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Abstract: Temperature and precipitation are important abiotic factors affecting net primary productiv-
ity (NPP) in grassland ecosystems. However, findings on how elevation influences the effects of these
factors on NPP in alpine grasslands are not yet consistent. In addition, the impact of varied patterns
of climate change on NPP sensitivity with elevation remain unclear. Therefore, alpine grassland on
the Tibetan Plateau (TP) was selected to profile the spatial and temporal patterns of NPP from 2001
to 2022, and subsequently to reveal the effects of temperature and precipitation on the sensitivity
of NPP with altitudinal gradient. The results showed that (1) 91% of the TP grassland experienced
positive NPP trends, and the NPP trends followed a unimodal curve with elevation, with the largest
mean value at 2500 m; (2) a positive correlation between precipitation and NPP dominated the
grassland NPP up to an elevation of 3400 m, and a positive correlation between temperature and
NPP dominated the grassland NPP above an elevation of 3400 m; (3) temperature, precipitation, and
their interaction explained, on average, 21% of the temporal variation in the NPP of TP grassland,
and the explanatory capacity decreased significantly with elevation; and (4) elevation, temperature,
and precipitation variations together explained 35% of the NPP sensitivity of the TP grasslands. This
study reveals the altitudinal characteristics of NPP in grasslands affected by climate, and reminds us
to take elevation into account when carrying out grassland management.

Keywords: net primary productivity; climate change; elevation gradient; alpine grassland; Tibetan
Plateau

1. Introduction

Grassland is one of the Earth’s three continental terrestrial ecosystems and a major
carbon reservoir. It stores about 15.2% of the total carbon of terrestrial ecosystems and
plays a pivotal role in the global carbon cycle [1,2]. However, grassland ecosystems possess
a relatively simple community structure and are susceptible to external disturbances that
affect vegetation growth [3,4]. In particular, dramatic environmental changes over the
past decades have resulted in greater interannual variability of net primary productivity
(NPP) in grassland ecosystems than in forest and desert ecosystems [5,6]. As an important
component of the carbon cycle, NPP serves as a measure of vegetation productivity [7],
and fluctuations in NPP would inevitably affect ecosystem composition, structure, and
function [8]. Therefore, quantitatively revealing the spatial and temporal variations of grass-
land NPP and its relationship with climatic factors is crucial for an in-depth understanding
of macro-scale plant–climate feedback processes and ecosystem management [9].
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Among the numerous weather-related environmental variables, temperature and
precipitation have been proven to be important factors influencing global patterns of vege-
tation productivity [3]. Studies have suggested that annual temperature and precipitation
together explain 38–63% of the total variation in global primary productivity of terrestrial
ecosystems [10,11]. The significance of temperature and precipitation on vegetation pro-
ductivity at the regional scale is also well documented, e.g., temperature and precipitation
together explain 48% of the variation in NPP in grassland ecosystems in Central Asia [12]
and 24.3% of the variation in NPP in forest ecosystems in eastern China [13]. Alpine
vegetation growing in harsh environments has been reported to be more susceptible to
changes in temperature and precipitation [14,15]. The continuous rise in temperature in
alpine regions has led to significant impacts on the growth and reproduction of alpine
vegetation, for example, the advanced flowering of alpine plants and the reduction of their
populations [7]. With regard to vegetation productivity, the dominant conclusion is that
temperature increase enhances alpine vegetation productivity. However, recent studies
have found that the response of alpine vegetation to increasing temperature is gradually
weakening, and that increasing temperatures can even lead to a decrease in vegetation
productivity by increasing water stress in plants [16,17]. There seems to be no consistent
conclusion on whether increased precipitation promotes or suppresses vegetation produc-
tivity in alpine regions, and both findings have been reported [18,19]. Thus, it is urgent to
clarify the effect of temperature and precipitation on the growth of alpine vegetation.

