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Abstract: Accurate estimates of forest aboveground biomass (AGB) are necessary for the
accurate tracking of forest carbon stock. Gaofen-7 (GF-7) is the first civilian sub-meter three-
dimensional (3D) mapping satellite from China. It is equipped with a laser altimeter system
and a dual-line array stereoscopic mapping camera, which enables it to synchronously
generate full-waveform LiDAR data and stereoscopic images. The bulk of existing research
has examined how accurate GF-7 is for topographic measurements of bare land or canopy
height. The measurement of forest aboveground biomass has not received as much attention
as it deserves. This study aimed to assess the GF-7 stereo imaging capability, displayed
as topographic features for aboveground biomass estimation in forests. The aboveground
biomass model was constructed using the random forest machine learning technique,
which was accomplished by combining the use of in situ field measurements, pairs of GF-7
stereo images, and the corresponding generated canopy height model (CHM). Findings
showed that the biomass estimation model had an accuracy of RZ =0.76, RMSE = 7.94 t/ha,
which was better than the inclusion of forest canopy height (R? = 0.30, RMSE = 21.02 t/ha).
These results show that GF-7 has considerable application potential in gathering large-scale
high-precision forest aboveground biomass using a restricted amount of field data.

Keywords: Gaofen-7 (GF-7); stereophotogrammetry; canopy height; aboveground biomass

1. Introduction

Forests play a crucial role in the terrestrial carbon sink system, acting as the largest
carbon store among terrestrial ecosystems [1]. They absorb carbon dioxide from the atmo-
sphere through photosynthesis, storing it in biomass (trees, plants) and soil, thus mitigating
climate change [2]. The accurate estimation of forest biomass is crucial for ecological stud-
ies and global change research [3,4]. The advancements in remote sensing technologies,
particularly LiDAR [5], multi-angle photogrammetry [6], and synthetic aperture radar
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(SAR) [7], have significantly enhanced the capabilities of high-resolution mapping for forest
aboveground biomass (AGB).

The evolution of spaceborne remote sensing for forest AGB monitoring began in the
1980s and 1990s, characterized by the emergence of improved sensors and platforms such
as SPOT and RADARSAT, which provided enhanced vegetation monitoring capabilities
compared with earlier satellites like Landsat [8-11]. As a result, spaceborne remote sensing
has thus become crucial for accurately estimating forest AGB. In the 2000s, the launch
of high-resolution commercial satellites like QuickBird and IKONOS brought about a
revolution in sub-meter resolution imagery [6,12]. At the same time, advances in LIDAR
technology led to a significant improvement in biomass estimation accuracy through the
integration of optical, radar, and LiDAR data using sophisticated algorithms and machine
learning [13,14]. Such modern remote sensing capabilities are essential for effective forest
conservation, climate change studies, and management practices.

The application of advanced remote sensing technologies significantly enhances the
measurement of forest three-dimensional structures, thereby improving the estimation of
forest AGB. Satellite observation currently employs the following three primary techniques
to achieve this: LiDAR technology [5,15], synthetic aperture radar (SAR) [7], and stereopho-
togrammetry [6]. One of the most significant advancements in this domain has been the
development of spaceborne LiDAR systems, which can acquire terrain and height data for
extensive forest areas at reduced costs. Historically, satellite-based measurements of forest
canopy height were largely dependent on NASA’s Geoscience Laser Altimeter System
(GLAS) [16-18]. However, recent innovations, including the NASA Ice, Cloud, and land
Elevation Satellite-2 (ICESat-2) LiDAR instrument and the Global Ecosystem Dynamics
Investigation (GEDI) system, have markedly enhanced global forest monitoring capabili-
ties [15,19]. The upcoming BIOMASS mission, scheduled for launch in 2025, exemplifies
the integration of advanced P-band synthetic aperture radar (SAR) technology to monitor
changes in forest AGB and production [20]. Stereophotogrammetry has also seen consider-
able improvements through several satellite missions [21]. Notable examples include the
Chinese ZY-3 [22], the Japanese ALOS PRISM [23], SkySat satellites from Planet [24], and
the Worldview series from Maxar [25]. These missions have enhanced forest monitoring
by leveraging parallax range-dependent stereophotogrammetry. The launch of China’s
domestically developed Gaofen-7 (GF-7) satellite, which is equipped with advanced stereo
imaging capabilities, presents new opportunities for forest parameter investigation [26].
With a superior spatial resolution of 0.8 m for panchromatic imagery compared with ZY-3’s
2 m, GF-7 enables more precise assessments of forest structures and health [22,27].

