively large geo-
graphic areas, the AEs are composed of a single-layer FCN as the encoder and its coun-
terpart for the decoder. While other models, such as convolutional and recurrent net-
works, require a relatively large number of trainable parameters, as described in [4,11,12],
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the single-layer AEs that form our model need considerably fewer units, meaning a lower
computational load and faster processing times.

The batch size, learning rate, number of units in the hidden layer and loss function
were set in accordance with the results acquired through the hyperparameter random
search presented in Appendix A. The split of the dataset is described in Table 4, which
outlines the features employed in this experiment. These include DOY (sine and cosine),
10 spectral bands (10 and 20 m resampled to 10 m) and five well-known spectral indices:
the normalized difference water index (NDWI), normalized difference vegetation index
(NDVI), normalized difference tillage index (NDTI), normalized difference of senescent
vegetation index (NDSVI) and enhanced vegetation index (EVI). Table 5 presents the AEs’
configuration.

Table 4. Training, validation and testing split and number of input features and classes considered
for the autoencoders.

Parameter Value

Training size 319,414
Validation size 166,367

Testing size 122,708

Features
10 bands,

2 DOY,
5 spectral indices

Classes 9

Table 5. Autoencoder hyperparameters final configuration, established by random search.

Hyperparameter Value

Epochs 10,000
Early stop True
Patience 10

Min. delta 1 × 10−5

Batch size rate 0.05 *
Units in hidden layers 5

Learning rate 1 × 10−4

Optimizer Adam
Loss MSE

* Proportion of samples for each class.

4.3. Separability Assessment and Distance Metrics

For qualitative assessment of the inter-class separability in the generated representa-
tion space, 3D scatterplots of the test spectral-temporal Sentinel-2 BOA data and their corre-
sponding representations produced by our method, reduced to a three-dimensional space
by t-distributed Stochastic Neighbor Embedding (TSNE), are shown in Figures 9a and 9b,
respectively. The figures show that the density of points belonging to each of the crop types
is much better clustered.

Several distance metrics are used to quantify the distance between classes. Table 6
presents a comparison of the inter-class separability of the input spectral-temporal Sentinel-
2 BOA data and the generated representations, measured by silhouette score (SS), which
ranges from −1 for incorrect clustering to +1 for highly dense clustering, the Calinski–
Harabasz index (CH), for which larger scores indicate better separability, and the Davies–
Bouldin index (DBI), which ranges from 0 to ∞ and the closer it is to zero, the better the
separability between clusters (see Appendix B for metrics definitions).
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(a) (b)

Figure 9. 3D scatterplot of (a) S2 fixed-length time series (45 observations) and (b) representation
over three principal components obtained by t-distributed Stochastic Neighbor Embedding (TSNE)
only for visual interpretation.

The distance scores again demonstrate much higher separability in the representation
space than on the initial data.

Table 6. Class distance assessment of the S2 dataset and the representations produced by our method
by silhouette score (SS), Calinski–Harabasz index (CH), Davies–Bouldin index (DBI).

Distance Metric S2 Data Our Approach

SS −0.76 0.20
CH 1.4 73,074.46
DBI 72.44 18.96

4.4. Evaluating Representations in the Classification of Crop Types

Once the representations have been produced, a three-layer FCN is used as a classifi-
cation model, where the inputs are the generated representations and their corresponding
labels. The parameters of the classifier are detailed in Table 7. Note that the input dimen-
sionality is defined by B spectral bands plus five spectral indices times C AEs, as the DOY
embeddings would induce redundancy.

Table 7. Classification model configuration.