Climate effects on vegetation growth are related to specific environmental back-
grounds [20]. This means that the effects of temperature and precipitation on vegetation
growth are necessarily spatially variable, e.g., with latitude and with altitude. However,
most of the current studies have only explored the spatial features of climate-influenced
plant growth through vegetation indices such as NDVI and EVI, which give an indication of
the vegetation status but do not quantitatively characterize vegetation productivity [1,21].
The remaining studies have mainly focused on how climate and factors such as slope
and elevation affect vegetation productivity at small scales [22,23]. There is still a lack of
regional characterization of climate impacts on grassland productivity, which limits our
insights into climate–vegetation mechanisms in specific environments. In addition, it is not
yet unanimously recognized whether the positive or negative influence of climatic factors
on NPP depends on spatial location. For example, field control experiments have shown
that the effect of temperature on NPP is negatively correlated with elevation, whereas
regional remote sensing methods have come to the opposite conclusion [6,24]. It confounds
our understanding of vegetation–climate processes, and more researches are needed to
address this issue.

NPP sensitivity is another variable that deserves consideration in understanding the
relationship between vegetation and climate. It reflects the extent to which NPP responds to
changes in temperature and precipitation, and is a characteristic that determines the stability
of vegetation in response to climatic disturbances [25]. Vegetation type and elevation are
both important influences that alter the NPP sensitivity to climate. For example, a study of
North American drylands found that human disturbance caused up to a fivefold increase
in the sensitivity of NPP to interannual variation in precipitation [26], and another study in
the Qilian Mountains of China revealed a decrease in the NPP sensitivity to temperature
with increasing elevation in an alpine desert [6]. Most of the existing studies examined the
effects of individual factors on NPP sensitivity, ignoring the combined effects of multiple
factors. There is a need to explore the processes by which multiple factors combine to
influence vegetation productivity.

The Tibetan Plateau (TP) occupies nearly one quarter of China’s land area and pos-
sesses one third of China’s grassland. With less human activity and stronger climate change
in recent years than other regions [27], the TP has become an ideal area in which to study
the response of grass growth to climate change. Different scholars have carried out NPP
studies on the TP grassland from multiple perspectives, but the results are still subject to
uncertainty due to the inconsistencies in study duration and data sources and analysis
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methods [28,29]. Findings such as the effect of temperature or precipitation on NPP increas-
ing or decreasing with elevation have been reported [6,19,30]. However, the conclusions
of these studies were simply determined by partial correlation coefficients, ignoring the
combined effects of temperature and precipitation on vegetation. Moreover, these studies
did not take into account spatial patterns in the explanatory capacity of temperature and
precipitation for NPP, nor in altitudinal differences in the sensitivity of NPP to changes in
temperature and precipitation.

In order to clarify these knowledge gaps, this study took the TP alpine grassland as
the research object and used spatial analysis methods to reveal the effects of the climatic
factors of temperature and precipitation on the variation of NPP with elevation. Specif-
ically, we aimed to (1) reveal the spatial and temporal patterns of NPP variation in TP
grassland during 2001–2022, (2) explore the elevational patterns of the temperature and
precipitation effects on NPP, and (3) illustrate whether elevation affects the sensitivity of
NPP to temperature and precipitation.

2. Materials and Methods
2.1. Study Area

The Tibetan Plateau (TP) occupies southwestern China, ranging from 73◦18′52′′ to
104◦46′59′′E in longitude and 26◦00′12′′ to 39◦46′50′′N in latitude (Figure 1). The terrain
within the TP is undulating and generally decreases in elevation from northwest to south-
east. The average elevation of the TP exceeds 4000 m, and a highland mountainous climate
dominates most areas. It transitions from warm and humid in the southeast to arid and
cold in the northwest. The annual mean temperature ranges from −3.1 ◦C to 4.4 ◦C, and the
annual precipitation ranges from 350 mm to 700 mm. The TP is one of the most extensive
regions of alpine grassland in the world, and the grassland area exceeds 1.25 million km2.
The main grassland types are alpine meadows and alpine steppes, which account for about
27% and 34% of the total area of the TP [31]. The extensive grassland distribution and sparse
anthropogenic disturbance make it an excellent experimental site for studying grassland
response to climate change.
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2.2. Extraction of Perennial Grassland Areas

