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Abstract: This review article details the advancements in detecting heavy metals in aquatic envi-
ronments using remote sensing methodologies. Heavy metals are significant pollutants in aquatic
environment, and their detection and monitoring are crucial for predicting water quality. Traditional
in situ water sampling methods are time-consuming and costly, highlighting the advantages of remote
sensing techniques. Analysis of the reflectance and absorption characteristics of heavy metals has
identified the red and near-infrared bands as the sensitive wavelengths for heavy metal detection
in aquatic environments. Several studies have demonstrated a correlation between total suspended
matter and heavy metals, which forms the basis for retrieving heavy metal content from TSM data.
Recent developments in hyperspectral remote sensing and machine (deep) learning technologies may
pave the way for developing more effective heavy metal detection algorithms.

Keywords: heavy metal; remote sensing algorithm; hyperspectral remote sensing; machine learning
method

1. Overview of Heavy Metal Pollution

Heavy metals are recognized for their significant biotoxicity and resistance to degrada-
tion and are prevalent across various environmental media in nature. These pollutants are
characterized by their mobility, persistence, and propensity for bioaccumulation, posing
substantial threats to ecological systems [1]. Due to their non-biodegradable nature, toxicity,
endurance, and accumulation in the food chain, heavy metals can infiltrate the human
body through dietary intake, ultimately compromising human health [2,3]. In aquatic
environments, heavy metals manifest in three primary forms: particulate, where they
adhere to suspended particles; dissolved, where they are complexed by dissolved organic
matter; and biological, where they are assimilated by phytoplankton [4–6]. Consequently,
the distribution of heavy metal concentrations in water is governed by three components:
suspended sediments, phytoplankton, and dissolved organic substances. Human activities,
particularly through sediment deposition in rivers, render heavy metals a critical ecological
and public health concern globally. Common heavy metals include cadmium (Cd), arsenic
(As), lead (Pb), mercury (Hg), copper (Cu), zinc (Zn), and nickel (Ni). The environmental
concern largely centers on highly biotoxic metals such as Hg, Cd, Pb, Cr, and As, as well as
other toxic metals like Zn, Cu, cobalt (Co), Ni, and tin (Sn) [7].

The origins of heavy metals in aquatic systems are multifaceted, deriving from both the
natural weathering of rocks and various dispersed pollution sources, including dust, rainfall,
and water quality transformations [8]. Predominantly, mining and industrial wastewater
significantly elevate metal concentrations in riverine environments. Sediments in river–
lake systems are chiefly influenced by anthropogenic activities, encompassing industrial
emissions, chemical fertilizer applications, and aquaculture. Domestic wastewater also
contains heavy metals, and the combustion of liquid fuels, vehicle wear, and the weathering
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of track or road materials release particulates laden with heavy metals. Thus, industrial
and agricultural waste, runoff, and atmospheric deposition serve as primary contributors to
surface water contamination [9–12]. Heavy metals in water can manifest in various forms,
sometimes occurring as ions. These metals can react with S2 to form metal sulfides, a critical
depositional form of toxic heavy metals. In high-oxygen environments, these metal sulfides
may dissolve, re-releasing heavy metal ions and causing pollution [13–16].

Effective monitoring of heavy metals in water is essential for protecting aquatic envi-
ronments from contamination by these pollutants. Traditionally, this involves collecting
water samples and subsequently analyzing heavy metal concentrations in laboratories.
However, this method is laborious, costly, and inefficient, making it impractical for ex-
tensive water body surveillance. Satellite remote sensing technology has emerged as a
formidable alternative, demonstrating its efficacy in detecting key water quality indicators
such as chlorophyll a (Chl-a), suspended particulate matter (SPM), colored dissolved or-
ganic matter (CDOM), turbidity, etc. The adoption of remote sensing techniques offers a
promising substitute for traditional methods, enabling more comprehensive monitoring
of heavy metal concentrations in aquatic environments. Therefore, this paper presents a
review of the latest advancements in the remote sensing of heavy metals in water bodies,
and some polluting light metals are also discussed, highlighting remote sensing’s potential
as a transformative tool for environmental protection.

2. Spectral Characteristics of Heavy Metal

Theoretically, remote sensing reflectance of a certain substance in water can be linked
to the absorption and backscattering by [17].

R(λ) = G
bb(λ)

a(λ) + bb(λ)
, (1)

where a(λ) and bb(λ) represent absorption and backscattering, respectively; G is a constant that
depends on the incident light field. Equation (1) elucidates that the optimal bands for detecting
specific water constituents (including heavy metals) are those characterized by significant
backscattering, facilitating the remote sensing sensor’s ability to discern the backscattering
signal emanating from the water content. Bands with high absorption properties are also valu-
able for detection purposes, as absorption can attenuate remote sensing reflectance, thereby
manifesting the influence of the specific water constituents on the reflectance spectra. In prac-
tical applications, the presence of complex optically sensitive materials in water necessitates
careful selection of the optimal bands, taking into account the spectral properties of other
aqueous substances to circumvent signal interference among these components.