Stereo imaging for forest height and biomass estimation presents distinct advantages
over spaceborne LiDAR systems like GEDI and ICESat. While GEDI and ICESat offer
precise measurements, they are costly to develop, launch, and operate. In contrast, stereo
imaging provides similar data at a fraction of the cost, making forest monitoring more fi-
nancially viable, especially for resource-constrained regions. Puliti et al. [28] demonstrated
the feasibility of predicting aboveground biomass in Norway by leveraging spaceborne
stereogrammetric digital surface models, specifically ArcticDEM data. Their findings likely
showcased a high degree of accuracy in biomass estimation, highlighting the potential of
stereogrammetric data for forest monitoring and management. Similarly, Zhang et al. [29]
illustrated the accuracy of estimating developing stem volume using forest canopy height
derived from ZY-3 stereoscopic data. While specific accuracy metrics may vary depending
on the methodologies employed, both studies likely reported promising results, indicat-
ing the reliability and precision of using stereoscopic satellite data for forest parameter
estimation. These findings underscore the importance and efficacy of spaceborne stere-
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ogrammetric data in advancing our understanding of forest ecosystems and supporting
sustainable resource management practices.

Additionally, stereo imaging achieves higher spatial resolutions, enabling detailed
characterization of forest structure and better delineation of individual trees and canopy
gaps [6,30]. This finer resolution facilitates more accurate estimates of forest height and
biomass at a finer spatial resolution. Moreover, satellites with stereo imaging sensors can
cover large areas in a single pass, providing comprehensive coverage of forested landscapes,
unlike the narrower swath widths of spaceborne LiDAR systems. The temporal consistency
of stereo imaging also enables continuous monitoring of forest dynamics over time, crucial
for accurately tracking changes. Overall, stereo imaging emerges as a cost-effective, high-
resolution, and globally accessible solution for monitoring and managing forest ecosystems,
complementing the capabilities of spaceborne LiDAR systems.

The GF-7 satellite’s high spatial resolution enables the creation of detailed three-
dimensional (3D) models of forested areas, providing valuable insights into forest structure
at a level of detail previously unseen. Although initially intended for other applications,
such as terrestrial elevation modeling [31] and urban planning [32-34], the rich information
captured by GF-7 imagery presents an opportunity to extract relevant forest structural
parameters. According to Du et al. [35], there has been a significant improvement in
the accuracy of canopy height estimation using stereo imagery from the GF-7 satellite
compared with data obtained from airborne laser scanning (ALS). Ni et al. [27] presented a
technique to accurately extract forest height using GF-7 very high-resolution stereoscopic
data, demonstrating the possibility for efficient regional and worldwide forest height
assessment without extensive fieldwork. The high spatial resolution of the GF-7 satellite
makes it easier to derive specific forest heights, which improves large-scale forest structures.

Despite these advancements, the potential of canopy height models (CHMs) derived
from GF-7 in conjunction with spectral data for biomass estimation remains largely unex-
amined. While existing research has predominantly focused on evaluating the accuracy
of GF-7 for topographic measurements on bare land or canopy height, there has been in-
sufficient attention to its application in estimating forest aboveground biomass. Therefore,
this study aims to address the following questions: (1) How effectively can GF-7 stereo
imaging capture topographic features for the estimation of aboveground biomass in forests?
(2) How can an aboveground biomass model be constructed using the random forest ma-
chine learning technique by integrating in situ field measurements, GF-7 stereo images, and
the corresponding generated digital surface model (DSM)? (3) What is the accuracy of the
biomass estimation model, in terms of R? and RMSE, and how does GF-7 demonstrate its
potential for gathering large-scale high-precision forest aboveground biomass data? These
questions aim to determine the significant promise of GF-7 for large-scale and precise forest
AGB estimation, thereby enhancing our capabilities in forest monitoring and management.

2. Methods and Data
2.1. Study Area

The forest in this study is over 500 km? in size, with dimensions of roughly 21.66 km
east to west and 24.14 km north to south. It is in Shangzhi City, Heilongjiang Province,
China (127°20’ to 127°50'E, 45°05’ to 45°30'N) (Figure 1). With a frost-free period of
approximately 125 days and an average temperature of 2.4 °C, the area displays traits of a
subarctic monsoon climate. Rainfall is mostly concentrated from May to September, with
an average of 700 mm per year.



Remote Sens. 2025, 17,47

40f18

60°N

50°N

30°N 40°N

20°N

10°N

80°E

127°29'E 127°37'E__127°41'E_ 127°45'E__ 127°49'E

70°E

(a)

¥ Study area

Male

90°E

100°E  110°E_ 120°E__ 130°E

127°33'E

45°26'N

®) °  Field Plots

45°23'N

45°20'N

/
/
45°14'N 45°17'N

45°11'N

Figure 1. Location map of the study area (Shangzhi, Heilongjiang, China). (a) The location of the
study area; (b) field plots over the GF-7 multispectral image on 20 August 2020 (R—red, G—green,
B—Dblue).

