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Abstract: Buildings, as key factors influencing population distribution, have various functional at-
tributes. Existing research mainly focuses on the relationship between land functions and popula-
tion distribution at the macro scale, while neglecting the finer-grained, micro-scale impact of build-
ing functionality on population distribution. To address this issue, this study integrates multi-
source geospatial and spatio-temporal big data and employs the XGBoost algorithm to classify 
buildings into five functional categories: residential, commercial, industrial, public service, and 
landscape. The proposed model innovatively incorporates texture, geometric, and temporal features 
of building images, as well as socio-economic characteristics extracted using the distance decay al-
gorithm. The results yield the following conclusions: (1) The proposed method achieves an overall 
classification accuracy of 0.77, which is 0.12 higher than that of the random forest-based approach. 
(2) The introduction of time features and the distance decay method further improved the model 
performance, increasing the accuracy by 0.04 and 0.03, respectively. (3) The correlation between the 
building functions and population distribution varies significantly across different scales. At the 
district and county levels, residential, commercial, and industrial buildings show a strong correla-
tion with population distribution, whereas this correlation is relatively weak at the street scale. This 
study advances the understanding of building functions and their role in shaping population dis-
tribution, providing a robust framework for urban planning and population modeling. 

Keywords: functional classification of buildings; XGBoost model; multi-source geospatial and  
spatio-temporal big data; Pearson coefficient; distance decay function 
 

1. Introduction 
As the fundamental building blocks of urban life, buildings serve a multitude of func-

tional purposes, including providing spaces for residence, work, education, healthcare, 
and entertainment. The functional attributes of buildings not only directly reflect the spa-
tial organization and utilization of urban areas, but also exert a profound influence on 
population distribution patterns [1,2]. In the field of demography, building data serve as 
a foundation for the spatialization of population data, which is frequently utilized as a 
pivotal element in understanding population distribution [3]. It has been demonstrated 
that the multidimensional characteristics of buildings, including the patch size, area 
weight, and number of floors, can provide an effective reflection of population distribu-
tion patterns [4]. A comprehensive investigation of the interrelationship between building 
functions and population distribution is essential for achieving the more precise spatiali-
zation of population data. 

At the macro scale, current studies have demonstrated a significant correlation be-
tween population distribution and land use types. For instance, Liao Shunbao and Li 
Zehui discovered through regression analysis that population density is most closely 
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correlated with arable land, settlements, and industrial and mining land [5]. With regard 
to individual buildings, there is a consensus among scholars that the population distribu-
tion is predominantly concentrated in residential buildings, which are subdivided into 
residential and non-residential categories. These are then combined with census data to 
achieve a fine-grained mapping of the population distribution [6]. Furthermore, some 
studies have analyzed the impact of the building type on population distribution by clas-
sifying residential building types (e.g., villa, ordinary residence, dense residence, etc.) [7]. 
The majority of existing studies have concentrated on the analysis of site types and resi-
dential buildings, with comparatively limited attention devoted to the nuanced impact of 
different building types on population distribution. Furthermore, the increasing trend of 
mixing urban functions makes it challenging to provide a comprehensive reflection of 
population distribution characteristics by focusing solely on the classification of tradi-
tional residential buildings and sites. It is therefore imperative to refine the classification 
of building functions and explore its deeper impact on population distribution [8]. 

The construction of a functional classification system is of paramount importance in 
the realms of urban planning, the distribution of resources, and the management of dis-
asters. The correct functional classification of buildings can facilitate a more accurate de-
lineation of urban functional areas, thereby supporting more effective decision-making in 
urban development, the spatialization of populations, and the optimization of resources. 
However, the majority of extant methodologies for building functional classification are 
predicated on traditional ground surveys or expert experience, which are ineffectual and 
exorbitant in the context of voluminous data, thereby impeding adaptation to the acceler-
ated urbanization of modern cities [9]. 

The initial studies concentrated on the depiction of urban functional areas and land 
use patterns. This focus was primarily due to the small and fine-grained nature of building 
patches, which presented significant challenges in the extraction of relevant building ele-
ments. In the early stages of research, land use was classified by comparing the spectral, 
spatial, and radiometric features of remotely sensed images [10,11]. In recent years, re-
search on the identification of urban functional areas has become a prominent area of in-
terest within the academic community. For instance, Li et al. put forth a novel framework 
for classifying urban functional zones, integrating urban morphological characteristics 
and surface temperature features [12]. Liu et al. employed a multi-feature approach, uti-
lizing building footprints, POI (points of interest) data, and remotely sensed images, to 
classify urban functional zones based on the random forest model [13]. 

The advent of remote sensing technology, GIS, and artificial intelligence has led to a 
surge of interest in the study of building function classification [14]. In recent years, re-
searchers have increasingly attempted to integrate multiple data sources and employ ma-
chine learning techniques for the purpose of building function classification. For example, 
the automated classification of building functions based on a random forest model has been 
attempted using building contour data, POI data, and remote sensing image features [1,15]. 
Similarly, the use of large-scale social media image data to determine building functions has 
also been considered [9]. Nevertheless, although existing studies have provided effective 
classification ideas, these methods often suffer from semantic gap problems and remain lim-
ited in terms of feature extraction and model accuracy. For instance, conventional POI fea-
ture extraction techniques frequently prove inadequate for the nuanced characterization of 
building functionality. Moreover, the existing, incomplete set of building features remains 
insufficient for the comprehensive identification of building functions. 