Understanding reflection and absorption spectra of the heavy metals is a key step
in detecting or quantifying heavy metal concentrations in water bodies. It is a base for
constructing theoretical and empirical algorithms in retrieving heavy metal concentrations
using remote sensing spectral reflectance data. As early as the 1940s, detailed observations
on the spectral characteristics of heavy metal began to appear [18,19]. For copper ammonia
solution, it was found that there is an absorption peak between 600 and 650 nm [20]. The
absorption spectra of copper sulfate (CuSO4) solutions were measured in the wavelength
range of 400–1100 nm, and the results revealed that the maximum of molal absorption
coefficient is at 780 nm of the red band [21].

Recently, Liang et al. [22] improved a spectral measurement system including an
Analytical Spectral Devices (ASD) (Malvern PANalytical, Longmont, CO, USA) spectrometer,
with the adjustable path length of passing light that can provide accurate results at the visible
and near-infrared wavelength ranges. The absorption coefficient spectrum (400–900 nm) of
copper ions in water was measured by this spectrometer system. The absorption coefficient
in the blue and green solutions is very low but rapidly increases from the red to near-infrared
region; maximum absorption is observed at 810 nm, and the absorption coefficient is larger
in red than in blue and green [22]. Deng et al. [23] further investigated the absorption
coefficient spectrum in 400–900 nm of hydrated and complex ferric ion in water with the
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same spectrum measurement system. The results indicate that all the absorption coefficients
of three types of the types of ferric ions in blue are larger than green and red and slightly
change from red to near-infrared. The value of the absorption coefficient of three types
of ferric ion from large to small (potassium ferricyanide, ferric sulfate, and ferric chloride)
ranges from 400 nm to 455 nm. The absorption coefficient of ferric sulfate is larger than
potassium ferricyanide and ferric chloride and ranges from 460 nm to 900 nm. The best
wavelengths of absorption spectra used to estimate concentrations are 417, 469, and 624 nm
for ferric chloride, potassium ferricyanide, and ferric sulfate, respectively [23].

The spectroscopic examination of cadmium compounds uncovers distinctive attributes
within the absorption (or extinction) coefficient spectrum of CdS, marked by two depres-
sions at 550 nm and 830 nm and a prominent peak at 675 nm [24]. The extinction coefficient
spectrum of CdO demonstrates a reduction from the purple to the near-infrared spectrum.
For both substances, the extinction coefficients in the blue spectrum exceed those in the
green and red spectra. In terms of reflectance, CdS demonstrates elevated levels in the
yellow and red zones, in stark contrast to the lower values noted in the purple and blue
regions. Meanwhile, CdO’s reflectance exhibits a consistent upward trend from 525 to
900 nm. These observations emphasize that the highest reflectance values are found in the
yellow and red spectra, indicating these bands’ heightened sensitivity to fluctuations in
cadmium levels within water bodies [24]. By using multi-concentration pollution standard
solution samples of Pb and Cd in a single water body, the reflectance spectra were mea-
sured; optimal spectral bands for Pb were identified at 554 nm and 748 nm, and for Cd at
1102 nm and 1137 nm [25].

In addition to laboratory measurements, field observations were undertaken to delin-
eate the spectral properties of aquatic environments contaminated with heavy metals in
real-world scenarios. Utilizing an Analytical Spectral Devices (ASD) (Malvern PANalyt-
ical, Longmont, CO, USA) spectrometer, Liang et al. [26] documented the water-leaving
reflectance spectrum from mine drainage at Dabaoshan Mountain. They observed a stable
reflective peak within the 600 to 700 nm range (red light spectrum). Generally, the findings
demonstrated that the drainage water exhibited maximal absorption in the purple band
and minimal absorption in the red band. Beginning at 400 nm, the absorption coefficient
decreased precipitously, moderated in the blue and green bands, then diminished rapidly
again approaching the yellow band until it reached a nadir at 676 nm. This specific spectral
pattern was attributed to the presence of ferric sulfate and its hydrolysate.

These studies suggest that most heavy metal ions in water exhibit sensitive bands
in absorption within the red spectral bands. This recurring pattern indicates that the
red bands could be the most effective choice for detecting and quantifying heavy metal
concentrations in aquatic environments. Enhancing our understanding of these spectral
characteristics can significantly improve the accuracy of remote sensing methods used in
monitoring and assessing pollution levels, ultimately aiding in the effective management
and remediation of contaminated water bodies. Table 1 lists sensitive bands of heavy metal
solutions measured in the laboratory.

Table 1. Sensitive bands of heavy metal solutions measured in laboratory.

