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Abstract: Given the complex spatiotemporal variability of aerosols, high-frequency satellite obser-
vations are essential for accurately mapping their distribution. However, optical remote sensing
encounters difficulties in detecting Aerosol Optical Depth (AOD) over cloud-covered regions, cre-
ating data gaps that limit comprehensive environmental analysis. This study introduces a spatial
gap-filling method for Himawari-8/Advanced Himawari Imager (AHI) hourly AOD data, using
a Random Forest (RF) model that integrates meteorological variables and model-based AOD data.
Developed and validated over South Korea from 1 January to 31 December 2019, the model effectively
improved data coverage from 6% to 100%. The approach demonstrated high performance in blind
tests, achieving a root mean square error (RMSE) of 0.064 and a correlation coefficient (CC) of 0.966.
Meteorological analysis indicated optimal model performance under cold, dry conditions (RMSE:
0.047, CC: 0.956), compared to humid conditions (RMSE: 0.105, CC: 0.921). Validation against Aerosol
Robotic Network (AERONET) ground observations showed that, while the original Himawari-8
data exhibited higher accuracy (RMSE: 0.189, CC: 0.815, n = 346), the gap-filled dataset maintained
reasonable precision (RMSE: 0.208, CC: 0.711) and significantly increased the number of valid data
points (n = 4149). Furthermore, the gap-filled dataset successfully captured seasonal AOD patterns,
with values ranging from 0.245–0.300 in winter to 0.381–0.391 in summer, providing a comprehensive
view of aerosol dynamics across South Korea.

Keywords: aerosol optical depth (AOD); Himawari-8; gap-filling; machine learning

1. Introduction

Aerosols, which are solid and liquid particles suspended in the atmosphere, influence
global radiation through both direct effects, such as scattering or absorbing sunlight, and
indirect effects, such as altering cloud brightness and longevity [1,2]. Aerosols are typically
categorized by size, with Particulate Matter (PM) classified by an aerodynamic diameter
of ≤10 µm (PM10) and finer particulate matter with a diameter of ≤2.5 µm (PM2.5) [3]. PM
reduces visibility, degrades air quality, and poses significant health risks to humans [4,5].
Due to their complex sources and variable atmospheric residence times, aerosols contribute
significantly to the uncertainty in climate change predictions [6].

Consequently, quantitative observations of aerosol distributions and physical prop-
erties are essential. These observations are conducted using various platforms, including
ground-based stations, satellites, ships, and aerial systems [7]. Ground-based observations
provide highly accurate data on the physical and chemical properties of aerosols, making
them invaluable for validating satellite-derived Aerosol Optical Depth (AOD) products
and analyzing aerosol characteristics [8]. However, ground-based observations alone are
insufficient for providing a comprehensive understanding of global aerosol characteristics
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due to the diverse spatial and temporal distributions of aerosols [9]. As a result, satellite
observations have become indispensable for obtaining quantitative aerosol information.
These satellite-based measurements are especially valuable because the spatiotemporal
variability of aerosols is crucial for understanding their role in climate change and for
predicting ground-level PM concentrations in regions lacking direct measurements [10–15].

AOD, the most widely used metric for assessing aerosol characteristics from satellites,
quantifies the amount of aerosols present in the atmosphere. It is defined as the integral of
aerosol extinction coefficients along the atmospheric column, i.e., from the Earth’s surface
to the top of the atmosphere [16]. AOD is a dimensionless measure that represents the
optical thickness of aerosols, indicating the degree of light attenuation in the atmosphere.
Over the years, satellite-based aerosol observations have advanced significantly. Current
instruments, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-
angle Imaging Spectroradiometer (MISR), and Visible Infrared Imaging Radiometer Suite
(VIIRS), provide valuable insights into global aerosol distributions and their impacts [17–19].
These instruments have been employed in numerous studies that analyze the effects of
aerosols on climate change and air quality, estimate ground-level PM concentrations, and
assess surface visibility [20–26]. However, many of these sensors are aboard polar-orbiting
satellites, which typically offer only one or two daily observations of a specific area. This
limited temporal resolution presents challenges in tracking rapid aerosol changes [27],
which is essential for conducting atmospheric and environmental research effectively.

Recent advancements in satellite technology have led to the development of next-
generation geostationary meteorological satellites, offering significantly improved temporal
and spatial resolution [28]. The Himawari-8 satellite, launched in 2014, represented a major
advancement in the aerosol observation capabilities over the Asia-Pacific region, including
the Korean Peninsula. The Himawari-8 Advanced Himawari Imager (AHI) provides
high-frequency observations, producing AOD data at hourly intervals. This capability
is especially valuable for studying diurnal variations in aerosol concentrations and their
effects on local air quality, addressing the limitations of previous observation systems. The
AHI’s multi-spectral imaging capabilities also enhance the reliability of AOD retrievals by
improving the discrimination between aerosols and clouds [29,30]. We selected Himawari-
8 data for this study due to its advanced features, well-established AOD products, and
consistent, well-calibrated data since its launch [31]. These characteristics make Himawari-
8 a suitable platform for this study, offering high-quality, high-frequency data essential for
conducting detailed aerosol analysis over the Korean Peninsula.

Despite advancements in satellite technology, optical sensor-based AOD retrieval still
faces challenges in areas with high surface reflectance, cloud or snow cover, and regions
with high aerosol concentrations [32,33]. These limitations result in data gaps that can
affect the accuracy and availability of environmental analyses [34,35]. To overcome the
limitations, researchers have explored various methods for estimating AOD in gap areas,
aiming to provide more complete AOD datasets for comprehensive environmental studies.
These methods range from traditional statistical approaches to advanced machine learning
techniques [36–42]. However, despite progress, most previous studies have focused on low
temporal resolution data, such as monthly or daily averages. The need for high temporal
resolution data remains crucial for accurate air pollution monitoring, especially in regions
with rapidly changing aerosol conditions [27].

Among various approaches, machine learning methods have shown particular promise
in addressing the AOD gap-filling challenge. Recent advancements have transitioned from
traditional methods to more sophisticated machine learning techniques. Zhao et al. [41]
demonstrated the effectiveness of traditional machine learning by applying Random Forest
(RF) algorithms to estimate daily AOD over the Beijing-Tianjin-Hebei region. Building
on this foundation, deep learning approaches have emerged as powerful alternatives,
with Chen et al. [31] successfully implementing deep neural networks for high-frequency
AOD estimation. More recently, hybrid approaches have been developed to leverage
the strengths of multiple techniques. For example, Chen et al. [42] integrated RF-based
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spatial interpolation with deep learning-based temporal estimation, showing the potential
of combined methodologies. While these studies have achieved promising results, there
remains a need for efficient and practical approaches that balance computational complexity
with estimation accuracy, especially for operational applications in regions with unique
atmospheric conditions.

In this study, we address the critical need for high-resolution temporal data in aerosol
research by developing an advanced machine learning model to fill gaps in hourly AOD
products. We utilize data from Himawari-8 AHI, which provides hourly AOD observa-
tions across the Asia-Pacific region, including the Korean Peninsula. This high-frequency
temporal resolution is essential for capturing the dynamic nature of aerosol distribu-
tions and concentrations, overcoming the limitations of previous studies that relied on
lower temporal resolution data. Our model incorporates 12 relevant variables, including
model-based AOD and meteorological data, to develop a robust gap-filling method for a
0.05◦ × 0.05◦ geographic grid over South Korea’s land area. We focused on South Korea’s
land area for several reasons: (1) to contribute to air quality monitoring in regions heavily
impacted by human activity, (2) to address the specific challenges posed by the region’s
complex topography and diverse land cover, and (3) to refine our methodology in a well-
defined terrestrial environment before expanding to include marine areas in future studies.
This approach not only preserves the frequent temporal resolution required for detailed
aerosol analysis but also fills in missing data points, offering a more complete understand-
ing of aerosol dynamics. We conducted our experiments using 2019 data, providing a
comprehensive dataset to test and validate our gap-filling model under various seasonal
and meteorological conditions typical of the Korean Peninsula. By focusing on hourly data
and employing appropriate machine learning techniques, our study aims to overcome the
limitations of previous low-temporal resolution studies, potentially enhancing air quality
monitoring, improving pollution forecasting, and contributing to a deeper understanding
of aerosol impacts on local and regional scales. The remainder of this paper is organized
as follows: Section 2 describes the data sources and methodology, including details of the
gap-filling model development and validation approach. Section 3 presents the results of
the model’s performance evaluation and its validation against Aerosol Robotic Network
(AERONET) observations across various conditions and locations. Section 4 discusses
the model’s variable importance, seasonal patterns, and spatiotemporal characteristics
of gap-filled AOD data. Finally, Section 5 summarizes the key conclusions and suggests
directions for future research.