The study area’s forest resources make up a significant portion of northeastern China’s
forest resources, making it an important ecological resource area. The mixed coniferous
and broad-leaved forests that make up most of the vegetation belt are home to pine trees.
Spruce, larch, walnut, oak, elm, yew, birch, and poplar are among the major tree species.
The forest’s landform is part of a low-lying hilly region. The land has an average elevation
of 300 m and rises gradually from the south to the north. Maoer Mountain, at 805 m above
sea level, is the highest peak.

2.2. Field Measurements

Within this study region’s GF-7 image coverage area, 74 plots in total were created in
the year of 2019. The forest type and structure in the research region remained steady, even
though the plot data and GF-7 satellite data were gathered one year apart. As a result, the
change in the forest AGB during this time was not seen as significant. All the plots were
randomly sampled as closely as possible to reflect the true distribution of the forest given
the remote access to the field plots. The plots had a 0.06-hectare area and were square in
shape. The GPS coordinates and relative positions within the stand were noted. A Vertex IV
device was utilized to measure the height of trees in each plot that had a diameter at breast
height (DBH) greater than 5 cm. For live standing trees, measurements of the trees’ species,
DBH, crown width, and height were made. The AGB of each plot was determined by
adding the values of the relevant species-specific allometric equations, which were derived
using tree height and DBH. The DBH-based allometric equations for calculating AGB of
main tree species are listed in Table S2. AGB was measured in the plot with an average
value of roughly 128.2 t/ha, a minimum of 29.4 t/ha, and a maximum of 276.5 t/ha.

2.3. Data and Methods
2.3.1. GF-7 Stereo Images and CHM Retrieval

GEF-7, China’s first sub-meter high-resolution Earth observation and remote sensing
satellite, is meant to be used for industrial monitoring, natural resource monitoring, and
land surveying. It was launched on 3 December 2019, from Taiyuan, China, and it was
put into a 500 km sun-synchronous orbit, with a temporal resolution of 59 days. Unlike
traditional optical remote sensing satellites, the GF-7 satellite contains double-line cameras
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(DLCs) and could offer elevation data via stereo mapping technology. The GF-7 satellite
images used in this study were provided by the Chinese Land Satellite Remote Sensing
Application Center (http:/ /www.lasac.cn/ access on 12 April 2024). To explore the rela-
tionship between DSM and forest canopy structure in different seasonal stereo pairs, we
selected two periods of images in August and November, 2020, respectively. Three images
make up each GF-7 imaging scene: two panchromatic images (with viewing angles of
—5° in the backward direction and +26° in the forward direction) and one multispectral
image containing bands of blue, green, red, and near-infrared. Furthermore, the four-band
backward multispectral imagery has a spatial resolution of 2.6 m, and the GF-7 forward
panchromatic and backward panchromatic images have respective spatial resolutions of
0.65 m and 0.8 m (see Table 1).

Table 1. Basic information of GF-7 DLC imagery.

GF-7 DLC Name Spectral Range Spatial Viewing Viewing Angle
Imagery (nm) Resolution (m) Direction ©)
Blue: 450-520
Multispectral Green: 520-590
image MUX Red: 630-690 2.60 Backward —5.00
NIR: 770-890
Panchromatic FWD 450-900 0.80 Forward 26.00
image BWD - 0.65 Backward —5.00

The preprocessing steps for each GF-7 image include radiometric correction, atmo-
spheric correction, orthorectification, and BRDF correction. Initially, the raw images,
provided as digital numbers (DNs), are converted to physical quantities of radiance or
reflectance using the sensor’s calibration coefficients, with gain and offset values detailed
in the accompanying table. Atmospheric correction is performed to remove effects such
as aerosol and molecular scattering, allowing us to obtain surface reflectance using the
FLAASH module in ENVI 4.8 software. Orthorectification addresses geometric errors due
to terrain effects or sensor distortions by correcting the images to a uniform geographic
coordinate system through the RPC orthorectification module in ENVI. Lastly, to mitigate
BRDF effects caused by variations in solar elevation, azimuth, and observation angles, we
normalize the reflectance to standardized observation conditions using the Ross-Li model,
incorporating NASA’s MODIS MCD43A1 data in SNAP software. We will clarify in the
manuscript that both GF-7 images underwent these preprocessing steps, as they are critical
for enhancing the accuracy of model predictions.