As a typical socio-perceptual dataset, POIs provide information on the specific use of 
a given building or area, effectively addressing the issue of a semantic gap in remote sens-
ing imagery [16]. Nevertheless, POIs, as a category of abstract points, are not an effective 
means of characterizing the functional type of each building. The distance decay model is 
a tool used in geography to describe the impact of cultural and spatial interactions be-
tween places. It is commonly employed to analyze accessibility to pedestrian intensity and 
public service facilities [17,18]. The same types of POIs tend to show aggregation effects 
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in a region. Integrating the effects of distance attenuation of these POIs allows for a more 
comprehensive assessment of the overall service function of a building in a region. This 
approach effectively quantifies the characteristics of the impact of POI data on the func-
tional classification of a building and provides more effective information for the func-
tional classification of a building. Furthermore, temporal features can be employed to re-
flect the characteristics of different buildings at varying times of the day, thereby reflecting 
their respective functions. As a significant source of temporal feature data, nighttime light-
ing provides a foundation for investigating urban vitality and the spatialization of a pop-
ulation [19,20]. The incorporation of temporal features and distance decay models into the 
building function classification model serves to enhance its accuracy and robustness, 
thereby providing a more comprehensive basis for analysis. 

XGBoost (eXtreme Gradient Boosting) is an efficient machine learning model based 
on the gradient boosting algorithm, which is widely used in classification and regression 
problems [21]. The model’s parallel computation, regularization, and automatic handling 
of missing data enable it to perform well when dealing with complex data [22,23]. In con-
trast, random forest is relatively slow in processing large-scale data, while models such as 
support vector machines (SVM) and neural networks (NN) are more complex in terms of 
parameterization, and less explanatory [24,25]. In recent years, XGBoost has been success-
fully applied to a number of fields, including remote sensing data analysis and urban 
functional area classification. For instance, the deployment of XGBoost for urban func-
tional identification not only enhances the classification accuracy but also markedly opti-
mizes the time efficiency [26]. Furthermore, XGBoost incorporates a feature importance 
analysis function, which is capable of automatically calculating the influence of each fea-
ture in the decision-making process. This is of particular importance for the interpretabil-
ity of the classification problem. In conclusion, XGBoost represents an optimal solution 
for large-scale building feature classification, offering superior computational efficiency, 
prediction accuracy, and interpretability. 

This study proposes an innovative building function classification method based on 
the XGBoost model, integrating multi-source geospatial and spatio-temporal big data. It 
employs a feature extraction method that thoroughly mines the semantic information of 
points of interest (POIs) and incorporates temporal features into the building function 
classification framework. The aim of this approach is to achieve higher accuracy in build-
ing function recognition. This study introduces two significant innovations. Firstly, based 
on the XGBoost model, the integration of multi-dimensional features—including building 
profiles, POI characteristics, image textures, and temporal features—enhances the model’s 
overall classification accuracy by 12 percentage points. Secondly, it is the first study to 
analyze the correlation between building functions and population distribution at both 
district and street scales, revealing the differentiated mechanisms through which building 
functions influence population distribution across various scales. By addressing the exist-
ing gap in understanding the relationship between building functions and population dis-
tribution, this research provides a robust scientific foundation and technical support for 
the automated identification of building functions, precise urban planning, and optimized 
resource allocation. These outcomes will have a positive impact on the future manage-
ment of intelligent cities. 

2. Research Methods 
In this study, we utilize multiple datasets, including remotely sensed imagery, POI 

data, building contours, and nighttime lighting data, to extract features relevant to the 
functional classification of buildings. The process began with preprocessing each dataset 
to extract key features. Building texture information was derived from remote sensing 
imagery, while POI data was analyzed using a distance decay function to capture socio-
economic characteristics. Building footprints were used to extract the morphology of each 
building, and nighttime lighting data was downscaled to reflect the nighttime vigor of the 
buildings in the area. These features were then combined into a composite feature vector 
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for each building, which was used as input to an XGBoost classifier to predict the func-
tional type of the building. The classification accuracy was assessed through accuracy met-
rics and F1 scores. Subsequently, Pearson’s correlation coefficient was used to investigate 
the relationship between the distribution of various functional buildings and the popula-
tion at different spatial scales, particularly at the district, county, and street level. The tech-
nical methodology of this study is shown in Figure 1. 

 
Figure 1. Technical roadmap for analyzing building function and population distribution. 
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2.1. Functional Definition 
To ensure the precision and uniformity of the analytical outcomes, this study incor-

porated building footprint data and defined a singular building patch as the fundamental 
unit of analysis. The study area was be categorized into five types: residential, commercial, 
industrial, public service, and landscape buildings. 

2.2. Feature Extraction 
To fully explore the information contained within the data, this study integrated data 

from multiple sources. In addition to the commonly used socio-economic features and 
building profile features, image texture features and temporal features were included to 
comprehensively characterize the functional attributes of buildings and improve the clas-
sification accuracy and refinement. The image texture features reflect the spectral and 
structural information of the building surface, while the socio-economic features account 
for the economic activities and population distribution within the region. The building 
profile features describe the geometric shape and spatial layout of the buildings, and the 
temporal features capture the various states of the buildings at night. The integration of 
these multidimensional features provides a more comprehensive foundation for identify-
ing building functions and enhances the model’s classification efficacy. 

2.2.1. Image Texture Feature Extraction 
High-precision remote sensing images provide accurate representations of urban 

land use. As demonstrated by prior research [27], spectral, textural, and spatial features 
are extensively utilized in the fields of land use classification, building roof identification, 
and building extraction. In this study, image texture features were introduced to recognize 
building functions. This approach effectively captures the surface structure and material 
properties of buildings, which is crucial for distinguishing between different types of 
buildings (e.g., residential, industrial, commercial, etc.). 