2. Materials and Methods
2.1. Data
2.1.1. Himawari-8 AOD Data

The Japan Meteorological Agency (JMA) launched Himawari-8, a next-generation
geostationary meteorological satellite, on 7 October 2014, with meteorological products
becoming available on 7 July 2015 (https://www.eorc.jaxa.jp/ptree/, accessed on 10 March
2021). Himawari-8’s AHI is equipped with 16 spectral bands. The AOD product is gener-
ated using an algorithm developed by the Japan Aerospace Exploration Agency (JAXA) [43],
which employs different methodologies for land and ocean retrievals. For land, the focus
of this study, the algorithm utilizes five channels (0.47, 0.51, 0.64, 0.86, and 1.6 µm) and the
Normalized Difference Vegetation Index (NDVI) to retrieve Level 2 AOD [44]. The process
involves Rayleigh atmospheric correction (to remove scattering effects from atmospheric
molecules), pixel compositing, and top-of-atmosphere (TOA) reflectance simulation using
the System for the Transfer of Atmospheric Radiation (STAR) series [45,46]. A Lookup
Table (LUT) is used for efficient calculations, incorporating parameters such as aerosol
models for fine and coarse particles [47,48].

https://www.eorc.jaxa.jp/ptree/
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In this study, we used the Level 3 AOT_Merged product (a spatiotemporal inter-
polation of AOT_Pure), derived from Level 2 AOD data through optimal interpolation.
This product was chosen over the Level 3 AOT_Pure version (L2 AOT with strict cloud
screening) due to its higher quality and lower frequency of missing values [49,50]. The
dataset, provided in NetCDF format, includes a 500 nm AOD, the Ångström Exponent
(AE), and a Quality Analysis (QA) flag, all mapped onto a 0.05◦ spatial grid. The 500 nm
AOD is derived from the multi-channel measurements of the AHI sensor using the AE [51].
The algorithm for the Level 3 hourly data incorporates aerosol and cloud spatiotemporal
variability characteristics for quality control and performs hourly interpolation of the Level
2 AOD products.

Our analysis focused on eight hourly images per day, spanning from 00 UTC to 07 UTC,
which corresponds to daylight hours in Korea. This temporal selection aimed to capture
diurnal AOD variations while maintaining high data quality. Using this approach, we
aim to conduct a comprehensive analysis of AOD patterns and their diurnal fluctuations
across the Korean Peninsula. To provide a clear overview of our data and methodology,
Table 1 summarizes the key characteristics of the Himawari-8 AOD data used in this study,
including details on product resolution, AHI channels, and the AOD conversion method.

Table 1. Description of Himawari-8 AOD data used in this study.

Aspect Description

Product Used Level 3 AOT_Merged

Data Parameter 500 nm AOD, Ångström Exponent (AE),
Quality Analysis (QA) flag

Spatial Resolution 0.05◦ × 0.05◦ grid (in longitude and latitude)

Temporal Resolution Hourly (Level 3)

Daily Coverage 8 hourly images per day (00 UTC to 07 UTC,
corresponding to daylight hours in Korea)

Key AHI Channels Used 0.47 µm, 0.51 µm, 0.64 µm (visible),
0.86 µm, 1.6 µm (near-infrared)

Conversion to 500 nm AOD Interpolation based on Ångström exponent

2.1.2. CAMS Reanalysis AOD

The Copernicus Atmosphere Monitoring Service (CAMS), a key component of the
European Union’s Earth observation initiative, provides comprehensive environmental data
by integrating modeling, satellite observations, and in-situ measurements. CAMS utilizes
the Integrated Forecasting System (IFS), developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF). The data assimilation process incorporates aerosol
information from various satellite sources, including the Advanced Along-Track Scanning
Radiometer (AATSR) aboard the Envisat satellite (2003–2012) and the MODIS instruments
on NASA’s Terra and Aqua satellites (2003–present) [52,53]. Notably, CAMS does not use
bias-adjustment algorithms in its data assimilation process, nor does it incorporate ground-
based AOD measurements. This makes ground-based networks such as the AERONET
particularly valuable as independent validation sources for CAMS data [54]. For this study,
we used AOD values at a 550 nm wavelength from the CAMS reanalysis database, focusing
on data from the year 2019. The dataset is provided at a spatial resolution of approximately
80 km (0.75◦ × 0.75◦ grid). While CAMS offers 3-hourly data, we aggregated these into
daily values. The processed daily AOD data were then downloaded using Google Earth
Engine (GEE) (https://earthengine.google.com/, accessed on 15 September 2024).

https://earthengine.google.com/
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2.1.3. Merra-2 Reanalysis AOD

The Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2), represents a significant advancement over its predecessor by integrating the
MERRA reanalysis dataset with the Gridpoint Statistical Interpolation (GSI) assimilation
system and the Goddard Earth Observing System (GEOS) model. This comprehensive
AOD product incorporates bias-adjusted data from multiple satellite sensors, including
the Advanced Very High-Resolution Radiometer (AVHRR), MODIS, and MISR, as well as
ground-based AERONET AOD observations [55,56]. For this study, we utilized MERRA-2
AOD data at a spatial resolution of 0.5◦ × 0.625◦. The hourly AOD values were retrieved
through GEE.

2.1.4. Meteorological Data

The Local Data Assimilation and Prediction System (LDAPS), a numerical weather
prediction model developed by the Korea Meteorological Administration (KMA), is a
regionally optimized version of the Unified Model (UM) from the UK Met Office. LDAPS
produces forecasts every three hours (at 00, 03, 06, 09, 12, 15, 18, and 21 UTC, corresponding
to 09, 12, 15, 18, 21, 00, 03, and 06 KST, respectively) for the Korean Peninsula with a
spatial resolution of 1.5 km, using the Lambert Conformal Conic (LCC) projection (https:
//data.kma.go.kr/cmmn/main.do, accessed on 15 September 2024).

The selection of meteorological variables for this study was based on their known
influences on atmospheric aerosols and their potential utility in gap-filling AOD data. A
comprehensive literature review [36,42,57–60] guided our selection, identifying key factors
strongly correlated with AOD or critical to aerosol dynamics. The selected variables include
air temperature (TMP, ◦C) and relative humidity (RH, %), which influence aerosol hygroscopic
growth and new particle formation [61]; u-/v-components of wind speed (U_WS/V_WS,
m/s), essential for aerosol transport and dispersion; boundary layer height (BLH, m), which
affects vertical mixing and aerosol concentration [62]; and latent heat flux (LHFL, W/m²),
influencing atmospheric stability and aerosol vertical distribution [63]. Additionally, we
included high cloud cover (HCDC, %) for cloud–aerosol interactions [64–66], downward
surface shortwave flux (DSSF, W/m²), which is affected by AOD and impacts aerosol
dynamics [67], surface pressure (PRES, Pa), which affects aerosol vertical distribution and
transport, and dew point temperature (DPT, ◦C), providing supplementary information on
atmospheric moisture content.

