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Abstract: The tropospheric vertical column concentration (VCDtrop) of NO2, SO2, and HCHO was
retrieved, respectively, by employing the geometric method (Geomtry), simplified model method
(Model), and look-up table method (Table) with the observation spectra of the multi-axis differential
absorption spectroscopy instrument (MAX-DOAS). The correlation and relative differences of the
inversion results obtained by these three algorithms, as well as the changes in quantiles, were
explored. The comparative analysis reveals that the more concentrated the vertical distribution height
of gas components is in the near-surface layer, the better the conformity of the VCDtrop retrieved
by different algorithms. However, the increase in relative differences is also related to the diurnal
variation of gas components. The influence of aerosols on the inversion of the VCDtrop is greater
than the change in the vertical distribution height of the gas component itself. The near-surface
concentration and distribution height of gas components are the internal factors that give rise to
relative differences in the inversion of the VCDtrop by different algorithms, while aerosols are one of
the extremely important external reasons. The VCDtrop inverted by Geomtry without considering the
influence of aerosols is generally larger except for NO2. Model sets up aerosols in accordance with the
height and meteorological conditions of the atmospheric environment. Table can invert the aerosol
profile in real time. Compared with Model, it shows a significant improvement in the refined setting
of aerosols. Moreover, while obtaining the vertical distribution of aerosols, it can invert the diurnal
variation of the VCDtrop. The VCDtrop inverted by Table is the smallest, and the relative difference
with Model is on average about 10% smaller. The relative difference of the VCDtrop for the same
height (aerosol optical thickness) quantile is 7–15% (about 25% lower on average). When comparing
the inversion results of Table with the Ozone Monitoring Instrument (OMI) satellite product, the
MAX-DOAS inversion results of NO2, SO2, and HCHO are all larger than the OMI product. This
is related to the different observation methods of the MAX-DOAS and OMI and the configuration
between the aerosol layer and the distribution height of gas components.

Keywords: multi-axis differential absorption spectroscopy; geometric algorithm; mode simplification
method; look-up table method; tropospheric vertical column concentration; the relative differences

1. Introduction

Using MAX-DOAS technology as a means of optical telemetry, the VCDtrop and vertical
distribution of trace components (including aerosols) in the troposphere can be effectively
obtained by measuring atmospheric scattered radiation at multiple pitching angles [1–5].
Meanwhile, MAX-DOAS can also be equipped with a mobile platform to monitor the
spatio-temporal distribution characteristics of trace components at a regional scale. It is
helpful in improving the evaluation of air quality and validating the measurement data of
different optical telemetry instruments and satellites [6–9]. Compared with other optical
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telemetry instruments, MAX-DOAS technology is more suitable for the measurement of
trace components with strong chemical activity. Therefore, MAX-DOAS technology has
significant developmental advantages and broad application prospects and has positive
scientific significance and practical value for the prevention and control of atmospheric
environmental pollution.

In recent years, the MAX-DOAS technique has made many important achievements
in the inversion of VCDtrop and the profile of atmospheric trace components [10–13]. So far,
various algorithms such as Geomtry, Model, and Table have been widely used for VCDtrop
inversion. Good inversion results have been achieved [10,11,14]. Geomtry is the most
traditional algorithm for the inversion of VCDtrop using the MAX-DOAS technique [2–5,15].
Honninger et al. [16] proposed Geomtry and sought the development prospects of MAX-
DOAS technology. Ma et al. [17] applied Geomtry to obtain the VCDtrop of NO2. Wang
ting et al. [18,19] retrieved the VCDtrop of NO2 in ultraviolet and visible bands by means of
MAX-DOAS observation data combined with Geomtry and analyzed the characteristics
of diurnal and seasonal variations of NO2. Fu Qiang et al. [20] inverted the VCDtrop of
NO2 through the independently developed Model. Wu Fengcheng et al. [21] applied
vehicle-mounted MAX-DOAS technology to the VCDtrop measurement of NO2 and pointed
out that there was a certain difference between satellite monitoring and vehicle-mounted
MAX-DOAS inversion results in high-pollution areas, but that there was a good consistency
between the two data changes in clean areas. Wagner et al. [5] and Li et al. [22], respectively,
locked the trace components required for inversion on multiple distribution parameters
and proposed the inversion algorithm of Table. Table uses synchronous measurement of
MAX-DOAS to obtain aerosol profiles and inverts VCDtrop and vertical distribution on
this basis. Li et al. [23] was the first to use Table to invert an aerosol extinction profile.
Vlemmix et al. [13] used Table and the Optimal Estimation method (OEM) to invert the
VCDtrop and the profile of NO2 and HCHO.