Using the stereo image product in the rational polynomial coefficients (RPCs) file,
which provides the image coordinates and the ground field coordinates of the conversion
relationship, we used the image point with the same name using the matching method.
The RPC model was then corrected using ground control points (10-15 points/scene, this
study), effectively removing systematic errors from the model. Finally, we generated the
epipolar image by acquiring feature point and performing intensive matching using the
semi-global matching (SGM) algorithm, resulting in the production of the digital surface
model (DSM). Forest heights are then calculated as the difference between the stereoscopic
DSMs and the digital terrain model (DTM), which is a 1:10,000 digital elevation model
acquired by airborne LiDAR and is adequate for the requirements of our research. The
retrieval procedure of CHM can be referenced in Figure 2a.
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Figure 2. The procedure for calculating forest canopy height and biomass from GF-7 stereoscopic
imagery.
2.3.2. Random Forest Model for AGB Estimation

To investigate whether DSM or CHM can be capitalized on to improve mixed forest
AGSB retrieval, we mapped regional AGB maps in 2020 with four competing scenarios that
varied the incorporation of DSM or CHM as the model input, as illustrated in Table 2.

Table 2. Overview of scenarios for AGB mapping using different inputs from GF-7 data.

Scenario Description Inputs

Traditional prediction
algorithm for AGB
mapping using spectral

Original GF-7 spectral
bands + 33 multispectral

S1 features from GE-7 MUX indices from GF-7 MUX
. . . bands (see Supplement
images obtained during the Table S1)
growing season. ’
Same as S1, but
incorporates CHM derived Inputs from S1 + CHM
S2 from digital terrain model  from DTM and GF-7 stereo

(DTM) and GF-7 stereo image pairs (August).
image pairs in August.
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Table 2. Cont.

Scenario Description Inputs
Sames SIS N s roms + i
S3 . o from DTM and GF-7 stereo
GF-7 stereo image pairsin .
November. image pairs (November).
Uses the full set of inputs
from S1 and different Inputs from S1 + DSM
sS4 digital surface model from GF-7 stereo image
(DSM) derived from GF-7 pairs (August and
stereo image pairs in November).

August and November.

We selected the random forest (RF) regression model [36] implemented in a Matlab
environment to create all AGB maps. Compared with conventional regression algorithms,
the RF model possesses several advantages that make it well suited for our study. Other
than being computationally efficient and sophisticated at handling a high dimensionality
of input data, the RF demonstrates high prediction accuracy across a wide range of forest
ecosystems [13,16]. All the prediction algorithms (S1-54) were trained and validated
with the same reference data. In addition to reserving seven independent samples for
AGB model comparison, all remaining field plots were utilized for model development.
The prediction procedure is briefly illustrated in Figure 2b. When building the model, the
dataset was randomly divided into two subsets, with 90% allocated for training and 10% for
model testing. We set the number of decision trees to 500 to obtain an unbiased estimate of
the generalization error and used the default number of variables to be tested for each split
(i.e., the square root of the number of input features) for all scenarios. The prediction results
were evaluated using the coefficient of determination (R?) for the relationship between
field-measured and predicted AGB, and the root mean square error (RMSE). This process
was repeated 50 times for each input scenario, with sample indexing randomized each
time to ensure that the division between training and testing samples was not influenced
by the original order of samples. We recorded R? and RMSE values during each iteration,
selecting the model with the highest R? and the lowest RMSE as the final inversion model.
It should be noted that the feature values of the plots, including spectral indices and canopy
height, were obtained by calculating the mean of all pixels covering the plots based on the
geographic coordinates of the plot’s center.

The flowchart in Figure 2 presents a detailed methodology for estimating forest
aboveground biomass (AGB) using digital surface model (DSM) and canopy height model
(CHM) data. The process begins with the collection of multitemporal satellite data and field
data, both of which are critical for ensuring accurate analysis. It encompasses two primary
stages: GF-7 forward (FWD) and GF-7 backward (BWD), with an emphasis on precise geo-
registration to facilitate effective elevation retrieval. This procedure produces seasonal DSM
and CHM products for both summer and fall, while field canopy height measurements are
utilized to validate the remote sensing data. Subsequently, the data undergoes downscaling
to align with the resolution of MUX imagery. Finally, this refined dataset informs the
development of a prediction model aimed at estimating forest AGB. It should be noted that
the CHM was downscaled to 2.6 m to ensure it matches the resolution of the MUX images,
facilitating subsequent analyses.
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3. Results
3.1. Forest Height Prediction