These LDAPS variables were extracted at 00, 03, 06, and 09 UTC (09, 12, 15, and
18 KST). To align the temporal resolution with the Himawari-8/AHI hourly AOD product,
we interpolated the 3-hourly LDAPS forecasts to hourly data using cubic spline interpola-
tion, assuming gradual changes in meteorological variables between forecast times [68,69]
(Figure 1). The selection of these specific variables was driven by their relevance to aerosol
processes, proven utility in previous AOD studies, and potential to improve AOD gap-
filling accuracy. By incorporating this comprehensive set of meteorological variables, we
aim to capture the complex interactions between atmospheric conditions and aerosol dy-
namics, enhancing our ability to accurately estimate AOD in data-sparse regions or periods.

2.2. Methods
2.2.1. Data Preprocessing

The gap-filling experiment was conducted over South Korea, covering the area
between 33.73◦ to 38.72◦N and 125.78◦ to 129.77◦E, resulting in a grid of 8000 pixels
(100 × 80) at a 0.05◦ resolution. To build datasets for the Himawari-8/AHI hourly AOD
gap-filling model specifically for the land area of South Korea, we aligned the different
spatial and temporal resolutions of various data sources. All datasets were integrated into
the Himawari-8/AHI AOD grid (0.05◦ × 0.05◦) across the study region (Table 2).

https://data.kma.go.kr/cmmn/main.do
https://data.kma.go.kr/cmmn/main.do
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Figure 1. Examples of converting 3-hourly to hourly data using cubic spline interpolation for meteoro-
logical variables: (a) before and after temporal interpolation for the TMP on 1 March 2019 and (b) before
and after temporal interpolation for the RH on 1 March 2019. The top row in each panel (a,b) shows the
raw 3-hourly data, while the bottom row displays the interpolated hourly data. Each column represents
a specific UTC time (00 to 09). The color scale indicates the intensity of the variables, with TMP in
◦C and RH in %. The interpolation process fills the temporal gaps between the 3-hourly observations,
resulting in a continuous hourly dataset that matches the temporal resolution of the Himawari-8/AHI
AOD product. Notably, the smooth transitions in values over time are evident in the interpolated data,
particularly in the previously empty time slots (01, 02, 04, 05, 07, and 08 UTC).

Table 2. Input data used in the AOD gap-filling model: This table presents the spatial and temporal
resolutions, data types, and originating organizations for each data source, including Himawari-
8/AHI AOD (the target variable for gap-filling), model-based AOD estimates, and meteorological
data. The Himawari-8/AHI AOD represents the primary satellite-based measurement that this study
seeks to gap-fill.

Data Source Spatial
Resolution

Temporal
Resolution

Himawari-
8/AHI AOD JAXA 0.05◦ × 0.05◦ hourly

CAMS AOD ECMWF 0.75◦ × 0.75◦ 3-hourly

MERRA-2 AOD NASA 0.5◦ × 0.625◦

(latitude × longitude) hourly

LDAPS Meteorology KMA 1.5 km × 1.5 km 3-hourly
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The integration process involved several key steps. First, datasets with varying
spatial resolutions, including LDAPS meteorological data, CAMS AOD, and MERRA-2
AOD, were resampled to match the 0.05◦ grid of the Himawari-8/AHI AOD product
using bilinear interpolation. Next, LDAPS 3-hourly data were interpolated to an hourly
resolution using cubic spline interpolation to match the temporal resolution of the AOD
product. In this study, we utilized a combination of daily AOD data from CAMS and
hourly AOD data from MERRA-2. This approach of integrating AOD data at different
temporal resolutions alongside dynamic meteorological data provides a balance between
capturing short-term atmospheric variations and maintaining a comprehensive view of
aerosol patterns. By combining daily and hourly AOD data, we leveraged the strengths
of both datasets, enabling a more robust analysis of aerosol dynamics across various
time scales.

Additionally, only pixels with AOD reliability classified as “very good” according to
the QA flag were used as references for model training and validation. The QA flag catego-
rizes AOD reliability into four levels: “very good”, “good”, “marginal”, and “unreliable”.
We selected “very good” pixels to ensure the highest data quality and reliability in our
model development, as these have undergone rigorous quality checks and are least likely
to be affected by cloud contamination or retrieval errors. After integrating the data, a total
of 533,286 matched records were obtained.

2.2.2. Random Forest Model for AOD Gap-Filling

Among various machine learning techniques, we selected the RF model for AOD gap-
filling due to several advantages. RF excels at capturing complex, non-linear relationships
between variables, which is crucial for modeling the intricate interactions between aerosols
and meteorological conditions. Its ensemble nature provides robust performance and
resistance to overfitting through bagging (bootstrap aggregating) [70–72]. Also, RF demon-
strates computational efficiency while maintaining competitive performance compared to
more complex models such as deep neural networks.

The mathematical framework of our RF model for AOD gap-filling is based on ensem-
ble learning with multiple decision trees. Each tree generates predictions independently,
and the final prediction is obtained by averaging their outputs. For a given set of input
variables—including meteorological parameters and model-based AOD—the RF model
predicts the missing AOD values using the following mathematical formulation:

ŷ =
1
N

N

∑
j=1

Tj
(
Xj
)

(1)

where ŷ represents the predicted AOD value, N is the total number of trees in the forest
(set to 100 in our implementation), Xj is the vector of input features used for prediction,
and Tj denotes the j-th tree through the bootstrap sampling process. Each decision tree Tj
is constructed using a different bootstrap sample of the training data, ensuring diversity in
the ensemble through random feature selection at each split node.

For gap-filling of Himawari-8/AHI AOD Level 3 hourly data (00, 01, 02, 03, 04, 05,
06, 07 UTC) from 1 January to 31 December 2019, we developed an RF model using
12 variables: CAMS AOD, MERRA-2 AOD, TMP (◦C), U_WS (m/s), V_WS (m/s), BLH (m),
LHFL (W/m²), RH (%), HCDC (%), DSSF (W/m²), PRES (Pa), and DPT (◦C). The model
was implemented using the h2o library in R (Figure 2). To provide optimal balance between
model complexity and performance, the model’s hyperparameters were set to N = 100 and
depth = 20.
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Figure 2. Schematic diagram of the RF model used for gap-filling the Himawari-8/AHI 1-hourly
AOD product. The model integrates LDAPS meteorological variables (TMP, U_WS, V_WS, BLH,
LHFL, HCDC, RH, DSSF, PRES, DPT) and model-based AOD data (CAMS, MERRA-2) as input
features. The output is the predicted AOD (AOD Pred), which is compared with the AHI AOD
for quality assurance. Only AHI AOD data classified as “very good” quality were used for model
training and validation. Solid lines represent the flow and processing of data, while dashed lines
indicate comparisons with reference data.

2.2.3. Model Training and Validation

The model training and verification process consisted of two main components. First,
the complete dataset was split into a training set (433,286 records) and an independent
test set (100,000 records). During training, the gap-filling model learns the relationship
between the input variables and the AHI AOD values classified as “very good” quality,
as indicated by the QA flag. These high-quality AHI AOD measurements serve as the
target variable (ground truth) for model training. The gap-filling model is trained to predict
these AHI AOD values using 12 input variables, which include meteorological factors and
model-based AOD data.

The model evaluation involved both 5-fold Cross Validation (CV) and independent
test set validation. In the 5-fold CV, the training dataset was randomly divided into five
subsets. For each round, one subset was used for evaluation while the model was trained
on the remaining four subsets. The results from the five rounds were then averaged to
produce the CV outcome. This process helped minimize bias and prevent overfitting during
the model development. Second, the independent test set was used to validate the model
(Figure 3). This step ensured that the final results were more reliable, as the test set was not
involved in the training process and did not influence model development.