As the MAX-DOAS technique is highly sensitive to the radiative absorption of trace
components in the troposphere and boundary layer, the optical radiation characteristics
of the VCDtrop, profiles, and aerosols can be obtained via inversion algorithms. However,
there is heterogeneity and disparity in the inversion processes of different algorithms,
which will have an inherent uncertainty impact on the consistency and accuracy of the
inversion results. Few existing studies involve quantitative evaluation of the inversion
results of different algorithms, and there is even a lack of a relatively comprehensive and
systematic description of the differences between algorithms. In particular, the absence of
detailed comparative analysis of the relative differences between the inversion results of
different algorithms makes it difficult to precisely understand the atmospheric pollution
process. Therefore, this paper focuses on comparing the inversion of trace gas VCDtrop
by three algorithms. In particular, Geometry, Model, and Table are utilized to compare
and analyze the relative differences in the inversion results of the VCDtrop for NO2, SO2,
and HCHO based on MAX-DOAS observation spectra and to explore the possible causes
for the deviations. It is expected to provide a valuable reference for obtaining accurate
tropospheric trace gas compositions and describing the atmospheric pollution process
through different inversion algorithms of MAX-DOAS technology.

2. Processing of Spectral Data

Clear sky spectral data of 250~435 nm scattered radiation measured by MAX-DOAS at
9 pitching angles of 2◦, 3◦, 5◦, 7◦, 10◦, 15◦, 20◦, 30◦, and 90◦ from July to December 2017 at
Fudan University (Qingpu, Shanghai) observation station (31.12◦N, 121.06◦E, altitude 10 m)
were selected. The spectral resolution was 0.5 nm (FWHM). Table 1 lists the configuration
of NO2 and O4 and HCHO and SO2 differential oblique column concentration (DSCD)
inversions of the measured data based on QDOAS spectroscopy software version 3.2.
DSCD contains information on tropospheric oblique column concentration (SCDtrop) and
stratospheric oblique column concentration (SCDstrat).
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Table 1. Configuration of NO2 and O4 and HCHO and SO2 differential oblique column concentration
inversions by QDOAS spectroscopy software version 3.2.

Target Gas Interfering Gas Temperature (K) Source of Absorption
Cross-Section Data a

Inverted Wavelength
(nm)

O4 293 Thalman Volkamer (2013)
HCHO 298 Meller Moortgat (2000)

BrO 224 Fleischmann (2004)
NO2, O4 NO2 294, 220 Vandaele (1998) 338~370

O3 223, 293 Serdyuchenko (2014)
Ring — QDOAS
O4 293 Thalman Volkamer (2013)

HCHO 298 Meller Moortgat (2000)
HCHO BrO 224 Fleischmann (2004) 338~357

NO2 294, 220 Vandaele (1998)
O3 223, 293 Serdyuchenko (2014)

Ring — QDOAS
O3 223, 293 Serdyuchenko (2014)

SO2 293 Bogumil (2003)
SO2 NO2 294, 220 Vandaele (1998) 305~317.5

HCHO 298 Meller Moortgat (2000)
Ring — QDOAS

a: http://satellite.mpic.de/spectral_atlas/cross_sections/, accessed on 1 December 2021.

After the fitting with QDOAS, we performed quality control on the fitting results by
considering the root mean square (RMS) and the ratio of error to differential slant column
density (dSCD).