Texture features were derived from the gray-level co-occurrence matrix (GLCM) [28], 
a statistical model that represents the spatial relationships between pixel gray levels 
within an image. By calculating the joint distribution of pixel pairs over defined directions 
and distances, the GLCM captures essential spatial characteristics of the image’s texture, 
allowing for a more nuanced analysis of structural patterns. 

In this study, the advantages of various indices for characterizing building surface 
properties were leveraged to extract texture features from high-resolution remote sensing 
images. The selected texture features include the contrast, similarity, homogeneity, angu-
lar second moment, energy, maximum probability, entropy, GLCM mean, GLCM vari-
ance, and GLCM correlation—totaling ten indices, as shown in Table 1. To ensure con-
sistency, the spatial resolution of all image bands was standardized to 10 m × 10 m through 
image band resampling. The first principal component (PC) band was chosen for the 
GLCM calculation, with the outputs for the ten texture indicators computed using SNAP 
software. Finally, the average value for each index was extracted across each image patch. 

Table 1. Image texture feature parameters. 

Parameter Meaning 
Contrast Reflects the differences in surface brightness 

Similarity Evaluates the similarity of neighboring pixels 
Homogeneity Reflects the local homogeneity of the texture 

Angular second moment Describes how drastically the gray scale distribution of an image changes 
Energy Indicates the repeatability and stability of the texture 

Maximum probability Indicates the gray value that occurs most frequently in a texture image 
Entropy Reflects the texture complexity 

GLCM mean Provides the overall average of the gray values in the texture image 
GLCM variance Measures the degree of dispersion of gray values 

GLCM correlation Evaluates the linear relationship between gray values 
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2.2.2. Extraction of Socio-Economic Characteristics 
The functions of buildings are often strongly linked to the economic activities and 

social behaviors characteristic of their surrounding areas. To comprehensively capture 
these dynamics, this study employed point of interest (POI) data as the primary source of 
socio-economic information. POI data represent geographic points tagged with categories 
generated by human economic activities, providing insights into the spatial distribution 
and density of different types of locations. As such, they serve as an effective means of 
representing functional zoning and economic activity levels in an area. In this study, the 
POI data are reclassified into five main categories: residential, commercial, industrial, 
public service, and landscape. Table 2 illustrates the classification method used. 

Table 2. The POI reclassification details. 

Major Category Sub-Category 
Residential Residential communities 

Commercial 
Business office, catering services, shopping services, financial in-
surance services, health care services, accommodation services, 

life services, and leisure entertainment 

Industrial 
Companies engaged in production, factories, industrial parks, 

and agricultural base 

Public service 
Public facilities, transportation facilities, education and cultural 
services, sports and leisure services, medical care services, and 

government agencies and social organizations 
Landscape Parks and squares, and places of interest 

Since points of interest (POIs) are abstract entities, they cannot directly characterize 
individual buildings. In this study, a distance decay model was applied to calculate the 
characteristic values of each POI type for each building. Typically depicted as a downward 
concave curve on the x-axis, the distance decay reflects a variable’s decline with increasing 
distance, in line with Tobler’s first law of geography: “everything is related, but near 
things are more related than distant things”. Common decay functions include inverse 
distance, exponential, and Gaussian. Given the influence of POIs on building functions, 
inverse distance decay is optimal here, highlighting the effect of nearby POIs on building 
functions to enhance feature differentiation and improve model performance. The for-
mula for inverse distance attenuation is as follows: 𝑓(𝑑) = 1𝑑௣ (1)

where d is the distance from the building to the POI, d ≠ 0; 𝑓(𝑑) is the attenuation value, 
indicating the influence at distance d. The parameter p, known as the attenuation index, 
typically takes a positive integer to control the rate of decay. For this study, p was set to 2, 
resulting in an inverse square attenuation that emphasized the impact of nearby POIs on 
building function. This choice highlights how proximity enhances influence, in line with 
the goals of the classification model. 

2.2.3. Building Outline Feature Extraction 
The geometric form and spatial layout of a building can provide valuable insights 

into its intended use and design intent. A substantial body of research has demonstrated 
a robust correlation between building profile features and urban functions. In accordance 
with existing studies [29], this study primarily extracted five key feature attributes: area 
(S), perimeter (P), circularity (CR), height (H), aspect ratio (AR), and irregularity (IR) of 
buildings. Among these attributes, area and perimeter serve as fundamental geometric 
features, reflecting the dimensions and extent of a building. Circularity, a measure of the 
complexity of a building’s outline, is defined as the ratio of the area of the building to that 
of its smallest enclosing circle. This metric helps identify a building’s compactness. Aspect 
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ratio quantifies the elongation of a building’s shape, typically expressed as the ratio of its 
length to its width in the smallest enclosing rectangle. Irregularity, in contrast, assesses the 
complexity of the building’s outline, focusing on the smoothness and intricacy of the build-
ing’s boundary. The formulas for calculating circularity (CR), aspect ratio (AR), and irregular-
ity (IR) are presented in Equations (2)–(4), respectively. The combination of these indicators 
facilitates the effective differentiation between buildings of varying functional types. 𝐶𝑅 = 𝑆𝜋 × 𝑅ଶ (2) 

𝐴𝑅 = 𝐿𝑊 (3) 

𝐼𝑅 = 𝑃√𝑆 (4) 

where CR is the circularity, S is the area of the building, and R is the radius of the build-
ing’s smallest external circle; AR is the aspect ratio, L is the long side of the building’s 
smallest external rectangle, and W is the short side of the building’s smallest external rec-
tangle; and IR is the irregularity, and P is the perimeter of the building. 