For both verification processes, the model’s performance was quantitatively evalu-
ated using the following metrics: Mean Bias Error (MBE, the average difference between
predicted and observed values), Mean Absolute Error (MAE, the average magnitude of
errors), Root Mean Square Error (RMSE, the square root of the average of squared errors),
and Correlation Coefficient (CC, a measure of the linear correlation between predicted
and observed values). These metrics provide a comprehensive assessment of the model’s
accuracy, precision, and overall performance in gap-filling AOD data, and are defined
as follows:

MBE =
1
n

n

∑
i=1

(yi − xi) (2)
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MAE =
1
n

n

∑
i=1

|yi − xi| (3)

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (4)

CC =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2

(5)

where xi and yi represent the observed and predicted AOD values respectively, x and y are
their respective means, and n is the total number of samples.
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Figure 3. Schematic representation of the model validation process: The validation process includes a
training set used for 5-fold CV to tune hyperparameters and a separate test set for final evaluation.
The training set is divided into five subsets for CV, with each subset serving as a validation set
once, while the remaining four subsets are used for training. The test set is kept entirely separate to
independently evaluate the model’s performance in the final step.

2.2.4. AERONET Comparison Methodology

To ensure the robustness of our gap-filling results, we conducted additional com-
parisons with ground-based AERONET observations (https://aeronet.gsfc.nasa.gov/,
accessed on 1 September 2024). Spatially, we used the Himawari-8 AOD pixel containing
the coordinates of each AERONET site. Temporally, all available AERONET measure-
ments within each hour were averaged to align with the hourly temporal resolution of
Himawari-8 observations. We used AERONET Level 2.0 data, which are cloud-screened,
quality-assured, and fully calibrated, ensuring the highest data quality for validation. Since
Himawari-8 provides AOD at 500 nm, direct comparison with AERONET 500 nm AOD
was possible without wavelength interpolation.

3. Results
3.1. Gap-Flilling Performance

The gap-filling model showed robust performance throughout the experiments. Based
on the 5-fold CV results of the training set (81.25% of the data) and the independent blind
test (18.75% of the data), our model showed consistent and reliable accuracy in AOD
prediction. Table 3 presents the combined results from both the 5-fold CV and the blind
test, showing various statistical metrics to provide a comprehensive assessment of model
performance. The MBE was 000 for the 5-fold CV and the blind test, indicating that the

https://aeronet.gsfc.nasa.gov/
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model has virtually no systematic bias in its predictions. The MAE values were 0.046
for CV and 0.044 for the blind test, suggesting that, on average, the model’s predictions
deviated from the observed values by less than 0.05 AOD units. The RMSE values were
0.066 for CV and 0.064 for the blind test, indicating that the typical magnitude of prediction
errors were between 0.06 and 0.07 AOD units. The similarity in RMSE values between CV
and the blind test demonstrates that the model generalizes well to unseen data. The CC,
which measures the strength of the linear relationship between predicted and observed
AOD values, was 0.963 for CV and 0.966 for the blind test. These values demonstrate an
exceptionally strong positive correlation, with the R-squared (R²) indicating that the model
explains approximately 92.7% to 93.3% of the variance in observed AOD values.

Table 3. Performance metrics comparing the gap-filling model’s 5-fold CV results (n = 433,286) and
independent blind test results (n = 100,000).

Validation Method n MBE MAE RMSE CC

CV 433,286 0.000 0.046 0.066 0.963

Blind test 100,000 0.000 0.044 0.064 0.966

Figure 4a,b present density scatter plots comparing the gap-filling model’s predicted
AHI hourly AOD values with observed AOD values for both the 5-fold CV set (number of
samples (n) = 433,286) and the blind test set (n = 100,000). The plots illustrate the distribution
of data points along the 1:1 line, with color gradients representing the density of points.
Fitted line equations and performance metrics are displayed on each plot, confirming the
values reported in Table 3.
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Figure 4. Density scatter plots comparing observed versus predicted AHI hourly AOD values using
the gap-filling model with all features for (a) the 5-fold CV set (n = 433,286) and (b) the blind test
set (n = 100,000). The color scale represents the number of data points per pixel, with warmer colors
indicating higher densities. The 1:1 line (indicating perfect prediction) is in black, while the red line
represents the fitted regression line. Statistical metrics (MBE, MAE, RMSE, CC) and the fitted line
equations are provided in the top left corner of each plot.

For the 5-fold CV results (Figure 4a), the fitted line equation is y = 1.075x − 0.024,
suggesting a nuanced relationship between predicted and observed AOD values. The slope
greater than 1 (1.075) indicates that the model tends to overestimate AOD for higher values,
while the small negative intercept (−0.024) implies a slight underestimation for very low
AOD values, creating a crossover point where the model transitions from underestimation
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to overestimation. For the blind test validation results (Figure 4b), the fitted line equation
is y = 0.871x + 0.041, indicating that the model slightly underestimates AOD for higher
observed values (as shown by the slope less than 1, 0.871). The positive intercept (0.041)
suggests a small positive bias for very low AOD values. Both plots demonstrate a strong
correlation between predicted and observed AOD values, with most points clustering along
the 1:1 line, particularly for lower AOD values. The density of points decreases at higher
AOD levels, indicating fewer observations at those values. The slight differences in the
fitted line equations between CV and blind test results reflect some variability in model
performance across different datasets, which is common in statistical modeling. Despite
this, both results indicate a strong overall predictive capability, as evidenced by the high
CC values (0.963 and 0.966, respectively) and low error metrics.

3.2. Model Behavior and Accuracy Under Different Conditions
3.2.1. Seasonal Variations in AOD Estimation

The model’s performance showed notable variations across seasons, as illustrated
in Table 4. In spring, the model achieved the highest CC of 0.970, along with a relatively
low RMSE of 0.068. Summer exhibited the lowest CC (0.939) but also the highest RMSE
(0.082) among all seasons. In fall, the model performed strongly, with a CC of 0.964 and the
second-lowest RMSE (0.058). The winter performance was similarly robust, with a CC of
0.946 and the lowest RMSE (0.051). In terms of bias, all seasons displayed very low MBE
values, ranging from −0.002 in winter to 0.002 in spring, indicating minimal systematic
errors across seasons. MAE values were consistently low, with winter having the lowest
(0.036) and summer the highest (0.060). The full-year statistics (CC: 0.966, RMSE: 0.064,
MAE: 0.044, MBE: 0.000; Table 3) suggest that the model performs well overall, balancing
seasonal variations. These results demonstrate that while the model’s performance varies
slightly by season, it maintains a high level of accuracy throughout the year.

Table 4. Seasonal performance metrics of the gap-filling model for AOD prediction, based on the
blind test set (n = 100,000) using selected features. The metrics include then, MBE, MAE, RMSE, and
CC for each season, as well as for the full year.

Season n MBE MAE RMSE CC

Spring 45,091 0.002 0.048 0.068 0.970

Summer 11,627 0.000 0.060 0.082 0.939

Fall 10,625 0.001 0.038 0.058 0.964

Winter 32,657 −0.002 0.036 0.051 0.946

Notably, despite the substantial difference in sample sizes between spring (n = 45,091)
and fall (n = 10,625), both seasons demonstrated comparable model accuracy, with strong
CCs of 0.970 and 0.964, and similar RMSE values of 0.068 and 0.058, respectively. This
suggests that our gap-filling model maintains stable predictive power, highlighting the
robustness of the selected feature set in capturing seasonal AOD patterns.

3.2.2. Model Performance by Missing Pixel Rates and AOD Ranges

For a more comprehensive evaluation, we examined model performance based on the
rates of missing pixels. Within the randomly selected test dataset of 100,000 cases, missing
pixel rates were classified into two categories, low (<60%) and high (>60%), to represent
different levels of data availability. The low missing rate group comprised 37,707 cases,
while the high missing rates group included 62,293 cases. Both groups showed similar
performance metrics, with an MAE of 0.069 and CC of 0.941 for low missing rate conditions
and an MAE of 0.058 and CC of 0.930 for high missing rate conditions (Table 5).
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Table 5. Performance metrics for the gap-filling model across different missing pixel rates.