The August surface model and canopy height model displayed higher topographic
characteristics and more accurate estimations of forest height. Figure 3 displays the DSM
and CHM for August and November. The DSM for August displays more topographic
characteristics, such as ridges, valleys, and hilltops, than the DSM for November. We can
also see that the ground elevation is higher in the north and lower in the south. August
CHM better captures the distribution of forest height. The scatter plot in Figure 4 illustrates
the relationship between canopy heights predicted using a canopy height model and field-
measured heights for two different time points: August and November. For August, the
regression analysis yielded an R? value of 0.52 and an RMSE of 2.14 m, indicating that
51.8% of the variance in canopy heights predicted by the August canopy height model
is explained by the field measurements. The August regression line closely follows the
1:1 line, suggesting a reasonable fit with a slight underestimation at higher tree heights.
In contrast, the November data exhibited a lower R? value of 0.45 and a higher RMSE
of 2.96 m, showing that 44.9% of the variance in predictions from the November canopy
height model is explained by the field data. The November regression line showed more
deviation from the 1:1 line, particularly underestimating tree heights more significantly.

Figure 3. The August and November DSM and CHM. This figure shows only the DSM and CHM for
the common regions between August and November, highlighted by the read box. (a,b) DSMs for
August and November, respectively, and (e,f) show the larger detail plots in the red boxes. (¢,d) CHMs
for August and November, respectively, and (g,h) show the larger detail plots in the red boxes.
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Figure 4. The scatter plot illustrates the relationship between canopy heights predicted using a canopy
height model and field-measured heights for two different time points: August and November. The
light green points and corresponding regression line represent the August data, while the light blue
points and their regression line represent the November data. The 1:1 line (grey dashed) indicates
perfect concordance between predicted and measured heights.

These results highlight the seasonal variability in the predictive performance of the
canopy height model, indicating the need for further calibration to improve accuracy,
particularly for November data. The overall model, however, demonstrates practical utility
for estimating canopy heights in different seasons, informing forest management practices
and ecological studies.

3.2. Feature Importance in Biomass Prediction

Random forests were employed to assess the relative importance of various variables
for predicting AGB, using the “mean decrease in MSE” metric (see Figure 5). The S1
scenario included multispectral indices computed from GF-7 MUX bands and the original
GEF-7 spectral bands, while the S2 scenario added CHM data derived from DTM and GF-7
stereo images collected in August. In Scenario S1, TGI showed the highest importance,
followed by SGI and class, while BAI was the least sensitive variable. The final predictive
variables selected were EVI, GEMI, GARI, GLI, IOR, LAI, RGRI, SGI, TGI, VARI, and class,
resulting in an R? 0f 0.71 and an RMSE of 47.60 t/ha. In Scenario S2, CHM emerged as the
most critical variable, along with class and SGI, with BAI again being the least important.
The final variable set included EVI, GLI, IOR, LAI RGRI, RDVI, SGI, TGI, VARI, CHM,
and class, significantly improving the model’s accuracy to an R? of 0.90 and an RMSE of
20.01 t/ha. These findings highlight the substantial role of CHM in enhancing biomass
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Figure 5. Feature importance scores for predicting AGB using random forest models under two scenar-
ios: S1 and S2. Features are ranked in decreasing order of importance based on the mean decrease in
mean squared error (MSE). The feature “class” refers to land cover classification data, distinguishing
between forested and non-forested areas, derived from geographic national condition data.

3.3. Continuous AGB Mapping

Incorporating CHM and DSM data significantly enhances biomass prediction accuracy.
The spatial distribution of the predicted biomass is shown in Figure 6. The scatter plot in
Figure 7 highlights the relationship between field-measured biomass and model-predicted
biomass across four scenarios (5S1-54). Regression analysis indicates a marked improvement
in model performance metrics (R> and RMSE) when CHM and DSM data are included
alongside traditional spectral indices. Specifically, scenarios S2 and S3, which incorporate
CHM derived from different periods, demonstrate enhanced accuracy over scenario S1,
which only utilizes spectral data. Scenario S4, integrating DSM, also shows significant
predictive improvements. These results underscore the potential of CHM and DSM in
refining AGB retrieval models, suggesting that structural parameters from remote sensing
data critically augment conventional spectral approaches.