2.2.4. Temporal Feature Extraction 
Nighttime lighting (NTL) data are a crucial indicator of regional socio-economic ac-

tivities and population distribution [20]. Additionally, they play a pivotal role in identifying 
building functions. Given the significant variations in the intensity and configuration of 
nighttime illumination across different building types, this study utilized nighttime lighting 
data to aid in the classification of building functions. Many contemporary studies employ 
nighttime lighting data with spatial subdivisions of 500 m and 1 km; however, these intervals 
are often insufficient for micro-scale analyses. To enhance the resolution of nighttime lighting 
data from a broader scale to a building-specific level—while minimizing data distortion and 
noise amplification—this study adopted a multi-source data fusion approach. This method 
ultimately yielded a nighttime lighting dataset with a spatial resolution of 100 m. 

In this study, the normalized vegetation index (NDVI) and normalized water body 
index (NDWI) were initially extracted from high-resolution remote sensing images. These 
indices were then synthesized using multi-temporal maxima and medians to emphasize 
the vegetation and water body features. Subsequently, point of interest (POI) data and 
road network data were transformed into density distributions through Gaussian kernel 
density estimation. The final density distributions were obtained by assigning road 
weights using the analytical hierarchy process (AHP). The processed data were integrated 
with nighttime lighting (NTL) data, which were downscaled using a regression model and 
refined to a resolution of 100 m through min–max normalization and Z-score normaliza-
tion techniques. This approach allows for a more accurate representation of nighttime ac-
tivity characteristics at the building level [30]. The overall process of nighttime lighting 
downscaling is illustrated in Figure 2. 
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Figure 2. Flowchart of night light downscaling. 

2.3. Zonal Statistics 
The fundamental idea behind partitioning statistics lies in conducting raster analyses 

by designating one raster layer to define regions and another to provide values. When 
regions are initially defined by vector elements, the first step is to convert these vector 
elements into the raster format. This conversion often employs the image-center method, 
where rasterization is based on the size and values of the raster cells that correspond to 
the vector surface. As illustrated in Figure 3, this approach enables a seamless integration 
of raster data characteristics with vector features, allowing vector elements to effectively 
convey and represent the spatial details encapsulated within the raster data. 

 
Figure 3. Schematic diagram of zoning statistics. 

In this study, raster feature data within the study area were spatially aggregated us-
ing the partition statistics tool, with the statistical mean of each raster feature assigned as 
a new attribute to the corresponding vector unit. Since the buildings were located in rela-
tively compact areas, it was essential to ensure the accuracy of the features extracted for 



Remote Sens. 2024, 16, 4492 9 of 20 
 

 

each building and to avoid excluding any relevant areas from the final output. To achieve 
this, the feature raster cell size was set to 5 × 5 m, which provided an appropriate level of 
detail for capturing building-specific characteristics while maintaining spatial precision. 

2.4. XGBoost Classifier 
XGBoost is a decision tree algorithm based on gradient boosting. It is a widely used 

tool in the analysis and modelling of large-scale data due to its high efficiency, powerful 
processing capability, and good classification accuracy [31]. XGBoost enhances model per-
formance by incrementally constructing a series of weak classifiers (decision trees), which 
collectively improve the overall accuracy and reduce error through a weighting mecha-
nism. Compared to traditional classification algorithms, XGBoost excels in handling miss-
ing data, mitigating overfitting, and enabling parallelized training. The computational 
principles underlying each component are as follows: Suppose the dataset contains n sam-
ples, each with m features. Then, the input feature matrix is denoted as 𝑋 = {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡} 
and the feature representation of each sample is 𝑥௜ = {𝑥௜ଵ, 𝑥௜ଶ, . . . , 𝑥௜௠}. The classification 
label is denoted as 𝑦 = {𝑦ଵ,𝑦ଶ, . . . ,𝑦௡}, where 𝑦௜ is the building function label correspond-
ing to the i-th sample. The output is a set of probability distributions indicating the prob-
ability that each sample belongs to each type of building function, and the model makes 
classification decisions by maximizing this probability. XGBoost constructs a set of weak 
learners (decision trees) through multiple rounds of iterations, and in each round of iter-
ations, the predictive function of the model is updated as follows: 𝑦ො௜(௧) = 𝑦ො௜(௧ିଵ) + 𝑓௧(𝑥௜) (5) 

In this context, 𝑦ො௜(௧) represents the predicted outcome after the t-th iteration, while 𝑓௧(𝑥௜) is the decision tree for the current iteration. Initially, 𝑦ො௜(଴) = 0, and the model con-
tinuously iterates to update the predictions, gradually converging toward the true values. 

The objective function of XGBoost contains a loss function and a regular term, de-
noted as follows: 

𝑂𝑏𝑗(௧) = ෍ ௡
௜ୀଵ 𝑙(𝑦௜ ,𝑦ො௜(௧)) + ෍ ்

௧ୀଵ Ω(𝑓௧) (6) 

𝛺(𝑓௧) = 𝛾𝑇 + 12 𝜆 ∥ 𝑤 ∥ଶ (7) 

In this context, 𝑙(𝑦௜ ,𝑦ො௜(௧)) is the loss function used to measure the error between the 
predicted values and the true labels. In this study, log loss is used as the loss function for 
classification problems. Ω(𝑓௧) is the regularization term that controls the complexity of 
the model to prevent overfitting. T represents the number of leaf nodes in the tree, while 𝛾 and 𝜆 are the regularization parameters. 