Missing Pixel Rates n MBE MAE RMSE CC

Low (<60%) 37,707 −0.003 0.069 0.097 0.941

High (>60%) 62,293 0.008 0.058 0.083 0.930

Further analysis was conducted based on AOD ranges. AOD values were divided into
low (<0.3), medium (0.3–0.8), and high (>0.8) categories, following widely used thresholds
in aerosol studies. From the test dataset of 100,000 cases, most data points fell into the
low (n = 58,550) and medium (n = 36,945) AOD ranges, with fewer samples in the high
AOD range (n = 4505). Model performance was relatively poor for the high AOD group,
with a higher MAE (0.166) compared to the low and medium groups (0.052 and 0.068,
respectively) (Table 6). However, this discrepancy arises because the high AOD category,
with values reaching up to 1.5 or higher, tends to exhibit larger errors due to the scale
dependency of MAE. To mitigate this limitation of MAE, we calculated the normalized
RMSE (NRMSE) by dividing the RMSE by the mean values. As a result, the NRMSE for the
low AOD range was 47.0, while those for medium and high AOD ranges were 19.1 and
20.9, respectively. Estimating low AOD values proved more challenging than for medium
and high values, reflecting similar challenges encountered in satellite retrieval of low AOD
values. When AOD values are low, the aerosol concentration in the atmosphere is minimal,
resulting in a weak aerosol signal. This low signal-to-noise ratio (SNR) makes it challenging
to distinguish the aerosol signal from background signals, such as molecular scattering or
surface reflection. The CC values were relatively lower for the three groups (low, medium,
and high) compared to the entire test dataset. This is expected, as subsets divided by value
range tend to exhibit a more dispersed pattern in scatterplots compared to the full dataset
containing all values (Figure 5).

Table 6. Performance metrics for the gap-filling model across different AOD ranges. The normalized
RMSE (NRMSE) was calculated by dividing the RMSE by the mean values.

AOD n MBE MAE NRMSE CC

Low (<0.3) 58,550 0.042 0.052 47.0 0.711

Medium (0.3–0.8) 36,945 −0.046 0.068 19.1 0.800

High (>0.8) 4505 −0.163 0.166 20.9 0.784
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Figure 5. Difference in Correlation Coefficient (CC) between the entire test dataset and the subsets
divided by value ranges. A higher CC is observed for (a) the entire test dataset, while lower CC
values are observed for (b) the low-value group, (c) the medium-value group, and (d) the high-value
group. Black circles represent the portions of data corresponding to each group, while gray ellipses
show the entirety of the data.

3.2.3. Meteorological Effects on AOD Estimation

This section examines how meteorological conditions influence the accuracy of AOD
estimation, focusing on three meteorological variables (DPT, DSSF, and TMP) that showed
significant influence on the model performance (Table 7). For a detailed evaluation, we
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divided each variable into three ranges based on their meteorological significance. For
DPT, we categorized conditions as low (<−10 ◦C), representing dry atmospheric conditions
with minimal water vapor; medium (−10 to 0 ◦C), representing intermediate moisture
levels; and high (>0 ◦C), indicating humid conditions with substantial atmospheric water
vapor content. DSSF was divided into low (<300 W/m²) for cloudy or twilight conditions,
medium (300–600 W/m²) for typical daytime, and high (>600 W/m²) for clear-sky, peak
solar radiation. TMP ranges were set as low (<0 ◦C) for below-freezing conditions, medium
(0–20 ◦C) for moderate conditions, and high (>20 ◦C) for warm conditions.

Table 7. Summary of gap-filling model performance metrics across different ranges of meteorological
variables (DPT, DSSF, and TMP).

Variable Range n MBE MAE RMSE CC

DPT

Low 15,551 0.001 0.033 0.047 0.956

Medium 45,894 −0.001 0.062 0.087 0.940

High 38,555 0.000 0.077 0.105 0.921

DSSF

Low 339 −0.009 0.049 0.074 0.964

Medium 46,348 −0.001 0.057 0.083 0.933

High 53,313 0.001 0.068 0.096 0.938

TMP

Low 2324 0.001 0.023 0.033 0.943

Medium 65,668 0.000 0.058 0.083 0.934

High 32,008 −0.001 0.077 0.106 0.929

The performance metrics across these ranges reveal several key patterns. DPT shows a
clear performance gradient, with the highest accuracy in cold, dry conditions (RMSE: 0.047,
CC: 0.956) and gradually decreasing performance in more humid conditions (RMSE: 0.105,
CC: 0.921). This pattern suggests more reliable AOD estimation in dry atmospheric condi-
tions. The DSSF-based analysis indicates optimal performance in low-radiation conditions
(CC: 0.964); however, the small sample size (n = 339) calls for careful interpretation. The
performance remains stable across medium and high radiation conditions (CC: 0.933–0.938).
TMP-based metrics show excellent performance in low-temperature conditions (RMSE:
0.033, MAE: 0.023), with slightly reduced accuracy at higher temperatures, aligning with
the DPT pattern and suggesting generally better model performance in cold conditions.
Across all variables, MBE values remain consistently near zero (−0.009 to 0.001), and
high correlation coefficients (CC > 0.92) are maintained across all meteorological ranges,
demonstrating the model’s robust performance under various atmospheric conditions.

3.3. Comparisons with AERONET Observations

We compared the results of our gap-filling model with ground-based AERONET
observations from six sites across South Korea, representing urban, forest, and coastal envi-
ronments (Figure 6). The validation demonstrated that our gap-filling method substantially
improved data availability while largely maintaining data quality. The number of valid
data points increased from 346 to 4149, with a CC of 0.815 for the original data and 0.711 for
the gap-filled data. Figure 7a shows only the original Himawari-8 data points matched with
AERONET observations, and 7b represents the comprehensive gap-filled dataset excluding
the original data points, specifically to evaluate the performance of the gap-filling model.
While the MAE remained stable at 0.156, the RMSE increased slightly from 0.189 to 0.208.
This is because the gap-filling model inherently introduces prediction uncertainty due to
the indirect relationships between predictor variables and AOD. Additionally, the original
dataset includes only clear-sky conditions, where satellite measurements were feasible,
whereas the gap-filled dataset encompasses predictions for conditions that prevented
satellite observations.
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Figure 6. Geographical distribution of the six AERONET sites used for validation in South Korea. The
sites include Gangneung_WNU (forest-adjacent), Seoul_SNU (urban), Hankuk_UFS (forest-adjacent),
Anmyon (forest), and Gwangju_GIST (urban). The map illustrates the diverse environmental settings
of these sites, covering urban areas, forests, and coastal regions across the Korean Peninsula.
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Figure 7. Scatter plots comparing (a) original Himawari-8 AOD data (only matched pairs between
Himawari-8 and AERONET observations) and (b) gap-filled AOD data (only predicted values from
the gap-filling model, excluding original Himawari-8 data) against AERONET AOD observations.
Plot (a) was represented as a scatter plot because of smaller samples (n = 346), whereas plot (b) was
illustrated as a density plot due to larger sample size (n = 4149) with blue tones indicating higher
densities. The 1:1 line is shown in black. Statistical metrics, including MBE, MAE, RMSE, and CC, are
also provided in the top left corner.