Heavy Metal Solutions (Concentration) Absorption Reflectance References

Cu -NH3 solution (1–5 mol/m3) 600–650 nm Bjerrum and Agarwal [20]
CuSO4 780 nm Jancso [21]
Cu ions 810 nm Liang et al. [22]
FeCl3 (0.138~0.390 g/L) 417 nm Deng et al. [23]
C6FeK3N6 (potassium ferricyanide) (0.023 g/L) 469 nm Deng et al. [23]
Fe2(SO4)3 (0.123~0.161 g/L) 624 nm Deng et al. [23]
CdS (0.048~0.494 g/L) 675 nm Yellow, red Liang et al. [24]
CdO (0.106~0.129 g/L) Blue band Red Liang et al. [24]
Standard solution of Pb (0.01~2.0 mg/L) 654, 535 nm Luo et al. [25]
Standard solution of Cd (0.01~2.0 mg/L) 1067, 1079 nm Luo et al. [25]



Remote Sens. 2024, 16, 3888 4 of 14

3. Empirical Remote Sensing Algorithms of Heavy Metal in Waters

Although certain heavy metal solutions exhibit distinct spectral characteristics amenable
to remote sensing detection, the majority of heavy metals do not manifest detectable spectral
signals. Consequently, direct spectral analysis often fails to accurately quantify heavy metal
concentrations. Fortunately, there exist optically sensitive materials in water that demon-
strate a strong correlation with heavy metal content. For instance, in a tidally influenced
wetland, methylmercury (MeHg) exhibits a significant correlation with dissolved organic
matter (DOM). Thus, by quantifying DOM concentrations through spectral reflectance, it
becomes feasible to detect MeHg using remote sensing techniques [27]. Additionally, in the
same region, factors such as turbidity and fluorescent dissolved organic matter (FDOM)
have been successfully employed to estimate mercury concentration in unfiltered water
samples (UTHg) with a 94% accuracy across different seasons [28].

By analyzing sampled data in the Pearl River estuary (PRE), Chen et al. [29] found
that the spectral band data at 711 nm have a correlation of 0.51 with both Cu and Zn
concentrations, the band ratio B711/B406 has a high correlation (0.75) with Cu, and band
ratio B711/B416 has the highest correlation (0.80) with Zn. These high correlations revealed
that empirical algorithms could be developed to estimate the Zn and Cu concentrations
with the spectral data. Thus, Zn, Pb, and Cu concentrations in the PRE were estimated
using empirical models with single band and band ratio as input features, and the retrieval
correlation coefficient was higher than 0.7 [4]. Based on these algorithms and Landsat data,
the spatial patterns of the Zn, Pb, and Cu concentration were derived; this study shows
that the red band of 660 nm is a key band to estimate the concentrations of Zn, Pb, and
Cu [4]. A substantial majority (over 80%) of heavy metals are sequestered and complexed
by suspended sediments, with the degree of metal adsorption being contingent upon the
load and size of these sediments. Therefore, information regarding the load and size of
suspended sediments could serve as critical indicators for the assessment of heavy metal
concentrations via remote sensing methods and thus the concentration of the heavy metal,
Zn, can be written as follows [30]:

CZn = f (CSS, γ) (2)

where CZn represents the Zn concentration in the particulate phase, Css is the suspended
sediment (SS) concentration, and γ is the particulate scattering spectral slope, reflecting
size information of suspended sediments, which could be estimated by the remote sensing
reflectance. Liu et al. [30] revealed there are strong linear relationships of CZn in logarithm
with SS concentration and γ, and therefore an empirical model could be developed based
on this linear relationship and in situ data with the correlation coefficient of ~0.8. In this
empirical algorithm, the red–near-infrared (NIR) bands of 620~779 nm were selected as the
major band and the 520 nm as the reference band to generate band ratios [30].

With the development of remote sensing technology, satellite hyperspectral sensors
have been launched with operational observations of the earth surface, providing more
choices of wavelength bands for water quality parameter retrieval [31–33]. Corresponding
to these hyperspectral data, more spectral bands could be selected for heavy metal concen-
tration retrieval in field spectrometer measurements. Rostom et al. [34] used a FieldSpec-3
ASD(Malvern PANalytical, Longmont, CO, USA) Spectroradiometer to observe the hy-
perspectral reflectance in Mariut Lake of Egypt, and based on the spectral data and the
sampled heavy metal concentrations, they established the empirical models for retrieval of
the concentrations of Mn, Co, Cr, Ni, Cu, Cd, Pb, Fe, and Zn. Except Co, Cd, and Zn, which
had correlation coefficients less than 0.6, the correlation coefficients of other heavy metals
are higher than 0.7, and more than 10 wavelength banks were employed to estimate the
concentration of these heavy metals in a range of 366–1013 nm [34]. The key spectral wave-
lengths associated with copper ion concentrations in solutions predominantly fall within
the 900 to 1100 nm range [35–37]. Utilizing laboratory spectral reflectance measurements
for copper ion solutions, Huang et al. [35] constructed an algorithm designed to predict
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copper ion concentrations in the NIR bands at 901.11 and 1079.08 nm using logarithmically
transformed reflectance data, which achieved an adjusted R2 of 0.827. This result implies
that applying a logarithmic transformation to the spectral data enhances the model’s pre-
dictive performance by compressing the data while maintaining its fundamental spectral
attributes and reducing low-frequency noise [35,38].