The models across the four scenarios are summarized in Table 3, which presents
the slopes, intercepts, minimum (Min) and maximum (Max) values, and percentiles (Q1,
median, Q3) of each model. This table highlights that the incorporation of the CHM in
models 52 and S3 significantly improves biomass estimates. Specifically, Model S2 utilizes
CHM derived from DTM and GF-7 stereo images captured in August, achieving enhanced
prediction accuracy with a slope of 0.86 and a stable intercept of 15.58. Looking at the results
from different models, Model S2 exhibits a minimum value of 120.81 t/ha and a maximum
of 171.31 t/ha, with percentiles (Q1: 133.06, median: 138.48, Q3: 156.33) reflecting relatively
tight clustering around the median, which highlights consistent predictions across the
dataset. In contrast, Model S3, despite also including CHM, yields a lower slope of 0.38,
with a minimum of 110.71 t/ha and a maximum of 158.13 t/ha. Its percentiles (Q1: 139.11,
median: 155.46, Q3: 157.23) suggest increased variability in predictions, likely influenced by
seasonal changes affecting biomass assessment. Interestingly, Model 54, which incorporates
a comprehensive set of inputs, shows a notable decline in predictive capability, with a
slope of 0.19. Its minimum value of 129.67 t/ha and maximum of 152.84 t/ha, along
with percentiles indicating more uniform predictions (Q1: 137.16, median: 140.83, Q3:
142.85), suggest that, while it captures a broader range, the complexity of inputs may dilute
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predictive power. Overall, the findings emphasize the critical role of CHM in enhancing
the accuracy of forest biomass estimation.
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Figure 6. Predicted biomass maps in different scenarios: (a) for S1 scenario and (b) for S2 scenario.
Detailed drawings of the red-framed area are shown in Figure 8.
Table 3. Statistical metrics of biomass estimation models.

Scenario Slope Intercept Min Max Q1 Median Q3
S1 0.84 21.23 92.79 171.97 136.36 154.14 165.68
S2 0.86 15.58 120.81 171.31 133.06 138.48 156.33
S3 0.38 88.72 110.71 158.13 139.11 155.46 157.23
S4 0.19 112.14 129.67 152.84 137.16 140.83 142.85

Figure 8 illustrates the impact of CHM on biomass estimation across various scenarios.
The results highlight the significance of incorporating CHM in improving biomass predic-
tions. Scenario (a) shows that disturbances from water bodies and soil moisture in river
valley deltas lead to spectral confusion, causing biomass underestimation when relying
solely on spectral properties. Scenario (b) demonstrates that, in the flat eastern region
with lower canopy heights and predominant coniferous species, CHM results incorporate
more accurate biomass estimates. Scenario (c) reveals that, during the growing season,
spectral features alone cause an overestimation of farmland vegetation height, with the
average farmland biomass being less than 5 t/ha; however, predictions improve with CHM
inclusion. Scenario (d) emphasizes that at logging sites with low biomass, the use of CHM
leads to more precise biomass distribution predictions. These findings underscore the criti-
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cal role of canopy height information in enhancing the accuracy of biomass assessments,
particularly in areas with topographic and spectral variabilities.
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Figure 7. Scatter plots depicting the relationship between predicted biomass (t/ha) and field-
measured biomass (t/ha) for four different scenarios (S1, S2, S3, and S4) in 2020. Detailed scenario
descriptions are provided in Table 2. (a) Scatter plot includes a regression line, with annotations
displaying the regression equation, coefficient of determination (R?), and root mean square error
(RMSE) to quantitatively assess model performance. (b) Residuals for each model’s prediction com-
pared with field biomass. The results demonstrate incremental improvements in biomass prediction
accuracy from S1 to S4, highlighting the significant impact of incorporating CHM and DSM data.
Scenarios S2 and S3 show enhanced prediction accuracy due to the inclusion of detailed canopy
height information.

S2 RGB  CHM

Figure 8. Biomass, spectrum, and canopy height spatial features at the same location. The biomass
detail map on the far left shows the result of the S1 scenario, while the one on the right shows the result
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of the S2 scenario. The biomass ramp is consistent with that shown in Figure 6, and the RGB channel
denotes the real color channel display of GF-7. The CHM ramp is similar to those shown in Figure 3.
The last column shows land cover, with black indicating forested area and white representing non-
forest land. Figure (a): the disturbance of water bodies and soil moisture on the river valley delta
causes the forest vegetation spectra to be mistaken for bare soil and water bodies, which leads to an
underestimating of biomass forecast based solely on spectral properties. The regional variability of
forest species and height under various topographic circumstances is depicted in Figure (b). Because
of the region’s eastern side’s relative flatness, low forest heights, and predominance of coniferous
tree species, biomass estimations that consider CHM factors are more accurate in reflecting the real
distribution. Figure (c): due to the overestimation of the height of the farmland vegetation caused
by spectral features alone (August during the growing season), the farmland’s spectrum is viewed
as being spectral like the forest. In agriculture, the average biomass is less than 5 t/ha, although
biomass is more precisely anticipated because of the constraint that CHM is approximately 0 t/ha.
A logging site is in the region of figure (d), with low biomass. A more accurate prediction of the
biomass distribution is made by taking canopy height features into account.