Seasonal analysis demonstrated varying performance across different times of the
year (Table 8). The most substantial increase in data availability occurred in winter (40
to 1213 points), with minimal changes in error metrics (RMSE: 0.167 to 0.170; CC: 0.599
to 0.561). Fall showed notable improvements, with RMSE decreasing from 0.198 to 0.134
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and CC increasing from 0.310 to 0.613. However, spring and summer exhibited some
trade-offs, with increased RMSE and decreased CC, likely due to complex atmospheric
conditions including Asian dust events and monsoon activity. The better performance
in fall can be attributed to more stable atmospheric conditions, while the relatively poor
performance in spring and summer reflects the challenges of predicting AOD values under
complex conditions.

Table 8. Seasonal and site-specific validation of original and gap-filled AOD data against AERONET
observations.

Category Subcategory Data Type n MBE MAE RMSE CC

Seasonal

Spring Original 197 −0.101 0.169 0.203 0.872
Gap-filled 1152 −0.047 0.172 0.270 0.640

Summer
Original 68 −0.001 0.124 0.149 0.768

Gap-filled 1016 −0.025 0.194 0.295 0.653

Fall
Original 41 0.125 0.161 0.198 0.310

Gap-filled 768 0.096 0.114 0.134 0.613

Winter
Original 40 0.006 0.144 0.167 0.599

Gap-filled 1213 −0.010 0.109 0.170 0.561

Site-specific

Anmyon
(Non-Urban/Forest)

Original 60 0.042 0.121 0.143 0.880
Gap-filled 757 0.030 0.168 0.240 0.721

Gangneung_WNU
(Non-Urban/Close to Forest)

Original 4 0.080 0.092 0.114 −0.634
Gap-filled 840 0.053 0.102 0.135 0.486

Gwangju_GIST
(Urban)

Original 30 −0.187 0.234 0.271 0.850
Gap-filled 211 −0.044 0.133 0.230 0.670

Hankuk_UFS
(Non-Urban/Close to Forest)

Original 116 −0.096 0.144 0.169 0.880
Gap-filled 777 −0.068 0.177 0.276 0.620

Seoul_SNU
(Urban)

Original 71 −0.029 0.159 0.194 0.819
Gap-filled 492 −0.034 0.151 0.254 0.614

Yonsei_University Original 65 0.022 0.175 0.210 0.697
(Urban) Gap-filled 1072 −0.006 0.151 0.237 0.679

Site-specific analysis revealed distinct patterns across different environments. Data
availability increased substantially across all sites, with non-urban areas showing increases
ranging from 6.7-fold (Hankuk_UFS: 116 to 777) to 210-fold (Gangneung_WNU: 4 to 840),
and urban areas demonstrating 7- to 16.5-fold increases (e.g., Yonsei_University: 65 to 1072).
Performance metrics varied by site type: non-urban sites showed more variable results,
with Gangneung_WNU demonstrating marked improvement from negative correlation
(CC = −0.634, n = 4) to positive correlation (CC = 0.486, n = 840), while Anmyon and
Hankuk_UFS showed increased RMSE (from 0.143 to 0.240 and from 0.169 to 0.276, respec-
tively) and decreased CC (from 0.880 to 0.721 and from 0.880 to 0.620, respectively) despite
bias improvements. Urban sites generally maintained stable error metrics with moderate
decreases in CCs. Notably, the Gwangju_GIST site showed a lower RMSE (0.230) for gap-
filled results compared to the RMSE (0.271) of the original data. Although uncommon, this
can occur when the AOD range is relatively narrow.

These findings indicate that while our gap-filling method successfully addresses data con-
tinuity issues, its performance varies by season and location. The substantial increase in data
availability across all sites suggests the method’s effectiveness, though users should consider
the seasonal and site-specific variations in accuracy when applying the gap-filled data.
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4. Discussion
4.1. Variable Importance Analysis

Our gap-filling model demonstrated robust performance across both CV and blind
test evaluations. Analysis of variable importance (Figure 8) revealed that satellite-derived
AOD products played crucial roles in AOD predictions, with CAMS AOD and MERRA-2
AOD contributing 27.40% and 24.17% of the model’s predictive power, respectively. These
two model-derived AOD variables collectively accounted for approximately half (51.57%)
of the total variable importance, underscoring the value of integrating multiple AOD data
sources in the gap-filling process.
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The remaining 48.43% of importance is attributed to meteorological variables. Among
these, DPT showed the highest importance (8.66%), indicating atmospheric water vapor
content, which significantly affects aerosol hygroscopic growth, especially during Korea’s
humid seasons. Notably, DPT ranked higher than RH (3.62%), suggesting that the moisture
state indicated by DPT may be more critical for AOD prediction in this region than relative
humidity. DSSF (7.91%) and TMP (7.54%) followed in importance, reflecting their signifi-
cant impacts on photochemical reactions and atmospheric mixing processes, respectively.
This aligns with our understanding of aerosol dynamics, where TMP influences chemical
reaction rates and atmospheric mixing, while solar radiation drives photochemical reactions
and affects atmospheric stability. These three variables collectively contribute 24.11% to the
model’s performance, emphasizing the significant influence of temperature and radiation
factors in AOD estimation.

Wind components (UGRD and VGRD), BLH, LHFL, and PRES showed moderate
importance (3.62–4.07%), suggesting their roles in aerosol transport, vertical distribution,
and broader weather patterns influencing AOD, though to a lesser extent than the top
factors. HCDC showed the lowest importance (2.55%), suggesting that in the Korean
context, other factors have a more direct influence on AOD.

Comparing our results with similar studies in East Asia, we found consistencies in the
importance of certain variables, particularly meteorological factors. For instance, a study
on MODIS AOD gap-filling in the Beijing-Tianjin-Hebei region [40] also reported high
importance for variables such as DPT and DSSF. This consistency across regions highlights
the fundamental role of meteorological variables in aerosol dynamics and AOD prediction.
Overall, this analysis provides insights into the relative importance of various meteoro-
logical factors in predicting AOD over Korea, reflecting the region’s unique climate and
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aerosol characteristics. It highlights the complex nature of aerosol–meteorology interactions
and emphasizes the need for comprehensive consideration of multiple variables in AOD
prediction models for this region.

4.2. Methodological Considerations for AOD Prediction

Our study employed a unique approach to manage input variables with varying
temporal and spatial resolutions. We processed meteorological data from LDAPS to gen-
erate hourly values at a high spatial resolution, effectively capturing rapid changes in
atmospheric conditions. While CAMS AOD data were available at a daily resolution and
MERRA-2 AOD data provided hourly information at coarser spatial resolutions compared
to LDAPS, both datasets were integral to our model due to their significant predictive value.

Model-based AOD products such as CAMS and MERRA-2 inherently contain sys-
tematic biases due to differing modeling approaches, assumptions, and data assimilation
methods. As shown in Figure 9, the density scatterplot between MERRA-2 and CAMS
AOD demonstrates relatively good agreement, with a CC of 0.756. The mean bias difference
(MBD) of −0.019 and mean absolute difference (MAD) of 0.095 indicate that, while there are
some systematic differences between the two products, they are not substantial. This mod-
erate level of agreement suggests that both products provide complementary information
about aerosol distributions. Instead of directly combining or averaging AOD values from
different products, our model was designed to learn the complex, non-linear relationships
between these products and the target Himawari-8 AOD values. The model treats CAMS
and MERRA-2 AOD as independent input features, allowing it to automatically weight
their contributions based on predictive power under different conditions. This approach
enables the model to account for and reconcile systematic biases between products while
preserving their unique informational content.
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Through the integration of these diverse data sources, our model produced high-
resolution AOD predictions. This approach is crucial for capturing the dynamic nature
of aerosol distributions, which can vary significantly over short periods and small spatial
scales. The LDAPS data allowed us to downscale the course AOD inputs from CAMS and
MERRA-2, enabling more detailed predictions in complex terrains and urban areas. By
incorporating AOD data from both sources along with dynamic meteorological data, we
achieved a balance between capturing short-term atmospheric variations and maintaining
a comprehensive view of aerosol patterns.