The Normalized Difference Vegetation Index (NDVI) is an effective indicator of vege-
tation growth and has been proven to be effective in indicating the vegetation cover [32,33].
In this study, we utilized the NDVI to assist in determining the distribution of perennial
grassland. First, we extracted the grassland boundary of the TP based on the 1:1,000,000
Vegetation Map of China released in 2001. Then, NDVI datasets with a temporal resolution
of 16 days, a spatial resolution of 250 m, and a time span of 2001–2022 were extracted from
the MOD13Q1 v061 product and downloaded from the NASA Earth Science Data System
(available at https://search.earthdata.nasa.gov/ (accessed on 6 May 2024)). Maximum
Value Composition (MVC) was used to extract areas where the maximum NDVI values
were greater than 0.1 during the growing season (June–September) and greater than 0.15
during the peak growing season (July–August) for each year [34]. Areas meeting the above
NDVI requirements for each year from 2001 to 2022 were extracted and considered as
perennial vegetation cover areas. An overlapping analysis of the grassland boundary and
perennial vegetation cover areas was carried out to obtain the intersections of the two
landcover sources, which are considered to be the perennial grassland distribution area of
alpine grassland on the Tibetan Plateau, and also the target region of this study.

2.3. Meteorological Data Production

In this study, daily meteorological records from 268 meteorological stations in and
around the TP during 2001–2022 were collected from the China Meteorological Administra-
tion (Figure 1). We summarized the daily data to an annual scale and obtained the annual
mean temperature and total annual precipitation for each weather station. A 30 m resolu-
tion digital elevation model (DEM) of the ASTER GDEM v2 dataset was downloaded from
the USGS (http://earthexplorer.usgs.gov/ (accessed on 12 May 2024)) and then resampled
to a spatial resolution of 1 km. Taking the annual-scale meteorological data, we hired the
ANUSPLIN v4.2 meteorological interpolation software to expand temperature and precipi-
tation point data into raster data. Although the relative lack of meteorological stations in
the western part of the Tibetan Plateau brings some uncertainty to the interpolation process,
the Thin-Plate Splines (TPS) interpolation method used in this ANUSPLIN software can fit
the complex topography and meteorological element changes well to improve the accuracy
of the interpolation results [35]. With longitude, latitude, and the DEM as covariate inputs,
we obtained annual temperature raster data and annual precipitation raster data with a
spatial resolution of 1 km per year.

2.4. NPP Data

Net primary productivity (NPP) characterizes vegetation vigor and is an important
indicator of ecosystem productivity and energy conversion efficiency [26]. Currently,
there are varied data products on NPP. According to existing studies, the model used for
Moderate Resolution Imaging Spectroradiometer (MODIS) NPP data performs superiorly,
as the model has been calibrated with large samples of data from around the globe and
the product has been proven to retrieve grassland NPP on the TP with close to real values
as well as a more stable performance [36,37]. Thus, we selected the NPP data from the
MODIS product MOD17A3HGF dataset (at NASA Earth Science Data Systems, https://
search.earthdata.nasa.gov/ (accessed on 12 May 2024)) to simulate grassland productivity
on the TP.

The data were derived from the Terra satellite with a spatial resolution of 500 m. Key
steps in the generation of the MODIS NPP include the calculation of each 8-day set of gross
primary productivity (GPP) data based on the fraction of photosynthetically absorbed radi-
ation (FPAR), incident solar radiation, minimum temperature, and daylight-averaged water
vapor pressure difference (WVPD) data, as well as the calculation of annual maintenance
respiration (MR) and growth respiration (GR) data based on the annual maximum leaf mass
and temperature. NPP is the difference between the annual sum of 8-day GPP and MR and
GR (https://modis-land.gsfc.nasa.gov/pdf/MOD17C61UsersGuideV11Mar112021.pdf

https://search.earthdata.nasa.gov/
http://earthexplorer.usgs.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://modis-land.gsfc.nasa.gov/pdf/MOD17C61UsersGuideV11Mar112021.pdf
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(accessed on 12 May 2024)). This dataset has been improved by calibration changes and
the use of climatological LAI/FPAR as a backup to the operational LAI/FPAR, improving
data quality compared to previous versions. In addition, the dataset cleaned the poor-
quality inputs from the 8-day Leaf Area Index and Fraction of Photosynthetically Active
Radiation (LAI/FPAR) based on the quality control label for every pixel, and its value
was replaced through linear interpolation, if any LAI/FPAR pixel did not meet the quality
screening criteria. Prior to data processing and analyzing, we also resampled the NPP data
to a 1 km resolution.