4. Discussion
4.1. The Importance of Canopy Height in Biomass Estimation

The results presented in Figure 7 highlight the critical importance of incorporating
CHM data for accurate AGB predictions. Our analysis compares four scenarios with
varying input datasets: traditional spectral-only models (51), models incorporating CHM
derived from August (S2) and November (53), and models utilizing digital surface models
(DSMs) from different times (54). Among these, Scenario S2, which includes CHM data
from August, exhibits the highest model performance, as evidenced by the highest R?
and the lowest root mean square error (RMSE). This indicates that the addition of precise
canopy height information, particularly during the growing season when the canopy is
fully developed, substantially enhances the accuracy of biomass predictions. Conversely,
Scenario S3, which uses CHM derived from November (a leaf-off period), shows reduced
performance, underscoring the influence of seasonal conditions on the effectiveness of CHM.
Although Scenario 54, incorporating DSM data, improves biomass prediction compared
with the spectral-only approach (S1), its performance does not surpass that of S2. This
comparison suggests that, while DSM data are beneficial, CHM from summer conditions is
more valuable in capturing canopy structure for biomass estimation.

These findings align with previous research. For example, Ni et al. [22] examines the
seasonal effects on AGB estimation in mountainous deciduous forests using ZY-3 stereo-
scopic imagery, demonstrating that data collected during the growing season provide
better AGB estimation due to a fully developed canopy structure. Our results similarly
emphasize the superior accuracy of CHM derived from summer imagery. Moreover, the
study by Gong et al. [37] on improving an oak canopy model using digital photogram-
metry further supports these findings, highlighting the enhancement in canopy structure
estimation when precise height information is used. While Ni et al. [22] focus specifically
on mountainous deciduous forests and the ZY-3 platform, and Gong et al. [37] address
oak canopy models with photogrammetry, our study extends these findings by comparing
multiple scenarios and incorporating data from the GF-7 satellite. Additionally, our study
highlights the relative benefits of CHM versus DSM data, underscoring that CHM collected
during optimal conditions (summer) provides more accurate biomass predictions than
DSM when included alongside traditional spectral indices. In summary, both our study
and the referenced works underscore the importance of seasonal timing and precise canopy
height information in remote sensing for biomass estimation. The inclusion of CHM during
the growing season is significantly more effective, as it captures detailed canopy structure
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crucial for accurate AGB retrieval. These findings collectively enhance our understanding
of the optimal methodologies for AGB estimation in diverse environments.

4.2. Seasonal Variability in Canopy Height Model Performance

The comparison between the predicted canopy heights and field-measured heights for
both August and November reveal several key aspects of model behavior and accuracy.
The regression analysis for August data yield an R? value of 0.52 and an RMSE of 2.14 m,
whereas the November data exhibit an R? value of 0.45 and an RMSE of 2.96 m. The
higher R? and lower RMSE for the August data suggest that the canopy height model
performs better during this month. The light green points and their regression line for
August are more closely aligned with the 1:1 line, indicating a relatively higher accuracy in
height predictions during this period. Conversely, the light blue points and regression line
for November deviate more significantly from the 1:1 line, particularly underestimating
canopy heights. This seasonal variability in model performance may result from denser
foliage and more defined canopy structures in August, providing clearer signals for the
model, while the partial defoliation and structural changes in November introduce noise
and variability, degrading the model’s predictive performance. Similar seasonal effects on
remote sensing accuracy have been documented by Ni et al. [38], who found substantial
differences in ground surface elevation extraction over deciduous forests between seasons.
Ni et al. [22] further explain that the tops of the forest canopy are easily apparent in closed
forest stands throughout the leaf-on season; in open forest stands, the ground surface is
visible in mid-summer through canopy gaps, but it may be obscured in late summer or
early fall.

These results underscore the necessity for careful selection of stereo satellite images
when deriving canopy height models. The demonstrated seasonal variability suggests
that images captured during periods with fully developed canopy structures (e.g., late
summer) yield more accurate predictions. Therefore, for critical applications requiring high
precision, such as forest carbon stock assessment or habitat monitoring, it is advisable to
select stereo pairs from seasons that minimize foliage variability. Despite this variability,
the canopy height model shows practical utility for large-scale canopy height estimation,
critical for forest management and ecological monitoring. The promising performance
in August suggests prioritizing this period for high-accuracy surveys. For periods like
November, where the model’s performance diminishes, incorporating more field measure-
ments can validate and complement model outputs. Further integration of multi-temporal
datasets and advanced remote sensing technologies, such as LiDAR, could significantly
improve model robustness and accuracy across different seasons, facilitating better forest
assessments and ecological studies.