However, it is important to acknowledge the potential limitations of this approach.
One consideration is the temporal interpolation of meteorological data, specifically the
conversion of 3-hourly LDAPS data to hourly values using cubic spline interpolation.
While necessary to match the temporal resolution of our AOD predictions, this process
may introduce some uncertainties. In cases where meteorological conditions fluctuate
rapidly within the 3-h intervals, our hourly interpolations may not fully capture these
short-term variations. This could affect AOD predictions, particularly during periods of
high atmospheric instability or unusual weather events. The assumption of relatively
smooth transitions between the 3-hourly data may not always perfectly reflect real-world
conditions, potentially impacting the model’s accuracy in certain scenarios.

4.3. Gap-Filling Results and Statistics Summary

As shown in Table 9, prior to gap-filling, the data exhibited extremely high null pixel
ratios ranging from 89.5% to 97.3% across seasons, which significantly limits the reliability
of direct statistical comparisons between before and after gap-filling periods. However,
the gap-filling process successfully achieved 100% coverage while maintaining physically
reasonable AOD patterns.

Table 9. Seasonal statistics of Himawari-8/AHI 1-hourly AOD before and after gap-filling.

Season

Before Gap-Filling After Gap-Filling

Min Mean Max Standard
Deviation

Null Pixel Ratio
of Land (%) Min Mean Max Standard

Deviation
Null Pixel Ratio

of Land (%)

Spring 0.004 0.340 2.371 0.069 89.5 0.004 0.363 2.371 0.094 0.0
Summer 0.009 0.370 1.719 0.085 97.2 0.009 0.357 1.780 0.101 0.0

Fall 0.005 0.247 1.969 0.115 97.3 0.005 0.290 1.969 0.071 0.0
Winter 0.011 0.224 1.212 0.059 92.1 0.011 0.270 1.250 0.068 0.0

Full-year 0.004 0.298 2.371 0.082 94.0 0.004 0.312 2.371 0.084 0.0

After gap-filling, the seasonal AOD patterns aligned well with known atmospheric
phenomena in the region. The spring season showed the highest maximum AOD value
(2.371), likely corresponding to Asian dust events that typically occur during this season.
The high summer values (mean: 0.357) reflect increased humidity and secondary aerosol
formation, while the lower winter values (mean: 0.270) are consistent with typical seasonal
patterns. The model’s ability to capture these expected seasonal variations, including
extreme events, while maintaining high CCs (0.970 for spring, 0.939 for summer; Table 4),
suggests successful gap-filling performance.

The monthly analysis reveals crucial temporal patterns that are masked in seasonal
aggregation (Table 10). While the seasonal analysis indicated spring as the season with the
highest mean AOD, the monthly data showed that the highest monthly means occurred in
June (0.391) and March (0.382), offering more precise insights into aerosol concentration
patterns. The extreme null pixel ratios in July to September (98.9–99.0%) pinpoint the
exact timing of cloud interference, likely associated with the summer monsoon period.
Additionally, the monthly analysis captured sharp seasonal transitions, such as the sig-
nificant increase in mean AOD from May (0.354) to June (0.391), followed by a decrease
from November (0.283) to December (0.245). These abrupt changes, which are smoothed
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out in seasonal averages, provide valuable insights for understanding rapid atmospheric
transitions and improving predictions for high-aerosol episodes.

Table 10. Monthly statistics of Himawari-8/AHI hourly AOD before and after gap-filling.

Month

Before Gap-Filling After Gap-Filling

Min Mean Max Standard
Deviation

Null Pixel Ratio
of Land (%) Min Mean Max Standard

Deviation
Null Pixel Ratio

of Land (%)

January 0.024 0.224 0.822 0.060 95.2 0.024 0.264 1.020 0.067 0.0
February 0.012 0.230 1.210 0.068 91.5 0.012 0.300 1.250 0.078 0.0

March 0.006 0.378 2.371 0.100 88.3 0.006 0.382 2.370 0.100 0.0
April 0.004 0.304 2.080 0.099 86.7 0.004 0.354 2.080 0.103 0.0
May 0.007 0.338 1.250 0.116 93.2 0.007 0.354 1.250 0.082 0.0
June 0.009 0.422 1.700 0.133 93.4 0.009 0.391 1.700 0.102 0.0
July 0.016 0.416 1.780 0.100 99.0 0.016 0.381 1.780 0.117 0.0

August 0.019 0.292 1.290 0.075 98.9 0.019 0.300 1.290 0.085 0.0
September 0.007 0.223 0.966 0.075 98.9 0.007 0.240 0.966 0.067 0.0
October 0.008 0.264 1.970 0.085 98.3 0.008 0.346 1.970 0.079 0.0

November 0.005 0.242 1.550 0.065 94.6 0.005 0.283 1.550 0.067 0.0
December 0.011 0.218 1.120 0.056 89.3 0.011 0.245 1.120 0.060 0.0
Full-year 0.004 0.298 2.371 0.082 94.0 0.004 0.312 2.371 0.084 0.0

4.4. Spatio-Temporal Analysis of Gap-Filled AOD Data

Our gap-filling approach achieved complete spatial coverage, improving the AOD
coverage rate from 6% to 100% for the 2019 AHI hourly AOD product. The resulting
hourly AOD maps (Figure A1) captured detailed diurnal variations in aerosol patterns,
enabling the observation of critical air quality events. A notable example is the severe
pollution episode during 1–6 March 2019, when PM2.5 concentrations exceeded 50 µg/m³
in the Seoul metropolitan area, leading to emergency reduction measures. The continuous
hourly data revealed the temporal evolution of this event, demonstrating the value of
high-frequency observations for air quality monitoring and management.

Analysis of the monthly mean AOD (Figure 10) revealed distinct seasonal and spatial
patterns. Winter months (December–February) showed relatively low AOD values (0.245–0.300),
while spring months (March–April) exhibited moderate to high values (0.354–0.382). Sum-
mer months (June–July) consistently showed the highest AOD levels (0.381–0.391), followed
by a sharp decrease to the annual minimum (0.240) in early autumn (September). The
spatial distribution of AOD showed strong correlations with land use patterns, with consis-
tently high AOD values observed in metropolitan areas (Seoul, Incheon, Busan, Gwangju,
Daejeon, and Ulsan), coastal regions, and agricultural areas. In contrast, forested regions,
particularly Gangwon-do, maintained persistently low AOD levels throughout the year.
These patterns suggest that anthropogenic activities and land use characteristics signifi-
cantly influence local aerosol distributions. We recognize that incorporating additional
geospatial and anthropogenic factors (e.g., land use data, population density, traffic volume)
could further enhance our understanding and improve AOD estimations. The enhanced
temporal resolution of our gap-filled product enables better understanding of both short-
term pollution events and long-term aerosol patterns, providing valuable insights for air
quality management and policy development.
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Figure 10. Monthly maps of gap-filled Himawari-8/AHI AOD for the year 2019, illustrating the
spatial distribution of AOD values (ranging from 0 to 1) for each month. These maps provide a
comprehensive view of the seasonal and regional variations in AOD throughout the year.

