Detection of Vertebrate Skeletons by Ground Penetrating Radars: An Example from the Ica Desert Fossil-Lagerstätte
<p>Physiography of the study area. (<b>a</b>) Boundaries of the Pisco Basin (yellow line); CLQ = Cerro Los Quesos; NR = Nazca Ridge; (<b>b</b>) survey area at Cerro Los Quesos (purple line). The topography is slightly exaggerated.</p> "> Figure 2
<p>Trace analysis and modelling. In this example, the first 13 ns of a radar profile trace (dashed line) are modelled by the superposition of nine Ricker wavelets with either positive or negative polarity and different amplitudes. The arrival times of these wavelets mark the location of as many reflectors, some of which could not be detected by visual analysis.</p> "> Figure 3
<p>An example of the composition between 90°-phase Ricker wavelets with opposite polarities. The horizontal axis shows two-way travel times. <span class="html-italic">t<sub>c</sub></span> is the wavelet central time. (<b>a</b>) When the two wavelets are spaced by more than ~3 ns, their composition shows two distinct reflections. (<b>b</b>) If we increase the amount of overlap, a coalescent reflection forms, but we can still distinguish two positive peaks associated with the two component wavelets. (<b>c</b>) In the case of two strongly overlapped wavelets, a large amplitude peak forms, which could be erroneously interpreted as resulting from a single reflector separating two media characterized by a strong dielectric contrast. Instead, it results from wavelet interference.</p> "> Figure 4
<p>Top: Shift and reduction in the amplitude spectrum bandwidth with time due to dispersion. A quality factor <span class="html-italic">Q</span><sup>*</sup> = 20 is assumed. Both the peak and central frequencies are shifted to the left. Bottom: Corresponding dispersion of a 90°-phase Ricker wavelet in the time domain.</p> "> Figure 5
<p>Transient instrumental drift. The horizontal axis shows the elapsed time, while the vertical axis shows the observed peak amplitudes (in counts) after AGC gain, bandpass (200–600 MHz) filtering, and stacking (sliding window of width 7). The experiment shows that peaks below ~11 ns TWTT have an initial transient phase of ~600 s, characterized by instrumental drift, which is followed by a more stable phase of quasi-constant amplitude (red dashed lines).</p> "> Figure 6
<p>Mean trace and 1σ instrumental uncertainty. Left: Time-averaged trace <<span class="html-italic">A</span>> (black line) in the stable range between 600 and 1200 s. The dashed red and blue lines show the upper and lower 1σ intervals, respectively. This is the same dataset as that in <a href="#remotesensing-16-03858-f005" class="html-fig">Figure 5</a>. Right: Standard deviations of the mean trace amplitudes in the stable range between 600 and 1200 s (dots). The corresponding linear regression curve (black dashed line) is used in the forward modelling procedures as a depth-dependent estimate of the instrumental uncertainty.</p> "> Figure 7
<p>Large-scale structures and radar stratigraphy at the top of CLQ (Area P5), as observed by a 200 MHz antenna. (<b>a</b>) Geological structures identified on a representative radar profile. The dashed red line is a small-offset normal fault that causes downward slip and the anticlockwise rotation of the layers to the right of the fault plane. Inset <span class="html-italic">I</span> shows an interval characterized by numerous dolomite nodules. <span class="html-italic">T</span> is a representative trace that has been analyzed by forward modelling. <span class="html-italic">L</span><sub>1</sub> and <span class="html-italic">L</span><sub>2</sub> are thin low-velocity