2.5. Data Analysis

To detect the trends in NPP over the period 2001 to 2022, the Mann–Kendall test and
Sen’s slope assessment were carried out on the time series data for the study period using
the ‘pyMannKendall’ v1.4.3 package. We then obtained the grid-by–grid results of the
trend and Sen’s slopes of NPP, which we called NPPtrend and NPPslope, respectively. We
counted the mean values of NPP from 2001 to 2022 and the mean values of NPPslope on
elevation gradients at intervals of 100 m. Since vegetation response to elevation does not
always follow the same pattern at different elevation gradients, and the number of grass
raster cells varies greatly at different elevation gradients, we discussed the pattern of NPP
and NPPslope with elevation by using the segmentation function and unequal weights
linear regression.

Climatic factors of temperature and precipitation were also analyzed using the Mann–
Kendall test and Sen’s Slope assessment to obtain the results of trends and Sen’s slopes,
referred to as Temptrend, Tempslope, Pretrend and Preslope, respectively. Then, the NPP,
temperature, and precipitation data for the years 2001–2022 were detrended using the least
squares regression algorithm from the ‘SciPy’ v1.13.1 package to highlight the fluctuating
characteristics of the data themselves. We obtained the NPP data, temperature data, and
precipitation data for each year after detrending, and named them NPPdetrend, Tempdetrend,
and Predetrend, respectively.

To explore the influence of temperature and precipitation on NPP, we performed
a partial correlation analysis between NPPdetrend and Tempdetrend and Predetrend using
the ‘pingouin’ v0.5.4 package to account for the net correlation between NPP and each
climatic factor. We further performed Ordinary Least Squares (OLS) analysis and Analysis
of Variance (ANOVA) on these data using the ‘statsmodels’ v0.14.2 package to test the
interpretation of NPP by means of temperature and precipitation. We also established a
linear regression between R2 of the explanation by temperature and precipitation on NPP
and elevation to demonstrate whether the influence of temperature and precipitation on
NPP is affected by elevation.

We further explored the extent to which NPP responds to changes in temperature and
precipitation and its differences across the elevation gradient. The linear regression analyses
in the ‘scikit-learn’ v1.5.1 package were used to investigate the NPPslope, Tempslope, and
Preslope as a function of elevation based on the raster data. Finally, the effects of elevation
and changes in temperature and precipitation on NPP sensitivity were investigated using a
structural equation model (SEM). In this model, NPPslope was defined as NPP sensitivity,
and Tempslope and Preslope were defined as the changes in temperature and precipitation,
respectively, as NPPslope on each raster was the result of the combined response to Tempslope,
Preslope, and elevation.

The analysis by SEM was carried in Amos 26, and all the rest of the analyses were
performed in Python 3.9.

3. Results
3.1. Spatial and Temporal Pattern of NPP

The NPP of grasslands on the TP generally decreased from east to west over the
period 2001–2022, with NPP values exceeding 450 gC/m2 on the eastern margins and
less than 10 gC/m2 in the western regions (Figure 2). NPPslope varied between −30.2 and
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15.8 gC/m2/yr over the 22 years, with a mean value of 1.01 gC/m2/yr. For 91.91% of the
TP grasslands, NPPslope was positive (Table 1). The eastern TP exhibited a predominantly
positive slope in NPP, with the highest values at the eastern margin, while the southwestern
TP exhibited a predominantly negative slope in NPP. Overall, NPP changed significantly in
51.84% of the grasslands. Among them, 51.47% exhibited a significantly increasing trend
and 0.37% exhibited a significantly decreasing trend (Table 1).