In XGBoost, feature importance analysis is a vital tool for assessing the contribution 
of each feature within the decision tree. Common evaluation metrics include the split gain, 
frequency of occurrence, and size of covered samples, among others. The split gain is par-
ticularly significant as it quantifies the extent to which features contribute to reducing the 
loss function when nodes are split. The results of the feature importance analysis aid in 
identifying and filtering the most influential features in classification, providing valuable 
insights for model optimization. The following describes how this process works: 

Importance(𝑗) = ෍ ்
௧ୀଵ ෍  ௦∈ௌೕ(೟) ΔLoss௝,௦ (8) 

In this context, 𝑆௝(௧) represents all the nodes where feature j appears in the t-th tree, 
and ΔLoss௝,௦ denotes the gain in the objective function after each split. 
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In this study, the XGBoost classifier integrated a variety of multidimensional features, 
including the image texture, socio-economic data, building contours, and temporal features, 
to generate five categories of labels for building footprints in Suzhou City. This was accom-
plished using the 2020 OpenStreetMap (OSM) land use data, supplemented by the land use 
category dataset (EULUC-China) and Google Maps image data. Cross-validation and hy-
perparameter optimization were employed to identify the optimal parameters, which in-
clude colsample_bytree = 0.9, learning_rate = 0.2, max_depth = 14, n_estimators = 300, and 
subsample = 0.8. Additionally, a synthetic minority oversampling technique (SMOTE) was 
utilized to oversample minority class samples, thereby balancing the data distribution. This 
study evaluated the contributions of different POI features (e.g., commercial, residential, 
industrial) to the classification of building functions, leveraging XGBoost’s feature im-
portance analysis to further identify the key features’ roles in the model. 

2.5. Accuracy Validation 
The term “accuracy” is a metric for evaluating the performance of classification mod-

els. It measures the proportion of correctly classified samples among all samples in the 
model. Accuracy is defined as the ratio of the number of correctly classified samples to the 
total number of samples. The formula for calculating accuracy is given in (9). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (9) 

The terms TP (true positives) and TN (true negatives) refer to the number of samples 
that the model correctly identifies as belonging to the positive or negative categories, re-
spectively. In contrast, FP (false positives) and FN (false negatives) indicate the number of 
samples that were incorrectly classified by the model as belonging to the positive or neg-
ative categories, respectively. 

The concept of accuracy is intuitive and straightforward, serving as a measure of the 
overall correctness of the model’s categorization. However, in the case of an unbalanced 
dataset with disparate categories, the accuracy metric may overestimate the model’s per-
formance, as it is less sensitive to the performance of minority categories. Therefore, this 
study employs a range of additional metrics (e.g., F1-score) for a more comprehensive 
evaluation, facilitating a more accurate assessment of the model’s performance. 

The F1-score is a crucial metric for assessing the efficacy of classification models, par-
ticularly in scenarios where categories are unevenly distributed. By integrating the mis-
classification and omission rates, it avoids the pitfalls of relying solely on the accuracy 
rate, providing a more accurate reflection of the model’s performance. The F1-score is the 
harmonic mean of precision and recall, designed to account for both the proportion of 
correctly categorized items and the ability to capture all positive category samples. The 
formula is as follows: 𝐹 = 2 × 𝑃 × 𝑅𝑃 + 𝑅 (10) 

where F is the F1-score coefficient, which takes values ranging from 0 to 1. The closer the 
value is to 1, the better the classification effect of the model; P is the precision rate; and R 
is the recall rate. 

2.6. Building–Population Correlation Analysis 
The Pearson correlation coefficient is commonly used to quantify the linear relation-

ship between two continuous variables. In this study, the Python pandas library was em-
ployed to compute the Pearson correlation coefficient between the building functions and 
population distribution across various scales. This approach provides a quantitative meas-
ure of the impact of different building types on population distribution. The formula for 
calculating the Pearson correlation coefficient is as follows: 
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𝑟 = ∑(𝑥௜ െ 𝑥̅)(𝑦௜ െ 𝑦ത)ඥ∑(𝑥௜ െ 𝑥̅)ଶ∑(𝑦௜ െ 𝑦ത)ଶ (11) 

where 𝑥௜ and 𝑦௜ are the observed values of the building function-related and population 
density variables, respectively, and 𝑥̅ and 𝑦ത are their means. Specifically, x is derived by 
aggregating the floor areas of different building types at the street and district scales, 
while y corresponds to the population data at the same administrative levels. The Pearson 
correlation coefficient ranges from −1 to 1: r = 1 indicates a perfect positive correlation, r = 
−1 signifies a perfect negative correlation, and r = 0 implies no linear correlation. 

3. Study Area and Data Sources 
3.1. Overview of the Study Area 

Suzhou City is located in the central region of the Yangtze River Delta on the eastern 
coast of China. It encompasses five districts and four county-level cities, covering a total 
area of 8657.32 square kilometers. The city’s strategic position near Shanghai, Jiaxing, 
Taihu Lake, and the Yangtze River creates a distinctive geographical configuration. Su-
zhou’s convenient transportation, rich historical heritage, and thriving industries have fa-
cilitated the development of diverse building types, including commercial, industrial, 
landscape, and residential structures, each exhibiting various architectural styles. The dis-
tribution patterns of these buildings are influenced by multiple factors, such as the city’s 
industrial layout, transportation planning, and population movement. As shown in Fig-
ure 4, this study selected Suzhou City as the focal point for investigation. By analyzing 
data from various sources, we aimed to gain a deeper understanding of the intricate rela-
tionship between the functional classification of buildings and the population distribu-
tion. This research will provide a scientific basis for urban planning and management, 
contributing to the sustainable development of the city. 

 
Figure 4. Administrative divisions of Suzhou City. 

3.2. Data Sources 
This study integrated multiple data sources, including Sentinel-2 images for texture 

feature extraction, building footprint data for contour feature extraction [32], and point of 
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interest (POI) data reflecting urban functions. Nighttime lighting data were used to cap-
ture the state of buildings at night, while various land use datasets facilitated label pro-
duction [16]. Additionally, road data were employed for downscaling nighttime lighting, 
and Baidu map image data assisted in the validation process. Administrative boundary 
data and census data were also included to delineate the study area. The specific data 
sources are detailed in Table 3. In this study, these data were utilized comprehensively 
and subjected to rigorous analysis to clarify the functional classification of buildings and 
its relationship with population distribution. 