Hyperparameter Value

Input size (B + 5)× C = 135
Epochs 10,000

Batch size 1000
Units in hidden layers 128, 64, 32

Learning rate 1 × 10−4

Optimizer Adam
Loss Categorical crossentropy

A comparative study is presented in Table 8 where the performance of different tradi-
tional classifiers, such as RF, SVM, XGBoost and FCN, are evaluated using two types of
input data: fixed-length Sentinel-2 BOA data and our derived representations. The eval-
uation is based on overall accuracy (OA), Cohen’s kappa coefficient (κ) and Matthews’
correlation coefficient (MCC). All models are tested with exactly the same training and
testing samples of the BreizhCrops dataset (as described in Table 3), allowing a direct
comparison of results.
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In all cases, our representations improve classification performance compared to the
original Sentinel-2 data. The improvement ranges from ∼2% to ∼7% in terms of OA.
The FCN classifier achieves the best OA, κ and MCC with both input types, and stands out
particularly when using the representations as input, reaching the highest OA of 0.7706, a κ

of 0.6995 and an MCC = 0.7014.

Table 8. Comparison of classification performance with Sentinel-2 data versus representations
produced by our method as input data to conventional classifiers, random forest (RF), support
vector machine (SVM), extreme gradient boosting (XGBoost) and fully connected network (FCN),
as evaluated by overall accuracy (OA), Cohen’s kappa coefficient (κ) and Matthews’ correlation
coefficient (MCC).

S2 Data Representations

Metric RF SVM XGBoost FCN RF SVM XGBoost FCN

OA 0.7172 0.7091 0.7036 0.7438 0.7345 0.7466 0.7139 0.7706
κ 0.6264 0.6197 0.6113 0.6716 0.6464 0.6688 0.6201 0.6995

MCC 0.6326 0.6249 0.6149 0.6729 0.6491 0.6710 0.6234 0.7014

We conducted a comparison of the representations and S2 data across all classifiers in
scenarios with limited labeled data. The results presented in Figure 10 demonstrate that
the representations consistently offered greater stability and maintained higher accuracy as
the percentage of available training data decreased.

The FCN benefited exceptionally from representations; it obtained the highest OA of
∼0.77 using 100% of the training data, and its classification performance was much less
affected compared to when using the original Sentinel-2 data as the number of training
samples decreased. The SVM, in combination with the representations, kept the classifica-
tion performance stable, even with a very low number of training samples (around 30,000),
offering clear improvements over the S2 data and making it the best option in this scenario.
XGBoost and RF, on the other hand, offered stable performance with S2, but the use of
representations considerably elevated accuracy.

The confusion matrix shown in Table 9 presents the model performance on the test-
ing dataset. Our approach performed relatively accurately for wheat, rapeseed and corn
samples, and, although permanent and temporary meadows samples were not accurately
classified, both classes are actually the same crop type, and misclassified samples were
mainly due to their similar nature, as shown in the last two rows of the confusion matrix.
However, our approach was inaccurate for the small classes in this dataset, i.e., sunflower
and nuts, which could not be separated due to the very limited samples provided. The mis-
classification of these classes is probably not related to incapacity of the model to deal with
imbalanced datasets, but is a direct result of the very limited number of samples, as was
also outlined by the authors in [12]. As the spectral signatures provided in the dataset
are field-based averages, classes such as orchards, where trees only cover single pixels
with large areas between the trees, were easily confused by our model with regular parcels
of meadows.

Table 10 presents a performance comparison of our method with much deeper models,
such as convolutional, recurrence and attention-based methods. TempCNN, OmniscCNN,
LSTM, StarRNN, Transformer presented in [12] and our proposed method are evaluated
by OA, average precision (AP), F1 score and κ. Additionally, the number of parameters
and runtime in iterations per second (it/s) are presented. We present the results reported
in [12]. The same test data points were used in our experiments; hence, the results are
directly comparable.
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Table 9. Confusion matrix of the fully connected network (FCN) prediction for the testing data.