At noon, the path of scattered light across the atmosphere was the shortest, and a
spectrum measured by MAX-DOAS was selected as the reference spectrum. The differential
oblique column concentration (DSCD) in the direction of the separation axis, that is, the
difference between the DSCD in the direction of different elevation (α) and the DSCD in the
direction of 90◦ elevation of the zenapex, is the differential oblique column concentration
(DSCDα, trop) in the troposphere. NO2, SO2, and HCHO are important gas components
affected by human activities in the near formation. It has been assumed that the absorption
of stratospheric gases in the zenith elevation direction of 90◦ is equal to that in other α

elevation directions by MAX-DOAS technique. Information in the troposphere can be
obtained after removing stratospheric information of gas composition [24], i.e.,

dSCDα,trop = DSCDα − DSCD90◦

= (SCDα − SCDref)− (SCD90◦ − SCDref)
= SCDα − SCD90◦

= (SCDα,trop + SCDα,strat)− (SCD90◦ ,trop + SCD90◦ ,strat)
= SCDα,trop − SCD90◦ ,trop

(1)

where α is the observed elevation angle, ref is the reference spectrum, and SCD is the
concentration of oblique column (the integral of concentration over optical path). SCD
can be converted to vertical column concentration (VCD) by atmospheric mass factor
(AMF), i.e.:

AMF =
SCD
VCD

(2)

The tropospheric oblique column concentrations in different α elevation and zenith
90◦ directions can be expressed as the following:

SCDα◦ ,trop = VCDtrop · AMFα,trop (3)

SCD90◦ ,trop = VCDtrop · AMF90◦ ,trop (4)

Since the VCDtrop is independent of α, the magnitude of VCDtrop obtained in the other α
elevation direction and the zenith 90◦ direction is theoretically equal. Equations (3) and (4)
can be subtracted:

http://satellite.mpic.de/spectral_atlas/cross_sections/
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VCDtrop =
dSCDtrop

dAMFα,trop
(5)

Here, dAMFα, trop is the difference between AMF of different α elevation and zenith
90◦ direction, namely tropospheric differential atmospheric quality factor.

3. Inversion Algorithm
3.1. Geometric Method (Geometric)

If the gas components inverted in Geomtry are concentrated in the near formation, and
the AMF mainly depends on the observation elevation of MAX-DOAS, then Equation (1)
holds [15,25,26], i.e.:

AMFα,trop ≈ 1
sin α

(6)

Since the AMF of troposphere is equal to 1 when the observed elevation is 90◦,
Equation (1) is substituted into Equation (5) to obtain Equation (2). VCDtrop of NO2,
SO2, and HCHO can be obtained according to Equation (2).

VCDtrop =
dSCDtrop

(sin−1 α − 1)
, α ̸= 90◦ (7)

According to the assumption of box-shaped contour line distribution, we divide
VCDtrop by the near-surface concentration to obtain the vertical distribution height and
quantitatively study the vertical distribution laws of NO2, SO2, and HCHO.

3.2. Simplified Model Method (Model)

Model refers to the use of aerosol parameterized types with relatively fixed settings in
Model, which divides aerosols into different combinations according to different heights,
visibility, relative humidity, and seasons. The extinction coefficient values of different
aerosol types, namely aerosol optical thickness (AOD), were simulated using SCIATRAN
model. At the same time, concentration profiles of NO2, SO2, and HCHO were read from
the model to calculate tropospheric AMFtrop of the three gas components, and VCDtrop was
obtained by using Equation (5).

Table 2 shows the setting combination of relative humidity and aerosol parameters
in the model. The aerosol type in the boundary layer is set as urban type, and the relative
humidity refers to the observation data of Shanghai Hongqiao Airport in the season and
the research results of Chen Zhen et al. [27] and Wang Yi et al. [28]. The local tropospheric
visibility of the Qingpu observation station is based on the settings of Wang Shanshan [29],
while the boundary layer visibility is based on the settings of Duan Yusen et al. [30], Shi
Hong [31], Li Yajuan [32], and Yao Jian et al. [33].