layers, while <span class="html-italic">H</span><sub>1</sub> and <span class="html-italic">H</span><sub>1</sub> are thin encapsulated high-velocity layers. Correlation with a key marker bed outcropping at area P4A indicates that the ~20 cm thick layer <span class="html-italic">P</span> around a depth of 400 cm is the Perro horizon described by [<a href="#B13-remotesensing-16-03858" class="html-bibr">13</a>]. <span class="html-italic">X</span> and <span class="html-italic">Y</span> are two reflectors that bound zones with a strong increase in velocity. α is a region of decreasing velocity between <span class="html-italic">H</span><sub>1</sub> and <span class="html-italic">H</span><sub>2</sub>, which can be observed in the radar profiles of area P4A (see below). (<b>b</b>) A model of trace <span class="html-italic">T</span> between zero and 170 ns. (<b>c</b>) A pseudo-reflectivity plot, showing wavelet arrivals, polarities, and scaled reflection amplitudes, and the associated geological interpretation. Green and reddish regions are encapsulated low- and high-velocity zones, respectively. Yellow regions are characterized by a general increase in velocity and can be interpreted as diatomaceous beds.</p> "> Figure 8
<p>Radar stratigraphy of Area P4A, as observed by a 400 MHz antenna. (<b>a</b>) Survey geometry at area P4A on a background DEM image. W is the outcropping part of the vertebral column, N is a surface bulge just above the dolomite nodule, P is the Perro key bed. (<b>b</b>) A radar profile (at <span class="html-italic">x</span> = 0) not affected by the presence of the buried skeleton. T is a representative trace (at <span class="html-italic">x</span> = 1 m). (<b>c</b>) A model of trace T (left) and the corresponding pseudo-reflectivity plot (right). The latter shows wavelet arrivals, polarities, and scaled reflection amplitudes. α is the decreasing velocity region of <a href="#remotesensing-16-03858-f007" class="html-fig">Figure 7</a>, while <span class="html-italic">H</span><sub>1</sub> and <span class="html-italic">H</span><sub>2</sub> are high-velocity beds. Correlation lines (black dashed lines) link the reflectivity peaks to wavelet centers, not to arrival times.</p> "> Figure 9
<p>Amplitude slices at site P4A. (<b>a</b>) Orthomosaic of area P4A after partial excavation and cleaning. The brown envelope around the skeleton is associated with the presence of iron oxides. The dolomite nodule above and around the whale skull is also evident. (<b>b</b>) Reflection amplitudes between 2.5 and 3.4 ns. Blue and red regions have low and high reflectivity, respectively. (<b>c</b>) Reflection amplitudes between 6.7 and 7.6 ns. (<b>d</b>) Reflection amplitudes between 9.5 and 10.5 ns.</p> "> Figure 10
<p>Identification of vertebrae and ribs on the radar profiles of the fossil whale at site P4A. The background image shows an orthomosaic of the whale after partial excavation and cleaning. Fe-Ox = Iron oxide layer; Mn-Ox = Manganese oxide layer; Ox = Iron and manganese oxide envelope around the whale skeleton; N = dolomite nodule; V = vertebral column. The modelling of traces T1 and T2 shows the signature of the vertebral column and some ribs. In these profiles, vertebrae and ribs are embedded in the layer α. Bones are detected as thin structures, bounded by strong reflectivity peaks of opposite polarity.</p> "> Figure 11
<p>Identification of the cranium and mandibles on the radar profiles of the fossil whale at site P4A. C = cranium; SP = supraorbital process; other symbols are the same as in <a href="#remotesensing-16-03858-f010" class="html-fig">Figure 10</a>.</p> "> Figure 12