Object
Based

Barley Wheat Rapeseed Corn Sunflower Orchards Nuts Permanent
Meadows

Temporary
Meadows

Barley 4608 642 71 231 0 0 0 29 400
Wheat 626 15,681 14 206 0 0 0 79 406

Rapeseed 130 17 2949 31 0 0 0 15 102
Corn 236 314 38 29,900 0 0 0 111 762

Sunflower 0 0 0 0 0 0 0 1 1
Orchards 0 5 1 4 0 0 0 277 265

Nuts 0 0 0 2 0 0 0 6 3
Permanent
meadows

122 212 4 163 0 0 0 12,409 13,224

Temporary
meadows

451 321 64 628 0 0 0 7942 29,008

100 90 80 70 60 50 40 30 20 10
% of total t raining sam ples

0.68

0.70

0.72

0.74

0.76

O
A

Model

Representations-FCN

Representations-RF

Representations-SVM

Representations-XGBoost

S2-FCN

S2-RF

S2-SVM

S2-XGBoost

Figure 10. Overall accuracy (OA) of the random forest (RF), support vector machine (SVM), extreme
gradient boosting (XGBoost) and fully connected network (FCN) trained with a variable percentage of
training samples and using (i) representations (solid line) and (ii) original Sentinel-2 data (broken line).

Table 10. Classification performance evaluation of benchmarked models by overall accuracy (OA),
average precision (AP), F1 score (F1) and Cohen’s kappa coefficient (κ). All models were evaluated
over the same testing dataset and on an Intel® Core™ i5-7200U CPU @ 2.5 GHz with four cores
and Dell Inc. Inspiron 15-3567 Intel® HD Graphics 620 (KBL GT2). The best results are highlighted
in bold.

TempCNN OmniscCNN LSTM StarRNN Transformer AE-FCN

OA 0.79 0.73 0.80 0.79 0.80 0.77
AP 0.55 0.52 0.57 0.56 0.58 0.54
F1 0.79 0.72 0.80 0.79 0.80 0.76
κ 0.73 0.65 0.74 0.73 0.75 0.70

No.
parameters 3,199,501 2,739,737 1,339,431 72,103 188,429 6825

Runtime in
[it/s]

0.70 0.07 0.12 0.22 0.44 23.8

Our representations-based approach combined with the FCN was substantially less
computationally expensive than the other benchmarked methods, requiring only 6825 train-
able parameters, compared to the 1,338,431 for LSTM and the 188,429 for Transformer.
This means that our method uses roughly 200 and 28 times fewer parameters, respectively,
compared to the two deep learning methods. This reduction directly impacts computational
load and consequently processing time, as seen in the runtime of 23.8 it/s obtained with
our method, which is more than 30 times higher than the best of these deep models in
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terms of runtime, TempCNN (0.70 it/s), and more than 50 times higher than Transformer
(0.44 it/s).

In addition to this substantial reduction in the number of trainable parameters, our
method maintained competitive classification accuracy, achieving an OA of 0.7706, just
3% lower than Transformer’s OA of 0.80. Furthermore, the accuracy of our method is
comparable to that of TempCNN (OA = 0.79) and 4% better than that of OmniscCNN
(OA = 0.73). However, these two approaches are computationally far more expensive,
requiring approximately 400 times more parameters than AE-derived representations
within a simple FCN (AE-FCN).

In terms of metrics that weight class imbalance, the LSTM and Transformer obtained
the highest F1 score (both 0.80), whereas the AE-FCN achieved a competitive 0.76, indicating
a balanced performance despite having far fewer parameters. Similarly, the LSTM and
Transformer had the highest κ score (0.75), with AE-FCN scoring 0.70, which was penalized
owing to mismatches in particular classes but remains effective given the model’s simplicity.

4.5. Qualitative Results

To enable a qualitative analysis over a contiguous spatial extent and not simply on a
tabulated dataset, 67 Sentinel-2 multi-spectral images of a subregion in FRH04 (test region)
from 2017 were downloaded and preprocessed. A representative area was defined by
drawing a polygon where most of the classes (barley, wheat, corn, rapeseed, temporary
meadows and permanent meadows) were present (Figure 11a).

Representations for this study area are produced by passing individual pixels from the
imagery dataset through the inference workflow outlined in Figure 8. Composite images
generated by combining three random representations are presented in Figure 11b–h, which
clearly contrast the crop fields in the new representation space.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. (a) True color image of the study area in 2017 and composites images generated by
combining three random representations per map: (b) 9-64-30, (c) 59-84-81, (d) 30-11-141, (e) 45-66-57,
(f) 20-10-32, (g) 5-142-83 and (h) 24-79-133.
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A classification map produced by our method is presented in Figure 12. Figure 12b
illustrates a pixel-based classification, i.e., without considering field boundaries or spatial
context. Misclassifications are mainly seen near field edges since these are not pure pixels
and often contain mixed spectral data.