The transport and distribution of heavy metals are associated with suspended particles
due to their high binding affinity [39–42]. Thus, it is a practical way to estimate the heavy
metal concentrations in water bodies by measuring Total Suspended Solids (TSS) [39,43,44].
Based on this method, Swain and Sahoo [39] developed an empirical algorithm to calculate
the turbidity from the red (L3) (631–692 nm) and NIR (L4) (772–898 nm) Landsat bands and
the relationship between the TSS and turbidity. Then, the empirical algorithms of heavy
metals of Fe, Zn, Cu, Cr, Pb, and Cd from TSS were built up, and finally the algorithms of
heavy metal from input features of L3 and L4 were established with correlation coefficients
between 0.76 and 0.93 in the validation [39].

By measuring in situ spectral reflectance data and heavy metal concentrations in
sampled waters, Rajesh et al. [45] found linear relationships between the spectral data
and the concentrations of heavy metals, such as As, Cd, Cr, Cu, Fe, Pb, Ni, Co, Mg, Be, B,
Li, and Mo, with correlation coefficients higher than 0.7 using recursive linear regression
analysis. The highest correlation coefficient, 0.94, was observed for Cd and Cr, indicating
that spectral measurements can effectively assess heavy metal pollution [45]. In a real
case of polluted wastewater containing heavy metals, it was revealed that as heavy metal
pollution increased, the spectral reflectance pattern changed significantly from orange-red
to brownish-red. This demonstrates that spectral characteristics can be used to discern the
extent of heavy metal pollution [46].

4. Machine Learning Algorithms
4.1. Machine Learning Versus Traditional Algorithms

In recent years, machine learning (including deep learning) technology has become
increasingly prominent for water quality retrieval in various aquatic environments, includ-
ing rivers, lakes, estuaries, and coastal waters [47–49]. Machine learning methodologies
markedly elevate the precision of remote sensing algorithms in the retrieval of aquatic
parameters by surmounting a range of challenges that conventional approaches often
encounter. A predominant issue lies in the intricate and non-linear associations between
water quality indicators and the spectral data captured by remote sensing platforms. Tra-
ditional models frequently falter in accurately representing these complexities, whereas
machine learning algorithms, particularly sophisticated non-linear models such as neural
networks, demonstrate superior proficiency in encapsulating these nuanced relationships.
This capability leads to enhanced predictive accuracy for critical parameters, including
chlorophyll concentration and turbidity [50–52]. Conventional remote sensing algorithms
typically hinge on predefined assumptions, which may not exhibit robust generalizability
across diverse environmental contexts. In contrast, machine learning models, driven by
empirical data, eschew these limitations by adapting to a multitude of conditions, thereby
yielding more precise and reliable predictions. The strength of these models is further
amplified by their adeptness at integrating heterogeneous datasets from multiple sources,
such as various satellites and sensors, thereby refining overall predictive accuracy through
ensemble learning techniques [53–55].

Machine learning excels in the domain of automatic feature extraction, facilitating
the identification of salient patterns within the data that might elude traditional manual
analysis. This enhances the accuracy of water parameter retrieval, particularly in complex
or data-rich scenarios. The intrinsic flexibility of machine learning models allows for them
to be retrained or fine-tuned with new datasets, ensuring their adaptability to evolving
conditions or region-specific variations—a critical attribute for sustained monitoring ef-
forts [56–59]. In addition to their adaptability, machine learning models exhibit resilience
against noise and data uncertainties, with techniques such as regularization and probabilis-
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tic modeling fortifying their robustness. This resilience ensures that predictions remain
reliable even in the presence of data imperfections. Finally, the computational efficiency
of machine learning models enables rapid inference post-training, rendering them highly
suitable for real-time or near-real-time applications, such as the monitoring of water quality
during natural disasters or other dynamic environmental events [60–62]. In summation,
machine learning significantly enhances the accuracy, adaptability, and efficiency of remote
sensing algorithms in the retrieval of aquatic parameters by addressing inherent challenges
with advanced, data-driven technique.