4.5. Time-Series Comparison with AERONET AOD

The performance of the hourly gap-filling model was evaluated through comparison
with AERONET ground observations during 16–22 March 2019, which encompassed both
typical and elevated AOD conditions. Figure 11 presents time series from three AERONET
stations representing different environments: forest (Anmyon), near-forest (Hankuk_UFS),
and urban (Seoul_SNU) sites. During this period, the AOD exhibited significant vari-
ations, transitioning from low concentrations (16–18 March) to high concentrations of
0.5–2.0 (19 March) before returning to low values (20–22 March). The gap-filling algo-
rithm demonstrated robust performance in reproducing AERONET’s temporal variations
across these diverse conditions. The diurnal patterns during the high-AOD episode on 19
March revealed distinctive site-specific characteristics, with the Anmyon site exhibiting
maximum values at 10:00 KST followed by decreasing trends, whereas the Seoul_SNU and
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Hankuk_UFS sites showed sustained or increasing trends throughout the afternoon. These
patterns can be attributed to the location of the observation sites and predominant wind
directions. Considering Anmyon’s westernmost geographical position and the prevailing
westerly winds, the delayed maxima observed at the Seoul_SNU and Hankuk_UFS sites
likely reflect the aerosol transport time from west to east in the Korean Peninsula. This
interpretation is corroborated by ground-based meteorological observations from adjacent
Automated Synoptic Observing System (ASOS) stations (Boryeong and Hongseong), which
documented persistent southwesterly winds during 09:00–14:00 KST, consistent with the
observed eastward propagation of AOD maxima.
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Figure 11. Time series comparison of Himawari-8 gap-filled AOD (purple) and AERONET
AOD (brown) measurements during 16–22 March 2019, at different sites in South Korea: (a) An-
myon representing a forest environment, (b) Seoul_SNU representing an urban environment, and
(c) Hankuk_UFS representing a near-forest environment. The middle panels (19 March) highlight the
model’s performance during the high-concentration event, while the surrounding dates demonstrate
its capability to capture typical conditions.

A notable case was observed at Seoul_SNU at 11:00 KST, where predicted AOD values
showed a temporary decrease. This pattern appears related to the temporal interpolation
characteristics of humidity-related parameters such as DPT, which exhibited the highest
importance (8.66%) among meteorological variables. Particularly during this hour, DPT
showed a distinctive V-shaped pattern (from −8.13 ◦C to −9.01 ◦C, then recovering to
−8.78 ◦C). An abrupt decrease in DPT results in a drier atmosphere and then lower AOD.
This case shows the importance of input data quality for AOD gap-filling, while the
algorithm’s overall performance remained robust, as evidenced by the well-captured
temporal variations in Figure 11.
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4.6. Comparisons with Existing Gap-Filling Approaches

This study builds upon and extends previous research in AOD gap-filling using
machine learning techniques. While adopting the fundamental RF approach successfully
used by Zhao et al. [41] and Long et al. [73], our study refines and adapts these methods to
address the specific challenges of high-temporal-resolution AOD estimation over South
Korea’s land area. Focusing on South Korea during 2019, with hourly estimations at a
0.05◦ × 0.05◦ resolution, our approach strikes a balance between coverage and granularity,
compared to studies such as Zhao et al. [41], which used daily estimates, and Chen et al. [42],
which employed 10-min intervals.

The model performance metrics highlight the effectiveness of our streamlined RF
approach. With test dataset results showing an MAE of 0.044 and CC of 0.966, our model
achieves accuracy comparable to or surpassing more complex methods, such as Chen
et al.’s [42] hybrid model (CC = 0.80) and Long et al.’s [73] approach (RMSE < 0.1). Extensive
validation using AERONET data (4149 points), with a CC of 0.711 for predictions and 0.815
for Himawari-8, further supports these findings. A distinctive aspect of our methodology
is its efficient use of input variables and moderate dataset size. While recent studies
have incorporated numerous auxiliary variables, such as land use, population, and road
networks, and utilized large datasets (e.g., Zhao et al.’s [41] 164 million samples), our
model achieved robust performance with only 533,286 samples, relying primarily on
CAMS, MERRA AOD, and LDAPS meteorological data. This efficient data selection and
utilization indicate that our approach effectively captures key AOD patterns without
extensive computational resources or complex data integration requirements.

These comparative insights reveal both the strengths of our approach and opportuni-
ties for future enhancement through extended temporal coverage, additional data sources,
and hybrid modeling, while maintaining the model’s computational efficiency and robust
performance. The demonstrated success of our streamlined approach suggests its particular
suitability for operational environmental monitoring applications.

5. Conclusions

This study developed and evaluated a spatial gap-filling approach for AHI hourly
AOD data using an RF model over South Korea, successfully improving data coverage
from 6% to 100%. Key findings include:

(1) By incorporating model-based AOD and meteorological variables, our gap-filling
model demonstrated high accuracy, achieving an MAE of 0.044 and a CC of 0.966 in
the blind tests. CAMS AOD and MERRA-2 AOD were the most influential predictors,
with meteorological variables (DPT, DSSF, and TMP) significantly contributing to the
model’s performance.

(2) Comparisons with AERONET observations showed that the gap-filling method ef-
fectively balanced enhanced data coverage with maintained accuracy, with a stable
MAE of 0.156 and a slight CC decrease from 0.815 to 0.711. The model performed well
across all seasons, with particularly strong performance in fall and winter.

(3) The gap-filled hourly AOD data revealed distinct seasonal patterns (winter: 0.245–0.300;
spring: 0.354–0.382; summer: 0.381–0.391; fall: 0.240–0.346) and captured the influence
of land use characteristics on AOD distributions.

(4) Time-series analysis during 16–22 March 2019 demonstrated the model’s capability
to capture both typical and elevated AOD patterns (0.5–2.0) across different environ-
ments, while also revealing the critical role of input data quality in ensuring accurate
gap-filling results, particularly during high-concentration episodes.
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By providing a more complete and continuous AOD dataset, our method significantly
enhances the capacity for comprehensive air quality monitoring and forecasting across
South Korea. The improved temporal and spatial resolution enable more accurate tracking
of air pollution events, including their onset, duration, and dispersion patterns, thereby
contributing substantially to early warning systems and empowering authorities to imple-
ment timely mitigation strategies. The availability of gap-filled AOD data at high temporal
resolutions also opens new avenues for studying diurnal variations in aerosol concentra-
tions, providing a solid foundation for evidence-based environmental management and
policy decisions.

Future research should focus on enhancing the model’s performance during extreme
events, such as dust storms and wildfires, which cause rapid fluctuations in aerosol distri-
butions. Incorporating additional data sources, including high-frequency meteorological
observations, real-time emission records, high-resolution Digital Elevation Models (DEMs),
and detailed land-use information, could improve the model’s ability to capture localized ef-
fects and extreme events. Integrating these diverse datasets would be particularly beneficial
for predicting abrupt and intense changes in AOD levels, which are currently challenging to
capture. Additionally, implementing hybrid deep learning models, such as Convolutional
Long Short-Term Memory (ConvLSTM) networks combined with Graph Neural Networks
(GNNs), could further improve model accuracy in predicting extreme events.

The proposed method can enhance our understanding of aerosol dynamics by provid-
ing continuous, high-resolution AOD data, overcoming the limitations of polar-orbiting
satellites such as MODIS or VIIRS in capturing diurnal variations. This approach has po-
tential applications for other geostationary satellites, such as the Advanced Meteorological
Imager (AMI) on GeoKompsat-2A (GK2A) and the Geostationary Environment Monitoring
Spectrometer (GEMS) and Geostationary Ocean Color Imager-2 (GOCI-2) on GeoKompsat-
2B (GK2B), contributing to improved regional and global aerosol monitoring capabilities.
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Figure A1. Representative examples of hourly AOD gap-filling results for 2019, showing sample sets 
from each of the 12 months (January to December) to reflect different seasonal patterns. Each row 
displays 8 consecutive hours (00–07 UTC) of AOD data for a selected date. The “Before” rows show 
the original AOD data with gaps, while the “After” rows present the gap-filled data. A color scale 
indicates AOD values, ranging from 0 (blue) to 1 (red). 

  

Figure A1. Representative examples of hourly AOD gap-filling results for 2019, showing sample sets
from each of the 12 months (January to December) to reflect different seasonal patterns. Each row
displays 8 consecutive hours (00–07 UTC) of AOD data for a selected date. The “Before” rows show
the original AOD data with gaps, while the “After” rows present the gap-filled data. A color scale
indicates AOD values, ranging from 0 (blue) to 1 (red).
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