 
Figure 2. The average NPP of the Tibetan Plateau grassland during 2001 to 2022 (a) and the Sen’s
slope value of NPP after the Mann–Kendall test and Sen’s slope assessment (b).
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In addition to horizontal patterns, NPP and NPPslope also exhibited vertical patterns
across the TP grassland (Figure 3). NPP fluctuated and increased with rising elevation up to
3400 m (r2 = 0.23, p < 0.05), and then decreased sharply with rising elevation above 3400 m
(r2 = 0.70, p < 0.05). NPPslope also varied with elevation in a generally unimodal curve.
Below 2500 m, the slope increased rapidly with elevation (r2 = 0.91, p < 0.05). Above 2500 m,
the slope gently declined with elevation (r2 = 0.89, p < 0.05), except for a slight fluctuation
between 3000 and 3200 m. At all elevation gradients, the mean value of NPPslope was
greater than 0, indicating an overall positive trend for the TP grassland.

Table 1. Statistics on NPP and its trends on the TP grassland.

TP Grassland

NPP averages from 2001 to 2022 (gC/m2/yr) 136.67
average NPPslope (gC/m2/yr) 1.01

proportion of slope < 0 (%) 7.66
proportion of slope = 0 (%) 0.43
proportion of slope > 0 (%) 91.91

decreasing trend 0.37
no trend 48.16

increasing trend 51.47
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3.2. Partial Correlation Between NPP and Climatic Factors

The partial correlation between temperature and NPP differed spatially from that
between precipitation and NPP (Figure 4). A positive correlation between temperature and
NPP was observed in 80.36% of the grasslands, out of which 20.68% reached a significant
positive correlation. The high partial correlation coefficients were mainly concentrated
in the central and northeastern TP, while the lower partial correlation coefficients were
found on the southwestern margin. Precipitation was positively correlated with NPP in
only 46.56% of the grasslands, and negatively correlated with NPP in the central, eastern,
and northeastern parts of the TP.
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We further counted the area proportions at various elevation gradients where NPP
showed positive or negative correlations with both temperature and precipitation (Figure 5).
A positive correlation between precipitation and NPP and a negative correlation between
temperature and NPP dominated most of the area below 3400 m. Above 3400 m, a positive
correlation between NPP and temperature dominated, and NPP was positively/negatively
correlated with precipitation over a comparable area proportion.
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3.3. The Effect of Climatic Factors on NPP Variation

The R2 for the effect of temperature, precipitation. and their interaction on the temporal
variation of NPP ranged from 0 to 0.87 with a mean value of 0.21 (Figure 6). The high values
fell mainly in the central and eastern part of the TP. Decomposing the relative contributions
of temperature, precipitation, and their interactions to NPP, 42.43% of the TP grasslands
were primarily affected by temperature, mainly in the central and western areas of the
TP. Precipitation dominated NPP in 35.35% of the grasslands, mainly distributed in the
southwest and southeast of the TP. Temperature–precipitation interaction was the dominant
factor for 22.22% of TP grassland NPP, mainly in the northeastern part of the TP.

The capacity of climatic factors to explain NPP weakened with elevation (Figure 7a).
Considering the fact that vegetation types tend to be correlated with elevation, we further
explored the effects of temperature and precipitation and their interactions on the NPP
of different vegetation types (Figure 7b,c). The ability of temperature, precipitation, and
their interactions to explain NPP was negatively correlated with elevation in both alpine
meadows and alpine steppes. However, it did not reach the significance level in the alpine
meadows, whereas the explanatory capacity of climate for NPP decreased significantly
with increasing elevation (r2 = 0.64, p < 0.05) in alpine meadows.
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3.4. NPP Sensitivity in Response to Climate Change and Elevation

We conducted a partial correlation analysis of NPPslope with Tempslope, Preslope, and
the DEM (Table 2). The results showed that Tempslope, Preslope, and the DEM all significantly
affected NPPslope. Among them, NPPslope was significantly positively correlated with
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Tempslope and Preslope, while it was significantly negatively correlated with the DEM. The
partial correlation coefficients between NPPslope and Tempslope and between NPPslope and
Preslope were greater in alpine steppe than in alpine meadow, while the partial correlation
coefficient between NPPslope and the DEM was greater in alpine meadow.

Table 2. The partial correlation coefficients of NPPslope with Tempslope, Preslope, and the DEM.