<p>Identification of rostrum and mandible on the radar profiles of the fossil whale at site P4A. R-M = rostrum/mandible; other symbols are the same as <a href="#remotesensing-16-03858-f010" class="html-fig">Figure 10</a>.</p> "> Figure 13
<p>A reconstruction of the underground between depths of 0 and 130 cm along a cross-section at <span class="html-italic">x</span> = 3.5 m in Area P4A. This reconstruction shows the lateral extent of the high-velocity layers <span class="html-italic">H</span><sub>1</sub> and <span class="html-italic">H</span><sub>2</sub> and the geometry of the depression below the whale head. The small high-contrast brown, blue, and orange regions between <span class="html-italic">x</span> = 8.1 and 8.6 m represent the cranium and the underlying Mn and Fe oxides.</p> "> Figure 14
<p>Identification of dinosaur footprints on a radar profile (top) acquired at Dinosaur Ridge (CO) (data courtesy of L. Conyers). Yellow = sandstone; light green = mudstone. Orange and dark green areas are high- and low-velocity regions, respectively.</p> "> Figure 15
<p>Velocity analysis of area P4A. (<b>a</b>) Spline regression of the rms velocities obtained by hyperbola fitting (black line). Red dots are the observed rms velocities (by the migration procedure). The blue line shows the laterally homogeneous velocity profile, based on Dix’s equation. The numbers refer to layer numbering. (<b>b</b>) Reflectivity plot for area P4A, in terms of TWTT.</p> ">
Abstract
:1. Introduction
2. Geological Setting of the Study Area
3. Trace Analysis
4. Survey and Preprocessing Methods
4.1. GPR Data Acquisition and Pre-Processing
- Survey mode = Distance mode (with survey wheel)
- Scans/m = 50
- Samples/scan = 1024/512
- Range = 300/70 ns
- Bits/sample = 32
- Line spacing = 5 or 0.5/0.25 m
- Automatic gain control (AGC)
- Time-zero correction
- Bandpass filtering
- Stacking
- Cepstrum deconvolution (only for amplitude slices)
- Kirchhoff migration (only for amplitude slices)
- Creation of amplitude slices
4.2. Aerial Photogrammetry
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conyers, L.B. Ground-penetrating radar mapping using multiple processing and interpretation methods. Remote Sens. 2016, 8, 562. [Google Scholar] [CrossRef]
- Millington, T.M.; Cassidy, N.J.; Nuzzo, L.; Crocco, L.; Soldovieri, F.; Pringle, J.K. Interpreting complex, three-dimensional, near-surface GPR surveys: An integrated modelling and inversion approach. Near Surf. Geophys. 2011, 9, 297–304. [Google Scholar] [CrossRef]
- Bianucci, G.; Collareta, A. An overview of the fossil record of cetaceans from the East Pisco Basin (Peru). Boll. Soc. Paleontol. Ital. 2022, 61, 19–20. [Google Scholar]
- Sheriff, R.E.; Geldart, L.P. Exploration Seismology, 2nd ed.; Cambridge University Press: Cambridge, UK, 1995; 573p. [Google Scholar]
- Bristow, C.S.; Jol, H.M. Ground Penetrating Radar in Sediments; Geological Society of London: London, UK, 2003; 330p. [Google Scholar]
- Kallweit, R.S.; Wood, L.C. The limits of resolution of zero-phase wavelets. Geophysics 1982, 47, 1035–1046. [Google Scholar] [CrossRef]
- Huggenberger, P. Radar facies: Recognition of facies patterns and heterogeneities within Pleistocene Rhine gravels, NE Switzerland. Geol. Soc. Lond. Spec. Publ. 1993, 75, 163–176. [Google Scholar] [CrossRef]
- Ricker, N. Wavelet contraction, wavelet expansion, and the control of seismic resolution. Geophysics 1953, 18, 769–792. [Google Scholar] [CrossRef]
- Widess, M.B. How thin is a thin bed? Geophysics 1973, 38, 1176–1180. [Google Scholar] [CrossRef]
- van Dam, R.L.; van Den Berg, E.H.; Schaap, M.G.; Broekema, L.H.; Schlager, W. Radar reflections from sedimentary structures in the vadose zone. Geol. Soc. Lond. Spec. Publ. 2003, 211, 257–273. [Google Scholar] [CrossRef]