To better illustrate the potential of our method in real-world activities, Figure 12c
presents a field-based classification map where the output of our method is post-processed
to group the pixel-wise predictions into a polygon-level prediction by computing the mode
of predictions within the field borders. This map preserves field structure, creating a more
coherent and interpretable map. The strong similarity between Figures 12a,c shows that
the representations are sufficiently representative for crop type classification. Figure 12d is
a map showing correctly classified fields in green and misclassified fields in red.

As reported in the confusion matrix (Table 9), the qualitative results illustrate that
temporary meadow fields are frequently confused with permanent meadows. However,
as discussed in Section 4.4, these two crop types share similar spectral signatures, particu-
larly when observed during different seasons of the year. This spectral overlap makes it
challenging for classifiers to distinguish between these two crop types.

(a) (b)

(c) (d)

Figure 12. (a) Study area ground truth at field level (polygons), (b) representations-based fully
connected network (FCN) pixel-wise classification (raster), (c) representations-based FCN field-based
classification (polygons) and (d) map of correctly classified fields in green and misclassified fields
in red.

5. Discussion
Our AEs-based methodology for RL addresses the problem of cloud-corrupted optical

data by mapping RS spectral-temporal features into informative and gap-free represen-
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tations. Our spectral and temporal-based approach produces pixel-level comprehensive
representations while avoiding the need to employ complex spatial-based classifiers.

The method proposed in this paper has as its main advantage its ability to produce
pixel-wise representations independently of the number of cloud-free samples, as any
number of valid observations (e.g., cloud-free observations per pixel or object) can be
handled seamlessly, and we can implement our method as an in-season approach without
any further modifications, as the concatenation of (residual) vectors from the AEs builds on
the average reconstruction difference, which can be computed whenever desired in a given
growing season.

The focus of our work is on the use of EO time series without common preprocessing
steps such as complex interpolation, gap-filling, compositing or hand-crafted feature
extraction methods, used in other approaches. The derived representations from our
method will be gap free as long as at least one valid observation is present in the time series,
but the stability of the representations would in principle increase when a larger number of
valid observations are available (see Sections 3.2.2 and 3.2.3).

Despite the restricted depth of our method for both (i) the representations learning
process and (ii) the classifier, our method performs satisfactorily. While some deep classifica-
tion networks achieve slightly better OA scores, our light-weight model performs similarly
with a substantially smaller computational load, as can be seen in Table 10. The use of
the derived representations instead of directly using the Sentinel-2 spectral-temporal data
improves performance on all baseline models presented in Table 8 while maintaining
low computational load. The usefulness of the representation increases compared to the
original data when fewer training samples are available for training. In this work, we show
that, despite the computational simplicity of our framework/model, we also achieve good
classification results compared to computationally much more complex approaches.

Models, such as TempCNN, OmniscCNN, LSTM, StarRNN and Transformer, pre-
sented in Table 10, need to be executed on powerful equipment well suited for handling
complex models to achieve low processing times. In contrast, our full framework is easily
launched on a significantly low-power CPU. This showcases our method’s efficiency and
adaptability to lower-end hardware and/or to processing large geographic areas while
requiring much fewer computational resources. In terms of number of trainable parameters,
convolutional and recurrent models require millions of parameters, which indicates their
high computational demands, while our method only requires thousands of parameters.

The dataset used in the experiments of this work is particularly challenging, as sun-
flower and nuts cannot be separated by any of the presented algorithms, mainly due
to the limited number of labeled samples. The few available samples prevent all of the
models presented in Tables 8 and 10 from learning enough informative and significative
representations before classification.

Although our method fully integrates phenological information, by learning a repre-
sentation, representing the entire time series acquired within one year/season, the accuracy
saturates at some point when varying the number of training samples (Figure 10), simply
because not all classes can be separated by the data at hand, as is the case for permanent and
temporary meadows. Here, other sensor systems should be integrated (e.g., microwaves,
thermal, multi-angle instruments, etc.).