Table 3. Data sources. 

Data Name Type Resolution Data Source 
Sentinel-2 raster 10 m European Space Agency (ESA) 

Building footprint 
data vector (surface) / 3D-GloBFP 

POI vector (point) / Amap 
Land use1 vector (surface) / OSM 
Land use2 vector (surface) / EULUC-China2018 
Road data vector (line) / OSM 

Night lights raster 500 m 
Resources and Environment Data 

Center (www.resdc.cn) 
Google Map / / Google Map 

Administrative 
boundaries vector (surface) / Jiangsu Provincial Department of Nat-

ural Resources 
Census data table / National Bureau of Statistics 

Study area back-
ground image 

raster 1 km ArcGIS Online World Imagery 

4. Experiments and Results 
In this study, we used the global 3D-GloBFP building footprint dataset obtained by 

Sun Yat-sen University and other teams based on XGBoost training, which contains build-
ing vector patches and heights. In accordance with findings from previous studies and 
relevant regulations [33], buildings with a floor area of less than 30 square meters have 
been excluded, resulting in a total of 951,474 valid building patches. This study utilized a 
combination of labeled and unlabeled building data, ensuring that the selected samples 
represent a variety of spatial locations, building forms, and functional types. Additionally, 
unlabeled samples were included in the analysis, allowing the model to predict their func-
tional attributes. The ratio of training samples to validation samples was set at 7:3. 

4.1. Feature Extraction and Importance Analysis Results 
4.1.1. Feature Extraction Results 

In this study, based on the above method, a total of 22 feature parameters, including 
image texture, POI, building contour features and night lighting features, were selected 
and input into the XGBoost model, and the feature scheme is shown in Figure 5. 
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Figure 5. Feature extraction diagram. (Figure (a)—contrast; (b)—similarity; (c)—homogeneity; (d)—
angular moment of two; (e)—energy; (f)—maximum probability; (g)—entropy; (h)—GLCM mean; 
(i)—GLCM variance; (j)—GLCM correlation; (k)—POI residential area; (l)—POI commercial area; 
(m)—POI industrial area; (n)—POI public service area; (o)—POI landscape area; (p)—floor area; 
(q)—building perimeter; (r)—building roundness; (s)—building minimum outer rectangle; (t)—
building irregularity; (u)—building height; (v)—nighttime lighting). 

4.1.2. Characteristic Importance Analysis 
The result of the feature importance analysis based on the XGBoost model is shown 

in Figure 6. The result shows that there is a significant difference in the contribution of 
each feature to the classification of building functions. 

 
Figure 6. Feature importance analysis results. 
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By quantifying the percentage importance of each feature, we clarified their relative 
influence within the model. The commercial POIs had the highest contribution at 10.94%, 
demonstrating the most significant impact on the target variable. The residential POIs fol-
lowed closely with 8.76%. The NPP index and homogeneity contributed 6.81% and 6.38%, 
respectively, indicating their critical roles in classifying building functions. Additionally, 
the industrial and landscape POI characteristics accounted for 6.32% and 5.63%, respec-
tively, while the public service POIs contributed 5.31%, highlighting the strong relation-
ship between the POI characteristics and building functions. Among the physical features, the 
floor area accounted for 4.42%, perimeter for 3.72%, and shape coefficient (CR) for 3.64%. The 
image texture features, such as the GLCM variance (3.63%) and energy (3.57%), also signifi-
cantly influenced the model results. Overall, the POI features demonstrated a substantial con-
tribution, and the innovative introduction of temporal features further enhanced the model’s 
explanatory power. Moreover, the combination of building contours and image texture fea-
tures collectively increased the model’s ability to classify building functions. 

4.2. Building Classification Results 
Through XGBoost model training, this study classified the building functions in the 

study area into five categories: residential, commercial, industrial, public service, and 
landscape. Table 4 presents the classification accuracies, including the precision and F1-
score values for each category, as well as the overall accuracy and F1-score. 

Table 4. Accuracy of building classification results. 

Models 
Identification Accuracy 

Residential Commercial Industrial Public Service Landscape Overall 
A 0.79 0.81 0.76 0.72 0.72 0.77 
B 0.64 0.88 0.66 0.58 0.70 0.65 
C 0.77 0.76 0.73 0.68 0.70 0.74 
D 0.75 0.77 0.71 0.66 0.70 0.73 

Models 
Identification F1-Score 

Residential Commercial Industrial Public Service Landscape Overall 
A 0.84 0.75 0.76 0.71 0.53 0.77 
B 0.74 0.68 0.67 0.47 0.20 0.63 
C 0.83 0.66 0.72 0.68 0.47 0.73 
D 0.80 0.72 0.70 0.63 0.47 0.72 

Notes: A represents the results from the XGBoost model using NPP features and the inverse distance 
decay algorithm for POI computation. B reflects the random forest model under the same condi-
tions. C shows the results from the XGBoost model using NPP features and the kernel density algo-
rithm. D indicates the results from the XGBoost model without NPP features but using the inverse 
distance decay algorithm for POI computation. 