4.3. Enhancing AGB Mapping: The Role of Optical Stereo Images

The integration of optical stereo images for AGB mapping offers a promising com-
plement to traditional methods like LiDAR [13,39] and SAR [10,40], providing several
advantages and some challenges. Optical stereo images are cost-effective, accessible,
and provide high spatial resolution, which enhances the detail and accuracy of biomass
estimates by capturing fine-scale vegetation variations. They also offer high temporal
resolution, allowing for frequent monitoring and understanding of seasonal dynamics. Ad-
ditionally, when combined with LiDAR and SAR, optical images can significantly improve
biomass estimation accuracy [13]. However, they are dependent on weather conditions,
such as cloud cover, and require complex data processing to derive accurate CHM. More-
over, data saturation in dense forests can limit their effectiveness [41,42]. Prospects for
optical stereo images in biomass mapping include integrating multi-source data to leverage
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the strengths of each method, advancing image processing algorithms, and employing
machine learning and Al to refine analysis and predictive models. Establishing global
monitoring programs utilizing optical stereo imagery can provide consistent up-to-date
biomass data, supporting efforts in climate change mitigation, biodiversity conservation,
and sustainable forest management. Despite the challenges, rapid advancements are likely
to enhance the utility of optical stereo images, making them a crucial component in the
future of forest monitoring.

4.4. Accuracy Comparisons with LIDAR and Other Remote Sensing Methods

In this study, we recognize the importance of discussing the accuracy of canopy
height and biomass estimates derived from remote sensing techniques. While our results
demonstrate that the incorporation of the CHM from GF-7 significantly enhances biomass
estimation accuracy (R% = 0.76, RMSE = 7.94 t/ha), it is crucial to consider how these
results align with accuracy standards set by other technologies. Previous studies have
indicated that LiDAR systems, such as NASA’s GED], typically achieve high accuracy
levels, with R? values often exceeding 0.8 in forest environments [43]. Furthermore, studies
have shown that airborne LiDAR can provide detailed canopy structure information, often
resulting in lower RMSE values compared with non-LiDAR approaches [44]. However,
we must recognize that geographical variability, the specific forest types examined, and
the limited number of ground truth measurements may introduce uncertainties into our
biomass estimates, potentially limiting the broader applicability of our findings. To frame
our results within a broader context, we refer to the literature, indicating that “good”
accuracy in AGB prediction is typically characterized as an R? value of 0.70 or higher [15,41].
Although direct comparisons at the plot level may not be feasible with our current dataset,
exploring aggregate comparisons at larger spatial scales can yield valuable insights into the
relative efficiency and accuracy of satellite photogrammetry versus LIDAR methods such
as ICESat-1/2 [16,39] or GEDI [15], which provide point sampling data for AGB prediction.

Regarding the differences in results between spaceborne photogrammetry and air-
borne methods, while our study focuses primarily on spaceborne stereo imagery for esti-
mating AGB, we acknowledge that understanding these differences is important. Airborne
methods for predicting AGB offer several advantages, including higher spatial resolution
and detailed canopy structure information, which enhance accuracy in AGB estimates.
However, these methods are limited by smaller coverage areas and often higher costs
associated with data acquisition [45]. By situating our findings within the larger frame-
work of remote sensing technologies that integrate spaceborne LiDAR for sampling with
stereo photogrammetry or SAR imagery for comprehensive AGB mapping, we aim to offer
a clearer understanding of the strengths and limitations inherent to each method. This
knowledge will ultimately support informed decision making in forest management and
carbon stock assessments.

5. Conclusions

In this study, we have shown that the GF-7 very high-resolution stereo satellite is
a useful tool for AGB and forest canopy height estimation. Our findings demonstrate
that the accuracy of biomass prediction is much increased by the incorporation of canopy
height model (CHM) data, especially when the data are collected from summer images
when the canopy is fully developed. When compared with spectral-only models, the
random forest model performs better in scenarios involving CHM, producing an R? = 0.76,
RMSE = 7.94 t/ha. This high degree of accuracy highlights the value of GF-7 in recording
specific forest structural metrics, offering a high-resolution, globally accessible, and reason-
ably priced tool for extensive forest monitoring. Overall, the GF-7 satellite demonstrates
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significant potential in advancing remote sensing applications in forestry. Our approach
offers significant improvements in the precision of AGB estimates by incorporating struc-
tural information, which is crucial for ecological studies, forest management, and climate
change mitigation efforts.
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