4.2. Machine Learning Methods

The machine learning technology application has not only advanced the retrieval of
non-optically sensitive parameters but also offered fresh perspectives. For example, Zhou
et al. [63] employed a backpropagation (BP) neural network machine learning method
to retrieve some metal ion concentrations in West Taijinar Lake, Qaidam Basin, China
from satellite spectral band data. The BP neural network is a form of supervised learning
algorithm characterized by its multilayer feedforward structure, which includes an input
layer, several hidden layers, and an output layer. The learning process in a BP neural
network involves modifying its weights to minimize the discrepancy between the predicted
and actual outputs observed during training. This process of adjusting weights based
on errors is conducted in a reverse manner, flowing from the output layer back to the
input layer, which is why it is termed backpropagation [64]. At first, 20 optimal bands
were identified from 115 bands of the HJ-1A hyperspectral dataset with the Adaptive
Band Selection (ABS) method. Employing these selected bands in the ABS analysis, they
developed the BP neural network model capable of estimating K+, Mg2+, Na+, Cl−, and
SO4

2− ion concentrations with an accuracy exceeding 85% [63].
Sentinel-2A data were utilized to estimate lithium concentrations within the Arizaro

Salt Lake in Salta Province, Argentina [65]. The remote sensing models for lithium concen-
tration in the lake were established using selected Sentinel-1A bands (R4, R6, R8, and R8a),
with their corresponding wavelengths listed in Table 2. Three distinct remote sensing mod-
els were developed: the Principal Component Analysis (PCA) regression model, BP neural
network model, and Random Forrest (RF) model. The RF model is an ensemble learning
method primarily used for classification and regression tasks. It works by constructing
multiple decision trees during training and merging their results to improve accuracy and
prevent overfitting. Each tree in the forest is built on a different random subset of the data,
and when making predictions, the model takes the majority vote (for classification) or
the average (for regression) of the trees’ predictions. This method enhances the model’s
robustness and generalization by reducing the variance often seen in individual decision
trees [66].

Table 2. Sentinel-2A bands and wavelengths for Li retrieval models.

Bands R4 R6 R8 R8a

Wavelength (nm) 665 740 842 865

The PCA regression model yielded a determination coefficient (R2) of 0.725, the BP
neural network model achieved an R2 of 0.731, while the RF model demonstrated the
highest R2 of 0.771. These results indicate that the RF model exhibited relatively lower
relative errors, ranging from a minimum of 5.2% to a maximum of 21.3% for the detection
range of 6.8 to 96.0 mg/L [65].

Utilizing Landsat-8 remote sensing imagery (Band1–7), the estimation of lithium
concentration in the North Lake of Zabuye Salt Lake in Tibet was conducted through
remote sensing observations, employing the Light Gradient Boosting Machine (LightGBM)
model [67]. The LightGBM is a high-performance, gradient boosting framework developed
by Microsoft. It is known for its efficiency and speed, particularly in handling large datasets.
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LightGBM employs a unique leaf-wise tree growth strategy, as opposed to the traditional
level-wise growth, which can lead to faster training times and improved accuracy. It
utilizes histogram-based algorithms for optimizing splits, thereby reducing memory usage
and increasing computational efficiency. LightGBM supports categorical features directly,
eliminating the need for manual feature encoding. Additionally, it offers capabilities for
parallel and GPU learning, making it highly scalable and suitable for a variety of machine
learning tasks including classification, regression, and ranking problems [68].

Based on many advantages, the LightGBM integrates multiple decision trees to synthe-
size decision results, overcomes the limitations of single learners, and addresses the issues
of the limited bands in Landsat remote sensing data [69–71]. The model can well estimate
the Li concentrations in the range of 424.7–568.1 mg/L, with the accuracy of an average
relative error (AVE) of 5.3%, and a coefficient of determination (R2) of 0.87 [67]. Using
Landsat-8 remote sensing imagery (Band1–7), the wavelength range of Landsat bands is
shown in Table 3.

Table 3. Wavelength range of Landsat bands.

Landsat Band 1 2 3 4 5 6 7

Wavelength (nm) 433–453 450–515 525–600 630–680 845–885 560–1660 2100–2300
Resolution (m) 30 30 30 30 30 30 30

A recent study conducted in Dalian Lake, Shanghai, China, reported the retrieval of
Cu and Fe ions utilizing in situ hyperspectral data and a machine learning model [72].
Initially, optimal features for estimating concentrations of total organic carbon (TOC),
Chl-a, and total phosphorus (TP) were identified using the random forest (RF) approach,
considering the original spectrum (OR), first-order derivative reflectance (FDR), and second-
order derivative reflectance (SDR). Subsequently, the Genetic Algorithm–Partial Least
Squares Regression (GA-PLSR) approach was used to develop an effective algorithm. The
Genetic Algorithm–Partial Least Squares Regression (GA-PLSR) approach combines genetic
algorithms (GAs) with partial least squares regression (PLSR) to optimize feature selection
and predictive modeling in high-dimensional data. This method uses the evolutionary
capabilities of GAs to select the most relevant variables, which are then used in PLSR to
model the relationship between predictors and response variables. The hybrid approach is
particularly effective in handling datasets with multicollinearity or more predictors than
observations, enhancing both model simplicity and predictive accuracy [73]. The GA-PLSR
was applied for the inversion of Cu and Fe ions, utilizing in-situ hyperspectral bands at
497, 665, 686, 831, and 935 nm for Cu retrieval, and 700, 746, 801, 948, and 993 nm for Fe
retrieval. The results indicated that the GA-PLSR model surpassed both the PLSR and RF
models, achieving an R2 of 0.75 in a range of 0.002–0.025 mg/L for Cu inversion. Similarly,
for Fe inversion, the GA-PLSR model demonstrated superior performance with an R2 of
0.73 in a range of 0.014–0.262 mg/L [72].