The experimental results for the building classification indicate that the model 
achieved an overall accuracy and F1-score of 0.77, reflecting a stable classification perfor-
mance. Notably, the model was most accurate in classifying residential buildings, with a 
precision of 0.79 and an F1-score of 0.84, demonstrating a strong capacity to recognize this 
category. Commercial buildings also showed good classification performance, achieving 
an accuracy of 0.81 and an F1-score of 0.75; however, the slightly lower F1-score suggests 
some misclassification. The model exhibits the balanced recognition of industrial build-
ings, with both an accuracy and F1-score at 0.76. Public service buildings had a classifica-
tion accuracy of 0.72 and an F1-score of 0.71, indicating consistent classification results. In 
contrast, landscape buildings achieved an accuracy of 0.72, but the F1-score was only 0.53, 
highlighting the model’s relative weakness in identifying this category. This may be at-
tributed to a lack of distinct data features or an imbalance in category samples. Overall, 
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the model’s classification effectiveness varies across different building types, particularly 
excelling in residential and commercial categories. 

In contrast, although Model B achieved the highest accuracy (0.88) for classifying 
commercial buildings, its performance was weaker in other categories, especially public 
service buildings (F1 score of 0.47) and landscape buildings (F1 score of 0.20). This phe-
nomenon may be related to the limitations of the random forest model in feature selection, 
which tends to misclassify when feature correlations are high. Model C showed an overall 
stable performance (accuracy of 0.74, F1 score of 0.73) and performed well in the classifi-
cation of industrial and public service buildings, suggesting that the kernel density algo-
rithm effectively captures the spatial distribution patterns of these building types. How-
ever, its performance was still not as good as Model A. Model D, despite not using NPP 
features, demonstrated a similar overall performance to Model C, showing strong balance 
(accuracy of 0.73, F1 score of 0.72). Overall, the introduction of NPP features and the dis-
tance decay algorithm significantly improved the classification performance, especially in 
the classification of residential and commercial buildings (as seen in Model A). This indi-
cates that combining multi-source features with optimization algorithms is an effective 
approach to improving building classification accuracy. 

The results of the methodological classification of this study are shown in Figure 7: 

 
Figure 7. Comparison of (a1–a5) predicted results and (b1–b5) actual conditions (Google Map). 
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As illustrated in the figure, the proposed model demonstrated an optimal recognition 
efficacy for residential buildings with regular layouts, such as smaller districts, and 
showed superior performance in identifying commercial buildings. The model also 
achieved enhanced accuracy in recognizing structures with consistent designs, such as 
shops along both sides of a road. Similarly, it effectively identified factory buildings 
within large industrial parks, including specific dormitories associated with these facto-
ries, which corresponds with the observed higher accuracies and F1-scores across all 
building categories. Regarding public service buildings, the model showed partial recog-
nition capabilities for schools and hospitals. However, it tends to confuse these with resi-
dential buildings, resulting in a slightly lower F1-score for the public service category. The 
identification of landscape buildings (green spaces) was relatively low, as the model often 
misclassifies buildings near farmland as green spaces, contributing to a diminished F1-
score in this category. 

4.3. The Relationship Between the Distribution of Buildings and the Population 
In this study, the correlation result map (Figure 8) was generated by analyzing the 

building function data obtained from the predictions using the Pearson coefficient. This 
analysis focused on building types at two spatial scales—districts and streets—alongside 
the population distribution of Suzhou City in 2020. 

  
(a) (b) 

Figure 8. Analysis of the correlation between building functions and population distribution. (a) 
District and county scale; (b) street scale. 

The results of the correlation analysis reveal a statistically significant positive corre-
lation between population and building functions at the district and county levels. The 
correlation coefficient for residential buildings is 0.8816, indicating the strongest associa-
tion between this building type and population. Commercial buildings follow closely with 
a correlation coefficient of 0.8772, highlighting their influence on population concentra-
tion. Industrial buildings also show a relatively strong association, with a correlation co-
efficient of 0.8620. In contrast, the correlation for public service and landscape buildings 
is comparatively weaker, with coefficients of 0.5977 and 0.5134, respectively. While there 
remains a positive correlation, the degree of influence for these building types is lower. 

In contrast, the correlation between street population and building functions is weak, 
with overall correlation coefficients generally lower than those observed at the district and 
county levels. The correlation coefficient for residential buildings is 0.2261, indicating a 
relatively loose relationship between street population and residential structures. Simi-
larly, the correlation coefficient for commercial buildings is 0.1405, suggesting that the 
influence of commercial buildings on street population is also limited. The coefficient for 



Remote Sens. 2024, 16, 4492 17 of 20 
 

 

industrial buildings is slightly higher at 0.2576, yet it still reflects a weak link between 
street population and building functions. For public service and landscape buildings, the 
correlation coefficients are 0.1970 and 0.0854, respectively, indicating an extremely weak 
connection between the street population and these building types. 

5. Discussion 
5.1. Importance Analysis of Features and Model Improvement 

Feature importance analysis is a technique used to identify the factors that most in-
fluence model performance. Among the various features considered, POI data stands out 
as one of the most influential components, with commercial and residential POIs being 
particularly significant. These POI categories serve as strong indicators for distinguishing 
between commercial and residential areas, as they are directly correlated with specific 
building functions. However, certain POI types, such as landscape POIs and public service 
POIs, contribute less to the classification, likely due to their sparse geographical distribu-
tion and relatively limited impact on differentiating building functions. In addition to POI 
data, building profile characteristics, including the floor area, perimeter, and height, play 
a crucial role in distinguishing building types. Larger floor areas and perimeters are espe-
cially effective in identifying functional buildings, as they provide a direct measure of the 
scale and structure. Conversely, building height appears to be less influential in the clas-
sification process, possibly because of its considerable variability across different building 
types, which limits its ability to serve as a clear discriminating factor. Furthermore, image 
texture features, such as homogeneity and various GLCM (gray-level co-occurrence matrix) 
metrics, help capture subtle visual patterns indicative of building functions. In contrast, fea-
tures like energy and entropy show lower importance, suggesting they are less effective at 
differentiating building types. Additionally, nighttime lighting data (NPP) prove to be a sig-
nificant feature, providing valuable temporal insights into building usage patterns, particu-
larly in commercial and residential contexts. The high importance of nighttime lighting data 
reflects the model’s ability to capture dynamic changes in building functionality, especially in 
urban environments where activity levels fluctuate between day and night. 