Alpine Grassland Alpine Meadow Alpine Steppe

Coefficient of partial correlation between
NPPslope and Tempslope

0.266 0.182 0.262

Coefficient of partial correlation between
NPPslope and Preslope

0.221 0.118 0.208

Coefficient of partial correlation between
NPPslope and the DEM −0.492 −0.608 −0.37

To verify the effects of elevation, temperature change, and precipitation change on the
magnitude of NPP change, the SEM was used to explore the operation of these three factors
on the magnitude of NPP change (Figure 8). The DEM ranked first in terms of influence
(standard coefficient = −0.44, p < 0.01), as evidenced by a significant decrease in NPPslope
due to elevation gain. Tempslope ranked second (standard coefficient = 0.15, p < 0.01), as a
greater trend of temperature enhanced the NPPslope. Third, a greater trend of precipitation
improved the NPPslope (standard coefficient = 0.11, p < 0.01). The model indicated a smaller
variability of NPP at higher elevations than at lower elevations for the same extent of
temperature and precipitation change, implying that increasing elevation suppressed the
sensitivity of NPP to temperature and precipitation, and that this suppression was stronger
in alpine meadows than in alpine steppes.
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4. Discussion
4.1. Temporal and Spatial Patterns of NPP

NPP is an important characteristic of vegetation vigor and growth, and is susceptible
to environmental impacts [20]. Influenced by zonal and other factors, the NPP of grasslands
on the TP exhibited great elevational variability, i.e., increasing with elevation below 3400 m
and decreasing with elevation above 3400 m. The difference between the mean values of
grassland NPP according to elevation could reach more than 10 times, with the high values
occurring in the eastern region. This may be due to a combination of vegetation types,
climatic conditions, and human activities. The lower elevations of the TP are dominated
by alpine meadows, and their productivity is significantly greater than that of alpine
steppes distributed at higher elevations. As elevation increases, anthropogenic activities
diminish, and disturbance to the grasslands decreases, resulting in an increase in grassland
productivity. When the elevation exceeds the optimum height for vegetation growth, the



Remote Sens. 2024, 16, 4754 13 of 18

climatic conditions gradually deteriorate to the point of being unsuitable for vegetation
productivity [38]. The eastern TP is relatively low in elevation and located on the windward
slopes of the Pacific monsoon, providing better thermal and hydrological conditions for
vegetation growth [18,22], and thus is a high-value area for grassland NPP.

Over 90% of the grasslands on the TP experienced a positive trend in NPP over the
past 22 years, with a mean value of 1.01 gC/m2/yr, aligning with results from previous
studies [29,39]. The large slopes were predominantly in the east of the plateau and co-
incided with the distribution of high values of temperature gains or precipitation gains
(Figures S2 and S5). This implied a positive feedback of grassland vegetation vitality on
climate change in the TP [40]. In terms of the elevation gradient, the positive trend of NPP
ascended below 2500 m and declined above 2500 m with increasing elevation, which was
associated mainly with the pattern of changes in temperature and precipitation. At low
elevations, the increase of temperature in alpine meadows and the increase of precipita-
tion in alpine steppes was enhanced with elevation (Figures S3 and S6), alleviating the
limitations of temperature on meadow growth and water on steppe growth to support
higher NPPslope with elevation. Above 2500 m above sea level, the NPPslope declined,
although temperature and precipitation variations were still positive. On the one hand,
the increase in temperature declined and the positive relationship between precipitation
and NPP gradually weakened with elevation (Figure S7). On the other hand, the lower
background values of temperature and precipitation above 2500 m weakened the activities
of biological enzymes [41,42], and thus the NPPslope declined with elevation. We also found
that the positive trend of NPP was significantly higher in alpine meadows (1.16 gC/m2 /yr)
than in alpine steppes (0.74 gC/m2 /yr) (Table S1). This was due to the fact that the av-
erage increase of temperature and precipitation in alpine meadows was 0.02 ◦C/yr and
6.23 mm/yr, respectively, whereas it was −0.01 ◦C/yr and 3.09 mm/yr, respectively, in
alpine steppes during the last 22 years (Figures S2 and S5).