Based on these studies, we can find that compared with empirical algorithms, the
machine learning algorithms allow for more input features for model establishment, which
can better make use of hyperspectral data with more than 100 bands. Some empirical and
machine learning algorithms are summarized in Table 4.
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Table 4. Algorithms for retrieval of polluted metals from remote sensing reflectance.

Sources Metals Significant Band and
Band Ratio Algorithm Detection Range Sample

No.
R2

(Validation) MRE RMSE

Chen et al. [4]. Cu, Pb, Zn
B660/B560,
B660/B485,
B560/B485

log Cu = 2.23454log (R660/R560) + 1.4445
log Pb = 0.5310log[(R660 + R560)/R485] + 0.0777
log Zn = 1.784log (R660/R560)+1.7742

Cu: 80
Pb: 56
Zn: 83

Cu: 0.75
Pb: 0.83
Zn: 0.75

Liu, et al. [30]. Zn

B681/B560,
B754/B560,
B620/B560,
B779/B865 log Zn =


0.4×

(
2.3776R620

R560
− 0.7467

)
+

0.6R779
R865

R620
R560

< 0.9

0.01×
[
0.8971× (R681+R754)

R560
+ 0.5125

]
+ 0.9 R779

R865

R620
R560

≥ 0.9
5.67–86.62 µg/L 65 0.88 24.7% 5.51 µg/L

Rostom et al. [34].

Mn
Co
Cr
Ni
Cu
Cd
Pb
Fe
Zn

B531, B904
B989, B997, and B985
B989, B990, and B945,

B989 and B1013
B704

B1001, B952, and B887
B989, and B990

B366
B1001, B977, & B996

Mn = 0.021 + 1.157R531 − 0.966R904
Co = 0.134 − 61.536R989 + 115.889R997 − 69.808R985
Cr = 0.086 − 57.461R989 + 62.272R997 − 3.492R945
Ni = 0.577 − 47.625R989 + 14.589R1013
Cu = −0.037 + 0.303R704
Cd = −0.013 + 10.096R1001 − 5.888R952 + 0.219R887
Pb = 1.354 − 243.647R989 + 207.788R990
Fe = 0.018 + 4.376R366
Zn = −0.587 + 125.347R1001 + 392.603R977 − 299.516R996

Mn: 0.097–0.245 mg/L
Co: 0.069–0.199 mg/L
Cr: 0.006–0.120 mg/L
Ni: 0.395–0.516 mg/L
Cu: 0.006–0.094 mg/L
Cd: 0.003–0.068 mg/L
Pb: 0.980–1.527 mg/L
Fe: 0.034–1.261 mg/L
Zn: 0.021–1.160 mg/L

22

Mn: 0.70
Co: 0.58
Cr: 0.86
Ni: 0.82
Cu: 0.97
Cd: 0.27
Pb: 0.88
Fe: 0.87
Zn: 0.27

Huang et al. [35]. Cu ion B901.11, B1079.08 Cuion = 7829.05 × [log( 1
R901.11

)−8085.861 × [log ( 1
R1079.08

)] + 208.703 100–1000 mg/L, 98 0.74 (adjusted)

Swain and
Sahoo [39].

Fe, Zn, Cu,
Cr, Pb, Cd

L3: 631–692 nm,
L4: 772–898 nm,

L3/L4

log Tu = −30L3
1.02 + 29.99L4

0.62 − 4.67
(

L3
L4

)−0.72
+ 2.24

TSS =


2.73Tu

0.98 + 4.63, Tu ≤ 50
4.37Tu

0.83, 50 < Tu < 200
0.22Tu

1.12 + 135.84, Tu ≥ 200
Fe = 20.27 × (TSS)1.008

Zn = 3.98 × (TSS)0.43 + 0.16
Cu = 1.084 × exp[0.013(TSS)]Cr = 0.0005 × (TSS)2.20 + 3.69
Pb = 2.87 × exp[0.01(TSS)]
Cd = 0.306 × exp[0.017(TSS)]

Fe: 95.01–7538.03
µg/L

Zn: 7.85–49.86 µg/L
Cu: 1.15–109.21 µg/L
Cr: 3.70–207.38 µg/L
Pb: 3.01–207.38 µg/L
Cd: 0.33–127.45 µg/L

250

From Ln to Tu:
0.90

From Tu to TSS:
0.86

Form TSS to
metal:

0.76–0.91 for all,
among which,

Cd: 0.91
Fe: 0.76

From Ln to Tu:
27.28 NTU

From Tu to TSS:
28.27 mg/L

Form TSS to Metal:
3.76–38.72 µg/L for

all metals

Zhou et al. [63]. K+, Mg2+,
Na+

HJ–1A bands: 105,
104, 106, 103, 107, 46,

45, 109, 102, 47, 48,
108, 49, 101, 44, 50,

100, 70, 51, 99

BP Neural Network
K: 2.9–3.5 g/L

Mg: 6.4–7.4 g/L
Na: 110–116 g/L

21 >0.85 <10%

Wang et al. [65]. Li

Sentinel-2A Bands 4
(665 nm), 6 (740 nm),

8 (842 nm), 8a
(865 nm)

BP Neural Network
Random Forrest (RF) 6.8–96 mg/L 30 BP: 0.731

RF: 0.771

(mg/L)
15.719
12.822

Liu et al. [67]. Li Landsat Bands 1–7 LightGBM 424.7 -568.1 mg/L 27 0.876 5.3% 10.287 mg/L

Lin et al. [72]. Cu, Fe

Cu: 497, 665, 686, 831,
and 935 nm

Fe: 700, 746, 801, 948,
and 993 nm

Genetic Algorithm–Partial Least Squares Regression (GA-PLSR)
PLSR

RF

Cu: 0.002–0.025 mg/L
Fe: 0.014–0.262 mg/L 35

Cu:
RF 0.53

PLSR 0.57
GA-PLSR 0.75

Fe:
RF 0.47

PLSR 0.57
GA-PLSR 0.73

Cu:
RF 42.4%

PLSR 48.6%
GA-PLSR 38.2%

Fe:
RF 56.3%

PLSR 46.6%
GA-PLSR 46.4%

Cu:
RF 0.004 mg/L

PLSR 0.004 mg/L
GA-PLSR 0.004 mg/L

Fe:
RF 0.045 mg/L

PLSR 0.037 mg/L
GA-PLSR 0.036 mg/L
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5. Discussion

Heavy metal concentrations serve as a crucial indicator of water quality. While sig-
nificant advancements have been made in optical detection of water quality parameters
such as chlorophyll-a (Chl-a), colored dissolved organic matter (CDOM), and total sus-
pended matter (TSM), quantifying heavy metals through optical remote sensing remains
challenging due to the limited research in this area. Most heavy metals are not optically
active on their own; however, some of them may associate with optically active substances
like TSM, Chl-a, and CDOM. These associations create a correlation between the concen-
trations of these water quality parameters and the presence of heavy metals. Therefore,
by accurately determining the concentrations of TSM, Chl-a, or CDOM, it is possible to
indirectly estimate heavy metal concentrations in water. Existing studies primarily examine
the correlation between TSM and heavy metals, with most algorithms for remote sensing
of heavy metals employing the red and near-infrared (NIR) bands. These wavelengths
are ideal for retrieving TSM concentrations. For instance, Chen et al. [29] utilized remote
sensing reflectance at 660 nm and 560 nm for the detection of copper (Cu), lead (Pb), and
zinc (Zn) concentrations, while [30] used NIR bands at 754, 779, and 865 nm to analyze
TSM particle size distribution. More recent studies by Huang et al. [35], Rostom et al. [34],
and Swain and Sahoo [39] have employed longer NIR wavelengths to detect a wider range
of heavy metals in aquatic environments, suggesting that increased spectral resolution in
the NIR could enhance the detection of heavy metals in water.

Some heavy metal solutions exhibit distinct spectral characteristics, such as Cu ions
in water, which typically give a green color. To accurately determine the concentrations
of these metals, it is essential to identify their spectral patterns in aquatic environments,
especially for common pollutant metals. Laboratory measurements can be conducted to
control concentrations and establish empirical relationships between concentration levels
and spectral data. However, many heavy metals do not exhibit clear spectral properties or
correlations with total suspended matter (TSM) or other optically active water components,
making it challenging to estimate their concentrations. New mechanisms are needed
to explain the correlation between spectral data and heavy metal concentrations, which
would enable indirect methods of retrieval. Beyond spectral data, multi-source information,
such as hydrodynamic parameters, may also be useful for detecting non-optically active
water components [74], particularly if a connection between heavy metal concentrations
and hydrodynamic properties exists. It is important to recognize that detecting heavy
metals in water through remote sensing is a relatively new area of study. Current research
is still in its early stages, with many limitations, but there is considerable potential for
further development.