While the identified features are effective, certain limitations highlight areas for po-
tential improvement in the model. The relatively low importance of sparsely distributed 
POI types (e.g., landscape POIs) underscores the need for advanced methodologies to bet-
ter address such data. This could involve the adoption of more sophisticated interpolation 
techniques or the integration of dynamic datasets that reflect seasonality and temporal 
fluctuations in POI distribution. Additionally, while nighttime lighting data have demon-
strated significant value, incorporating other temporal data sources—such as mobile 
phone signaling data or smart city sensor networks—could further enhance the model’s 
responsiveness to real-time changes in building functions. To improve generalizability, 
the model should also be tested in a wider range of geographical contexts. Conducting 
experiments across regions with varying urban planning styles, population densities, and 
building types would provide a more comprehensive evaluation of the model’s robust-
ness. These enhancements, when combined, are expected to yield a more accurate and 
versatile framework for classifying building functions and understanding their dynamic 
relationship with urban population distribution. 

5.2. The Relationship Between Building Functions and Population at Different Scales 
The correlation coefficient between residential buildings and population at the dis-

trict and county levels is 0.8816, indicating a strong influence of residential buildings on 
population aggregation. This result aligns with the theoretical proposition that the supply 
of residential buildings is directly related to the distribution of residents during the ur-
banization process. The correlation coefficient for commercial buildings is 0.8772, suggest-
ing that the presence of commercial facilities not only attracts consumer populations but 
also promotes population growth in the surrounding areas. This finding underscores the 
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importance of commercial functions in enhancing urban vitality and drawing in residents. 
Furthermore, industrial buildings exhibit a high correlation of 0.8620, indicating that in-
dustrial zones significantly impact regional populations, especially in more industrialized 
areas where these facilities create substantial employment opportunities, thereby attract-
ing an influx of people. Conversely, the correlation between public service and landscape 
buildings and population distribution is weaker. These buildings mainly offer services or 
recreational spaces that cater to a more transient user base, rather than being tied to the 
permanent population of a specific area. Public service facilities are often located in city 
centers or commercial districts, attracting a mix of local residents and external visitors or 
event participants, which diminishes their direct impact on the local population distribu-
tion. Landscape buildings, typically frequented by tourists or occasional users, have even 
less influence on residential populations. 

In contrast, the correlation between the street population and the functions of nearby 
buildings is significantly lower. This phenomenon may be closely related to the demo-
graphic characteristics at the street level, the distribution patterns of buildings, and the 
socio-economic context. The street population typically comprises a diverse range of indi-
viduals who exhibit high mobility due to work and studying, which weakens the correla-
tion between building functions and population stability. For example, while commercial 
buildings can provide employment opportunities, they may fail to attract the target pop-
ulation if the surrounding residential types and structures do not align. Moreover, the 
configuration of buildings on the street can lead to a mix of complementary and compet-
ing functions, facilitating population mobility between different building types. In many 
urban centers, there is considerable integration between commercial and residential func-
tions, resulting in residents relying less on specific building functions. Additionally, fac-
tors such as the availability of public amenities and the accessibility of the street environment 
significantly influence residents’ lifestyle choices, which may not be adequately captured in 
correlation analyses. Ultimately, the socio-economic context at the street level plays a crucial 
role in shaping the relationship between building functions and population. In areas charac-
terized by uneven economic development, the availability of building functions may not meet 
residents’ needs, creating a gap between the actual impact and theoretical expectations. In this 
context, the availability and affordability of buildings often exert a greater influence on resi-
dents’ choices than the functional attributes of the buildings themselves. 

6. Conclusions 
The innovation of this study lies in its integration of multiple data sources, leveraging 

the advanced XGBoost classification model and sample balancing technology (SMOTE). 
This approach supplements nighttime lighting data as temporal features of buildings and 
introduces the inverse distance decay method to extract POI features. Such methods ena-
ble the co-optimization of features, parameters, and samples, resulting in the more accu-
rate classification of building functions. Building on this foundation, this study systemat-
ically analyzed the relationship between building functions and population distribution 
across different scales (districts, counties, and streets), aiming to identify the reasons for 
the observed variations at these scales. This research enhances our understanding of the 
interplay between building functions and population demand, providing urban planners 
with data to optimize resource allocation and facility layouts. Furthermore, it offers a the-
oretical foundation and practical guidance for urban planning and management. The prin-
cipal conclusions are as follows: 
1. This study introduces a novel approach to classifying building functions in Suzhou. 

By integrating multi-source geospatial and spatio-temporal big data and incorporat-
ing temporal features, the model achieves an overall classification accuracy of 0.77. 
This represents a 0.04 improvement over the model that does not include temporal 
features and a 0.12 improvement compared to the results of the random forest model; 
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2. The POI features extracted using the inverse distance decay method more effectively rep-
resent the influence of different types of POIs on building functions. The results indicate 
an accuracy improvement of 0.03 compared to those obtained through kernel density 
analysis for calculating POI features. This evidence supports the effectiveness of the in-
verse distance attenuation method in capturing the impact of POIs on building functions; 

3. The relationship between building functions and population distribution varies across 
spatial scales. At the district and county levels, the correlation is strong; however, at the 
street level, factors such as population mobility, diversity, competition among building 
functions, and socio-economic differences significantly weaken this correlation. 
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