- Guha, S.; Kruse, S.E.; Wright, E.E.; Kruse, U.E. Spectral analysis of ground penetrating radar response to thin sedimentary layers. Geophys. Res. Lett. 2005, 32, L23304. [Google Scholar] [CrossRef]
- Bianucci, G.; Di Celma, C.; Collareta, A.; Landini, W.; Post, K.; Tinelli, C.; de Muizon, C.; Bosio, G.; Gariboldi, K.; Gioncada, A.; et al. Fossil marine vertebrates of Cerro Los Quesos: Distribution of cetaceans, seals, crocodiles, seabirds, sharks, and bony fish in a late Miocene locality of the Pisco Basin, Peru. J. Maps 2016, 12, 1037–1046. [Google Scholar] [CrossRef]
- Di Celma, C.; Malinverno, E.; Cantalamessa, G.; Gioncada, A.; Bosio, G.; Villa, I.M.; Gariboldi, K.; Rustichelli, A.; Pierantoni, P.P.; Landini, W.; et al. Stratigraphic framework of the late Miocene Pisco Formation at Cerro los Quesos (Ica desert, Peru). J. Maps 2016, 12, 1020–1028. [Google Scholar] [CrossRef]
- Bosio, G.; Malinverno, E.; Villa, I.M.; Di Celma, C.; Gariboldi, K.; Gioncada, A.; Barberini, V.; Urbina, M.; Bianucci, G. Tephrochronology and chronostratigraphy of the Miocene Chilcatay and Pisco formations (East Pisco Basin, Peru). Newsl. Stratigr. 2020, 53, 213–247. [Google Scholar] [CrossRef]
- Gariboldi, K.; Pike, J.; Malinverno, E.; Di Celma, C.; Gioncada, A.; Bianucci, G. Paleoceanographic implications of diatom seasonal laminations in the Upper Miocene Pisco Formation (Ica desert, Peru) and their clues on the development of the Pisco Fossil-Lagerstätte. Paleoceanogr. Paleoclimatol. 2023, 38, e2022PA004566. [Google Scholar] [CrossRef]
- Malinverno, E.; Bosio, G.; Gioncada, A.; Cimò, R.; Andò, S.; Mariani, L.; Coletti, G.; Boschi, C.; Gariboldi, K.; Galimberti, L.; et al. Laterally-continuous dolomite layers of the Miocene Pisco Formation (East Pisco Basin, Peru): A window into past cyclical changes of the diagenetic environment. Mar. Pet. Geol. 2023, 147, 105977. [Google Scholar] [CrossRef]
- Bianucci, G.; Marx, F.G.; Collareta, A.; Di Stefano, A.; Landini, W.; Morigi, C.; Varola, A. Rise of the titans: Baleen whales became giants earlier than thought. Biol. Lett. 2019, 15, 20190175. [Google Scholar] [CrossRef]
- Wang, Y. The Ricker wavelet and the Lambert W function. Geophys. J. Int. 2015, 200, 111–115. [Google Scholar] [CrossRef]
- Wang, Y. Frequencies of the Ricker wavelet. Geophysics 2015, 80, A31–A37. [Google Scholar] [CrossRef]
- Zeng, H.; Backus, M.M. Interpretive advantages of 90°-phase wavelets: Part 1—Modeling. Geophysics 2005, 70, C7–C15. [Google Scholar] [CrossRef]
- Arcone, S.A.; Spikes, V.B.; Hamilton, G.S. Phase structure of radar stratigraphic horizons within Antarctic firn. Ann. Glaciol. 2005, 41, 10–16. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, B.; Han, W.; Peng, J.; Xu, Z. A new approach for extracting the amplitude spectrum of the seismic wavelet from the seismic traces. Inverse Probl. 2017, 33, 085005. [Google Scholar] [CrossRef]
- Lash, C.C. A note on “Aspects of vertical seismic resolution” by O. Koefoed. Geophys. Prospect. 1982, 30, 515–518. [Google Scholar] [CrossRef]
- Bradford, J.H. Frequency-dependent attenuation analysis of ground-penetrating radar data. Geophysics 2007, 72, J7–J16. [Google Scholar] [CrossRef]
- Economou, N.; Kritikakis, G. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS). J. Appl. Geophys. 2016, 126, 13–26. [Google Scholar] [CrossRef]
- Quan, Y.; Harris, J.M. Seismic attenuation tomography using the frequency shift method. Geophysics 1997, 62, 895–905. [Google Scholar] [CrossRef]
- Bano, M. Modelling of GPR waves for lossy media obeying a complex power law of frequency for dielectric permittivity. Geophys. Prospect. 2004, 52, 11–26. [Google Scholar] [CrossRef]