As with other methods, our approach is still negatively affected in classification
performance when an extraordinarily limited number of samples is available. A simple
solution is to expand the labeled data collection, even using samples from other already
labeled regions with similar phenological conditions. In addition, our approach can be
easily adapted to process different areas, even with other optical sensor datasets, such as
Landsat or those from radar sensors. However, we are convinced that a better solution
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would be a model able to perform accurately with the minimum number of sample data.
For this reason, efforts related to representation-learning-based methods would help to
generate condensed spectral-temporal features which generalize better, and are stable
over years. Work is underway to see how classification performance changes when the
AEs are trained without focusing on specific classes. If successful, this will yield a fully
self-supervised learning algorithm for representation learning.

6. Conclusions
Based on the results reported in this paper, we draw the following conclusions:

1. The quantitative evaluation based on various distance metrics demonstrates that
the representations produced by our method accomplish the objective of mapping
RS spectral-temporal raw data (e.g., Sentinel-2) to a feature space where inter-class
separability is higher than in the initial Sentinel-2 BOA time series.

2. The classification scores achieved by our method, alongside the comparison of train-
able parameters and execution time, highlight the efficiency of our method. Our
model outperforms conventional classifiers in terms of accuracy, all with significantly
reduced computational load. This allows large areas to be processed without excessive
time consumption, offering an effective balance between performance and efficiency.

3. Our method performs well for the majority of classes evaluated in this work, especially
for those with sufficient training samples. When only a few training samples are
available, our method shows the same problems as the baseline methods.

In summary, our experimental results demonstrate that this work has successfully
introduced a novel RL method for crop type classification and confirm the main character-
istics of our method: (1) the ability to process large areas of interest, as is often required
in real-world activities, (2) input length flexibility and no reliance on gap-filling methods,
(3) a competitive trade-off between computational demands and classification performance
and (4) direct applicability for other downstream tasks.

Outside the scope of this work, there are still some points to consider in future research:

• Implementation of a fully unsupervised methodology for training autoencoders with-
out relying on labeled data.

• Evaluation of the proposed methodology on other optical sensors, radar sensors or a
combination of several sensor modalities.

• Fine-tuning the RL classification model to find a better balance between performance
metrics and number of trainable parameters.

• Although this research specifically presents crop type classification task-guided repre-
sentations, the extrapolation to other classification task is straightforward.

• Study of the impact of high-cloud-cover conditions on classification accuracy by
artificially removing cloud-free (valid) observations. While our framework can handle
time series with missing data, the robustness of the method in low-quality time series
is not specifically addressed in this paper.

Author Contributions: Conceptualization, A.G.-R. and C.A.; methodology, C.A., A.G.-R. and J.L.;
software, A.G.-R. and J.L.; writing—original draft preparation, A.G.-R. and J.L.; writing—review and
editing, C.A. and D.T.-R.; visualization, A.G.-R.; supervision, C.A. and D.T.-R.; project administration,
A.G.-R.; funding acquisition, C.A. and D.T.-R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by CONAHCYT grant number 1001207.

Data Availability Statement: The data presented in this study are openly available at https://github.
com/dl4sits/breizhcrops, accessed on 8 January 2025.

https://github.com/dl4sits/breizhcrops
https://github.com/dl4sits/breizhcrops


Remote Sens. 2025, 17, 378 20 of 25

Conflicts of Interest: Authors Clement Atzberger and Josué López are employed by the company
Mantle Labs. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AEs Autoencoders
ANN Artificial neural networks
AP Average precision
BOA Bottom of atmosphere
CH Calinski–Harabasz
DBI Davies–Bouldin index
DOY Day of year
DT Decision trees
FCN Fully connected network
GEE Google Earth Engine
κ Cohen’s kappa coefficient
KS Kennard–Stone
LSTM Long short-term memory
MCC Matthews’ correlation coefficient
ML Machine learning
MSE Mean square error
OA Overall accuracy
PCA Principal component analysis
RF Random forest
RL Representation learning
ROI Region of interest
RS Remote sensing
SS Silhouette score