4.2. Driving Factors of NPP

Abiotic factors associated with temperature and precipitation are important factors
affecting vegetation growth [43]. Numerous studies have revealed a significant positive
correlation between temperature, precipitation, and NPP [20,44]. However, we found that
NPP was only positively correlated with precipitation in no more than 50% of the grasslands
in this study, but a positive correlation between temperature and NPP was found in more
than 80% of the TP grasslands, implying that higher temperatures promote vegetation vigor,
whereas increased precipitation inhibits vegetation growth at most sites on the plateau.
This was because the areas with a negative correlation between precipitation and NPP were
mainly located in the southeastern and northeastern TP (Figure 4), which are dominated
by alpine meadows with abundant vegetation communities, sufficient precipitation, and
high requirements for light conditions [45,46]. These regions also experienced the largest
increase in precipitation (Figure S5), which inevitably led to a decrease in effective solar
radiation [47,48], and consequently to a negative correlation between precipitation and
NPP [49]. The negative correlation between temperature and NPP mainly occurred in the
intermountain basins around Qinghai Lake, the suburban mountains of Lhasa, and the
mountain valleys of the Brahmaputra River, where no significant changes in precipitation
but significant changes in temperature were observed (Figures S2 and S5). An increase
in temperature may limit vegetation growth due to water stress, while a decrease in
temperature inhibits plant photosynthesis [50,51].

Our study suggested that climatic factors were not the main contributors to NPP
variations in TP grasslands, with an R2 of temperature, precipitation, and their interactions
explaining NPP greater than 0.5 in less than 2% of the TP grasslands. Factors such as
effective solar radiation, vegetation community characteristics, internal self-rhythms, and
soil physicochemical properties may also affect grassland NPP [18]. In particular, we found
a phenomenon rarely reported in previous studies, that the explanation of temperature,
precipitation, and their interactions for NPP variation gradually decreased with increasing
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elevation (Figure 7). This may be due to the following reasons: (1) Vegetation at higher
elevations is dominated by alpine steppes, and they tend to be more efficient with water use
and able to maintain growth under arid conditions, which further weakens the aptness of
precipitation in the interpretation of NPP in these areas [15,16]. (2) Temperature gradually
decreases to near or below the physiological limit of vegetation growth with increasing
elevation, and the explanatory capacity of temperature for NPP naturally weakens [6].
(3) Vegetation at higher elevation usually possesses strong adaptability to survive and
reproduce under harsh climatic conditions. It relies more on its own physiological adap-
tive mechanisms to withstand harsh environments than on changes in temperature and
precipitation alone. Such adaptability makes vegetation growth less dependent on a single
climatic factor and thus reduces the explanatory power of temperature and precipitation on
NPP [1,52]. (4) Vegetation growth is affected by a combination of environmental factors. At
high elevations, climate factors such as wind speed, radiation, evaporation, etc., apart from
temperature and precipitation, are highly variable and may also exert important influences
on vegetation growth. Besides, soils in the alpine steppes are more infertile, and the lack of
nutrients limits the positive response of alpine steppes to temperature and precipitation
changes [31,39]. Compared with precipitation, temperature is the dominant influence on
vegetation growth on the TP and mainly occurs at higher elevations, which is consistent
with the findings of previous studies [53,54].