- Schettino, A.; Ghezzi, A.; Pierantoni, P.P. Magnetic field modelling and analysis of uncertainty in archaeological geophysics. Archaeol. Prospect. 2019, 26, 137–153. [Google Scholar] [CrossRef]
- Howell, B.F., Jr.; Licastro, P.H. Dielectric behavior of rocks and minerals. Am. Mineral. 1961, 46, 269–288. [Google Scholar]
- Bottom, V.E. Dielectric constants of quartz. J. Appl. Phys. 1972, 43, 1493. [Google Scholar] [CrossRef]
- Apel, D.B.; Dezelic, V. Evaluation of high frequency ground penetrating radar (GPR) in mapping strata of dolomite and limestone rocks for ripping technique. Int. J. Surf. Min. Reclam. Environ. 2005, 19, 260–275. [Google Scholar] [CrossRef]
- Nelson, S.; Lindroth, D.; Blake, R. Dielectric properties of selected and purified minerals at 1 to 22 GHz. J. Microw. Power Electromagn. Energy 1989, 24, 213–220. [Google Scholar] [CrossRef]
- Baklanov, M.R.; Maex, K. Porous low dielectric constant materials for microelectronics. Philos. Trans. R. Soc. A 2006, 364, 201–215. [Google Scholar] [CrossRef]
- Bosio, G.; Collareta, A.; Di Celma, C.; Lambert, O.; Marx, F.G.; de Muizon, C.; Gioncada, A.; Gariboldi, K.; Malinverno, E.; Malca, R.V.; et al. Taphonomy of marine vertebrates of the Pisco Formation (Miocene, Peru): Insights into the origin of an outstanding Fossil-Lagerstätte. PLoS ONE 2021, 16, e0254395. [Google Scholar] [CrossRef]
- Collareta, A.; Lambert, O.; Marx, F.G.; de Muizon, C.; Malca, R.V.; Landini, W.; Bosio, G.; Malinverno, E.; Gariboldi, K.; Gioncada, A.; et al. Vertebrate Palaeoecology of the Pisco Formation (Miocene, Peru): Glimpses into the ancient Humboldt Current ecosystem. J. Mar. Sci. Eng. 2021, 9, 1188. [Google Scholar] [CrossRef]
- Gariboldi, K.; Gioncada, A.; Bosio, G.; Malinverno, E.; Di Celma, C.; Tinelli, C.; Cantalamessa, G.; Landini, W.; Urbina, M.; Bianucci, G. The dolomite nodules enclosing fossil marine vertebrates in the East Pisco Basin, Peru: Field and petrographic insights into the Lagerstätte formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 438, 81–95. [Google Scholar] [CrossRef]
- Gioncada, A.; Gariboldi, K.; Collareta, A.; Di Celma, C.; Bosio, G.; Malinverno, E.; Lambert, O.; Pike, J.; Urbina, M.; Bianucci, G. Looking for the key to preservation of fossil marine vertebrates in the Pisco Formation of Peru: New insight from a small dolphin skeleton. Andean Geol. 2018, 45, 379–398. [Google Scholar] [CrossRef]
- Urban, T.M.; Bennett, M.R.; Bustos, D.; Manning, S.W.; Reynolds, S.C.; Belvedere, M.; Odess, D.; Santucci, V.L. 3-D radar imaging unlocks the untapped behavioral and biomechanical archive of Pleistocene ghost tracks. Sci. Rep. 2019, 9, 16470. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V. Why Ricker wavelets are successful in processing seismic data: Towards a theoretical explanation. In Proceedings of the IEEE Symposium on Computational Intelligence for Engineering Solutions CIES 2014, Orlando, FL, USA, 9–12 December 2014. [Google Scholar]
- Liu, J.; Wu, Y.; Han, D.; Li, X. Time-frequency decomposition based on Ricker wavelet. In SEG Technical Program Expanded Abstracts 2004; Society of Exploration Geophysicists: Houston, TX, USA, 2004; pp. 1937–1940. [Google Scholar]
- Zhang, X.; Liu, C.; Feng, X.; Li, B.; Li, K.; You, Q. The attenuated Ricker wavelet basis for seismic trace decomposition and attenuation analysis. Geophys. Prospect. 2020, 68, 371–381. [Google Scholar] [CrossRef]
- Radzevicius, S.J.; Guy, E.D.; Daniels, J.J. Pitfalls in GPR data interpretation: Differentiating stratigraphy and buried objects from periodic antenna and target effects. Geophys. Res. Lett. 2000, 27, 3393–3396. [Google Scholar] [CrossRef]