Hyperspectral remote sensing offers an extensive array of bands across both the NIR
and visible light spectra, significantly enhancing the fidelity of remote sensing studies.
These studies typically leverage in situ spectral measurements to generate data that ac-
curately reflects satellite hyperspectral sensor readings. Hyperspectral satellite missions,
initiated in the 1980s, have progressively advanced our observational capabilities [75,76].
For instance, NASA’s HyperSpectral Imager (HSI) in the LEWIS mission featured 128 bands
spanning the 0.4–1.0 µm range in visible light and NIR, and 256 bands in the SWIR range of
0.9–2.5 µm, with spectral resolutions of 5.0 nm and 6.5 nm, respectively [77]. Although the
HSI mission concluded in 2008, it yielded a substantial dataset for heavy metal detection in
aquatic surfaces. Subsequently, in 2000, NASA launched the Hyperion sensor aboard the
Earth Observing-1 (EO-1) satellite, which included 220 spectral bands across 0.4–2.5 µm
with a spectral resolution of 10 nm and spatial resolution of 30 m [78]. More recently, in
2022, Germany deployed the Environmental Mapping and Analysis Program (EnMAP)
hyperspectral satellite, which mirrors Hyperion’s spectral range but with enhanced spectral
resolutions of 6.5 nm in the VNIR and 10 nm in the SWIR, facilitating ongoing stable earth
observations crucial for monitoring aqueous heavy metal concentrations [79]. Another
significant hyperspectral mission is NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem
(PACE), launched in February 2024, which includes the Ocean Color Instrument (OCI) that
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spans from 315 nm in the ultraviolet to 895 nm in the NIR, with a spectral resolution of
2.5 nm [80].

China has also been active in hyperspectral imaging, launching missions like Zhuhai-1
and GaoFen-5, which feature high-resolution hyperspectral sensors. The Orbita hyperspec-
tral satellites (OHS) of the Zhuhai-1 mission provide about 256 bands in the 0.4–1.0 µm
range with a spectral resolution of 2.5 nm, while the Advanced Hyperspectral Imager
(AHSI) aboard GaoFen-5 offers 330 bands across 0.39 to 2.51 µm with spectral resolutions
of 5 nm in the VNIR and 10 nm in the SWIR ranges [81,82].

As technological advancements continue, we anticipate significant enhancements
in hyperspectral missions, characterized by increasingly sophisticated sensors that offer
finer spectral and spatial resolutions. With the proliferation of bands in reflectance data,
specialized approaches are necessary to process or select pertinent band data for devel-
oping algorithms targeting heavy metal detection. In this context, machine learning and
deep learning technologies are pivotal in integrating as much reflectance data as possible
observed in hyperspectral remote sensing. Prominent machine and deep learning method-
ologies include random forest (RF) [83], Gradient Boosting Decision Tree (XGBoost) [47],
Support Vector Machine (SVM) [70], Deep Neural Network (DNN) [84], and Mixture Den-
sity Network (MDN) [85]. These techniques are systematically classified into ensemble
tree methods, kernel-based approaches, and neural network strategies. Diverging from
traditional empirical methods, machine learning foregoes a static model framework; rather,
it continuously refines models through a process of “learning” from errors, thereby deci-
phering the complex interactions between independent variables (spectral reflectance) and
dependent variables (heavy metal concentrations) [86]. This iterative learning process is
poised to enhance the accuracy of heavy metal retrieval, skillfully navigating the varied
optical properties of aquatic environments. To bolster the application of machine and deep
learning in water heavy metal detection, an expanded dataset is essential, necessitating
increased water sample collection for robust model development. With the influx of satellite
hyperspectral data coupled with advanced machine learning techniques, the detection of
heavy metals at acceptable accuracies is increasingly feasible.

6. Conclusions

Heavy metal pollution represents a growing threat to both ecological systems and
human health due to the biotoxicity and persistence of these pollutants across various
environmental media. In aquatic environments, heavy metals exhibit complex behaviors,
shifting between particulate, dissolved, and biological forms as they interact with sus-
pended sediments, phytoplankton, and dissolved organic matter. Recent advancements in
water color remote sensing have facilitated the detection of heavy metal concentrations in
aquatic environments. Notably, the reflectance and absorption characteristics of metals like
Cu, Fe, and Cd are primarily within the red and near-infrared (NIR) spectra, ranging from
600 to 810 nm, suggesting that these spectral ranges can be effectively utilized for detecting
these heavy metals.

Empirical algorithms have been developed to estimate concentrations of metals such
as Cu, Pb, and Zn by combining in situ spectral data from red bands with heavy metal
measurements from water samples. Additionally, research has highlighted the relationship
between heavy metals and total suspended matter in water, which has led to the develop-
ment of algorithms that enhance the retrieval of total suspended matter and improve heavy
metal detection capabilities.

Hyperspectral remote sensing, which offers a broader range of spectral bands, has
further enhanced the precision of heavy metal detection in aquatic environments by cap-
turing the complex and subtle spectral characteristics of these pollutants. The integration
of artificial intelligence (AI) with hyperspectral remote sensing holds promise for signifi-
cantly improving heavy metal retrieval practices. Studies have demonstrated that machine
learning, a data-driven approach, can enhance retrieval accuracy. However, the effective-
ness of AI in this context is currently limited by the availability of extensive datasets on
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heavy metal concentrations and their associated spectra. As more data become available,
AI technologies are expected to play a crucial role in accurately estimating heavy metal
concentrations in aquatic environments, paving the way for more robust monitoring and
management strategies.
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