We further explored the relationship between the sensitivity of grassland NPP and
elevation, temperature, and precipitation. The SEM indicated a promoting effect of el-
evated temperature and increased precipitation on NPP increase, yet the promotional
effect diminished with elevation. This implies the conclusion that elevation inhibited the
response of NPP to temperature and precipitation increases. On the one hand, higher
temperature and increased precipitation promoted plant bioenzyme activity, lengthened
plant season length, accelerated decomposition of organic matter in the soil, and facilitated
plant growth [4,34,43]. On the other hand, elevation increase caused a rapid decrease in
the environmental background values of temperature and precipitation, which counter-
acted the NPP increment promoted by increased temperature and precipitation. The lower
elevations of the TP are mainly dominated by alpine meadows, where vegetation types
are richer and more diverse, allowing the full use of different ecological niches for plant
growth. When temperature and precipitation increase, the varied plants can jointly utilize
these resources and optimize the use of resources through competition, symbiosis, and
other ecological relationships, thus promoting NPP in the whole ecosystem [16,55]. In
contrast, the vegetation communities at higher elevations are relatively simple and are
dominated by cold- and drought-tolerant alpine native steppe plants. These plants have
a narrower range of adaptation to environmental changes and are unable to fully utilize
the resources through multiple ecological strategies when temperature and precipitation
increase, resulting in a limited promotion of NPP [19,55]. The higher sensitivity of grass-
land NPP to temperature than to precipitation implied that grass growth on the TP was
more susceptible to temperature regulation, which is consistent with findings that NPP on
the TP is mainly temperature-limited [38,53]. Precipitation was generally lower at higher
elevations on the TP (Figure S4), but it has increased more at higher elevations over the
past 22 years (Figure S6), implying a greater mitigation of precipitation-induced inhibition
of vegetation growth. Temperature increased less at higher elevations, and the inhibitory
effect of temperature on vegetation growth was not well alleviated, resulting in temperature
being the major constraint on plant growth. We also found a stronger effect of elevation on
the sensitivity of NPP response to temperature and precipitation in alpine meadows than
in alpine steppes. This is related to grassland distribution. Alpine meadows are distributed
at lower elevations with better hydrothermal conditions. Elevation rise can cause rapid
changes in environmental conditions (Figures S1 and S4), resulting in the rapid response
of NPP changes to elevation. Alpine steppes are distributed at higher elevations, and the
magnitude of change in hydrothermal conditions with elevation is smaller; hence, there is
a smaller impact.
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4.3. Uncertainties

Our study revealed the effects of temperature, precipitation, and their interactions
on the variations of NPP in grasslands on the TP, as well as the impacts of changes in
temperature, precipitation, and elevation on the sensitivity of grassland NPP. However, it is
necessary to acknowledge the uncertainties of the study and therefore the limitations in the
perception of the results. To reveal the influence of climatic factors on NPP, meteorological
data for the period 2001–2022 were collected from 268 stations. However, these stations are
mostly located in the eastern TP, and there is a lack of meteorological stations in the western
plateau hinterland. Although the use of a DEM as a covariate eliminated the interpolation
error of temperature and precipitation data to a certain extent, the uncertainty is difficult
to eradicate due to the vastness of the Tibetan Plateau and the fact that there are other
factors affecting climatic factors in addition to the topography. This created questionable
authenticity of the interpolated meteorological data in the west. In addition, although
previous studies have confirmed the high accuracy and applicability of MODIS NPP data in
modeling grassland productivity on the TP, we did not undertake the step of validating the
accuracy of the dataset used in this study due to the lack of measured data. The uncertainty
in the accuracy of NPP data is somewhat detrimental to the subsequent conclusions about
the relationship between NPP and temperature and precipitation. In addition, the SEM in
this study well revealed relationships among multiple factors, but inevitably simplified
the complex relationships between some of the factors into linear relationships. The SEM
helped to identify the macroscopic patterns of vegetation–climate relationships on the TP,
but the application of research results at local scales requires further analysis.

5. Conclusions

In this study, MODIS NPP data were combined with temperature and precipitation
measurements from meteorological stations to reveal the spatial and temporal changes
of grassland NPP on the Tibetan Plateau from 2001 to 2022, as well as to investigate the
effects of temperature and precipitation on NPP variation and NPP sensitivity. From 2001
to 2022, the trend of grassland NPP on the TP varied spatially from −30.2 gC/m2/yr to
15.8 gC/m2/yr, with a mean value of 1.01 gC/m2/yr. The trend of NPP was unimodal with
elevation, and 91% of grassland exhibited an increase in NPP. Temperature and precipitation
were not the main factors contributing to changes in grassland NPP, with their combined
contribution to NPP change being 0–87% and significantly decreasing with elevation. It
was also demonstrated that temperature was the dominant climatic factor for the variation
of grassland NPP compared to precipitation. Temperature trend, precipitation trend, and
elevation combined to influence NPP sensitivity, and elevation was the primary factor for
the sensitivity of grassland NPP on the TP. In conclusion, our study contributes to a deeper
understanding of the macro-spatial variations of alpine grassland NPP as influenced by
climate, and supports site-specific policies for grassland management.
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