- Rashed, M.; Rashed, E.A. Double-Sided Sliding-Paraboloid (DSSP): A new tool for preprocessing GPR data. Comput. Geosci. 2017, 102, 12–21. [Google Scholar] [CrossRef]
- Kim, J.-H.; Cho, S.-J.; Yi, M.-J. Removal of ringing noise in GPR data by signal processing. Geosci. J. 2007, 11, 75–81. [Google Scholar] [CrossRef]
- Chen, C.-S.; Jeng, Y. Nonlinear data processing method for the signal enhancement of GPR data. J. Appl. Geophys. 2011, 75, 113–123. [Google Scholar] [CrossRef]
- Dondurur, D. Acquisition and Processing of Marine Seismic Data; Elsevier: Amsterdam, The Netherlands, 2018; 598p. [Google Scholar]
- Meglich, T.M. Use of ground penetrating radar in detecting fossilized dinosaur bones. In Proceedings of the Eighth International Conference on Ground Penetrating Radar, Gold Coast, Australia, 27 April 2000; Volume 4084, pp. 536–541. [Google Scholar]
- Ercoli, M.; Bizzarri, R.; Baldanza, A.; Bertinelli, A.; Mercantili, D.; Pauselli, C. GPR Detection of Fossil Structures in Conductive Media Supported by FDTD Modelling and Attributes Analysis: An Example from Early Pleistocene Marine Clay at Bargiano Site (Central Italy). Geosciences 2021, 11, 386. [Google Scholar] [CrossRef]
- Leucci, G. A ground penetrating test to detect vertebrate fossils. Archaeology 2013, 2, 28–37. [Google Scholar]
- Wysokowski, M.; Zaslansky, P.; Ehrlich, H. Macrobiomineralogy: Insights and enigmas in giant whale bones and perspectives for bioinspired materials science. ACS Biomater. Sci. Eng. 2020, 6, 5357–5367. [Google Scholar] [CrossRef]
- Keenan, S.W. From bone to fossil: A review of the diagenesis of bioapatite. Am. Mineral. 2016, 101, 1943–1951. [Google Scholar] [CrossRef]
- Bosio, G.; Gioncada, A.; Gariboldi, K.; Bonaccorsi, E.; Collareta, A.; Pasero, M.; Di Celma, C.; Malinverno, E.; Urbina, M.; Bianucci, G. Mineralogical and geochemical characterization of fossil bones from a Miocene marine Konservat-Lagerstätte. J. S. Am. Earth Sci. 2021, 105, 102924. [Google Scholar] [CrossRef]
- Giacomazzi, L.; Scandolo, S. Gypsum under pressure: A first-principles study. Phys. Rev. B 2010, 81, 064103. [Google Scholar] [CrossRef]
- Shannon, R.D.; Rossman, G.R. Dielectric constants of apatite, epidote, vesuvianite, and zoisite, and the oxide additivity rule. Phys. Chem. Miner. 1992, 19, 157–165. [Google Scholar] [CrossRef]
- Tillard, S.; Dubois, J.C. Analysis of GPR data: Wave propagation velocity determination. J. Appl. Geophys. 1995, 33, 77–91. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schettino, A.; Ghezzi, A.; Collareta, A.; Pierantoni, P.P.; Tassi, L.; Di Celma, C. Detection of Vertebrate Skeletons by Ground Penetrating Radars: An Example from the Ica Desert Fossil-Lagerstätte. Remote Sens. 2024, 16, 3858. https://doi.org/10.3390/rs16203858
Schettino A, Ghezzi A, Collareta A, Pierantoni PP, Tassi L, Di Celma C. Detection of Vertebrate Skeletons by Ground Penetrating Radars: An Example from the Ica Desert Fossil-Lagerstätte. Remote Sensing. 2024; 16(20):3858. https://doi.org/10.3390/rs16203858
Chicago/Turabian StyleSchettino, Antonio, Annalisa Ghezzi, Alberto Collareta, Pietro Paolo Pierantoni, Luca Tassi, and Claudio Di Celma. 2024. "Detection of Vertebrate Skeletons by Ground Penetrating Radars: An Example from the Ica Desert Fossil-Lagerstätte" Remote Sensing 16, no. 20: 3858. https://doi.org/10.3390/rs16203858
APA StyleSchettino, A., Ghezzi, A., Collareta, A., Pierantoni, P. P., Tassi, L., & Di Celma, C. (2024). Detection of Vertebrate Skeletons by Ground Penetrating Radars: An Example from the Ica Desert Fossil-Lagerstätte. Remote Sensing, 16(20), 3858. https://doi.org/10.3390/rs16203858