STBT Spectral-Temporal Barlow Twin
SVM Support vector machine
TOA Top of atmosphere
UA User’s accuracy
XGBoost Extreme gradient boosting

Appendix A. Hyperparameters Random Search
The AEs’ hyperparameters were defined after an extensive random search. One hun-

dred configurations with four variable hyperparameters were launched and evaluated with
three classification and three distance metrics. The search spaces for each hyperparame-
ter were:

• Units: U{1, 16}
• Batch size rate: U[0.1, 0.3]
• Learning rate: U

[
1 × 10−3, 9 × 10−6]

• Loss: {0, 1}
where U{·} and U[·] denote uniform discrete and continuous distribution, respectively.
The final configuration reported in Table 5 was defined according to the pairwise correlation
between the hyperparameters and metrics presented in Figure A1.
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Figure A1. Hyperparameters and quality indicators correlation matrix.

Appendix B. Separability Metrics
These metrics quantify how separable a set of classes/clusters is. Silhouette score :

SS =
b − a

max(a, b)
(A1)

where a is the mean distance between a sample and all other points in the same class, and
b is the mean distance between a sample and all other points in the next nearest cluster.
The score is bounded between -1 for incorrect clustering and +1 for highly dense clustering.

Calinski–Harabasz Index

CH =

[
∑K

k=1 nk∥ck−c∥2

K−1

]
[

∑K
k=1 ∑

nk
i=1∥di−ck∥2

N−K

] (A2)

where di is the feature vector of data point i, nk is the size of the kth cluster, ck is the feature
vector of the centroid of the kth cluster, c is the feature vector of the global centroid of
the entire dataset and N is the total number of data points. The higher the score is, the
better the separation.

Davies—Bouldin Index
Rij =

si + sj

dij
(A3)

DBI =
1
k

k

∑
i=1

maxi ̸=jRij (A4)

where si is the average distance between each point of cluster i and the centroid of that
cluster, and dij is the distance between cluster centroids i and j. The score is between 0 and
∞, and the values closer to zero indicate a better separation.

Appendix C. Classification Metrics
For evaluating the predictions obtained for the FCN, we considered computing the

same metrics that the authors in [12] used for comparative purposes of this work. We
computed through of the confusion matrix the following equations:
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Given a confusion matrix M ∈ RC×C where C is the number of classes, the OA is
computed with Equation (A5):

OA =
∑C

i=1 Mii

∑C
i=1 ∑C

j=1 Mij
(A5)

From M to a class-wise confusion matrix following the approach one versus all, the pro-
ducers accuracy (PA), also known as precision, is computed by

PAc =
TPc

TPc + FPc
(A6)

where TPc is the true positive and FPc is the false positive of the class c.
Then, the average precision (AP) is computed as follows:

AP =
∑C

c=1 PAc

C
(A7)

The user’s accuracy (UAc), also known as recall, is computed as follows:

UAc =
TPc

TPc + FNc
(A8)

where TPc is the true positive and FNc is the false negative of the class c.
With Equations (A6) and (A8), we can compute the F1 score per class (F1c) using

F1c = 2
PAc × UAc

PAc + UAc
(A9)

and the weighted F1 score is computed by

F1 =
C

∑
c=1

wc × F1c (A10)

where wc = Nc
N , Nc is the number of samples in class c and N denotes the total number

of samples.
The formula for Cohen’s kappa coefficient (κ) is the probability of agreement minus

the probability of random agreement divided by one minus the probability of random
agreement.

κ =
po − pe

1 − pe
(A11)

where po is is the relative observed agreement among raters, and pe is the hypothetical
probability of chance agreement.

The multiclass Matthews’ correlation coefficient (MCC) is defined by

MCC =
cp × s − ∑C

c pc × tc√
(s2 − ∑C

c p2
c )× (s2 − ∑C

c t2
c )

(A12)

where tc = ∑C
i Mic represents the number of times that class c really happened, pc = ∑C

i Mci

denotes the number of times class c has been predicted, cp = ∑C
c Mcc indicates the number

of samples that have been correctly predicted and s = ∑C
i ∑C

j Mij is the overall number
of samples.
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