Table 2. SCIATRAN model settings of relative humidity and aerosol parameters in different seasons
and altitudes.

LOWTRAN Parameterization

Altitude Spring and Summer Autumn and Winter

Urban aerosol Urban aerosol

Boundary layer 0~2 km Visibility of 10 km Visibility of 10 km

Relative humidity is 80% Relative humidity is 70%

Troposphere 2~10 km
Visibility of 23 km Visibility of 23 km

Relative humidity is 80% Relative humidity is 70%

Stratosphere 10~30 km
Background aerosol Background aerosol

Background load Background load

Middle layer 30~100 km Standard mesosphere aerosol Standard mesosphere aerosol
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3.3. Look-Up Table Method (Table)

Table requires the establishment of a data set for aerosol extinction coefficient profiles.
The prerequisite for obtaining aerosol profile is to assume that the atmospheric components
are evenly mixed in the near-surface and the change of aerosol concentration exhibits e
exponential decay with altitude. The aerosol extinction coefficient profile is divided into
two layers within 15 km [34–36].

Firstly, real-time aerosol extinction coefficient profile that is inverted by O4 is substi-
tuted into the model to calculate the AMF of inverted gas component. Selecting different
step sizes for the parameters in Equations (8)–(10) can obtain a data set of aerosol extinction
coefficient profiles.

E(z) =
{

τ · F/H
β · exp(−z/ξ)

z ≤ H
z > H

(8)

β =
(1 − F) · τ

ξ · (e−H/ξ − e−15km/ξ)
(9)

τ =
∫ 15km

0km
E(z)dz (10)

where E(z) represents aerosol extinction coefficient and is related to the height z, β is an
exponential factor, τ is AOD, F is the percentage of aerosol in boundary layer, H is the
mixing height of aerosol layer (height of aerosol layer), and ξ is aerosol scale height within
the free troposphere. Due to the fact that most aerosol particles mainly distribute below the
height of H, the setting of ξ is not sensitive to the inversion result of aerosol [22] and can be
set to 5 km (constant). Table 3 shows the selecting range of aerosol profile parameters.

Table 3. Setting up parameterization of aerosol profile data set.

Parameter Unit Assignment

Solar zenith angle (SZA) Degree (◦) Measured value

Relative azimuth Degree (◦) Measured value

F — 0.10~1.00 (interval:0.10)

τ —

0.10~1.00 (interval:0.10)

1.15~1.30 (interval:0.15)

1.50~3.00 (interval:0.25)

3.50~4.00 (interval:0.50)

H km
0.20~1.20 (interval:0.05)

1.30~1.50 (interval:0.10)

z km

0.10~3.00 (interval:0.25)

3.50~4.00 (interval:0.50)

5.00~9.00 (interval:1.00)

11.00~15.0 (interval:2.00)

ξ km 5

The total number of aerosol
extinction coefficient profiles Strip 5040

Place the obtained aerosol profile data set into the model to calculate the O4 dAMF
simulation values for 8 elevation angles. Then, calculate the vertical column density
(VCD) of O4, and then use Equation (5) to calculate the measured value of O4 dAMF
(dAMFmeas), i.e.:

ρ =
AV · N

V
=

AV · P
RT

=
6.022 × 1023 · P
8.314 × 106 · T

(11)
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ρO4 = (ρO2)
2 = (CO2 · ρ)2 = (0.21 · ρ)2 (12)

VCDO4 =
∫ Z

0
ρO4(z)dz (13)

In this context, P and T represent air pressure (in Pascals, Pa) and temperature (in
Kelvin, K), respectively. The number density of air is denoted by ρ, the number density of
O4 is represented by ρO4 , and CO2 is the mixing ratio of O2. In other words, meteorological
parameters are crucial in the calculation of dAMF.

All of the measured values of O4 dAMF (dAMFmeas) need to be compared with O4
dAMF simulation values (dAMFmodel) of 5040 aerosol scenarios, i.e.:

χ2(τ, F, H) =
30◦

∑
α=2◦

(
dAMFmeas(α)− dAMFmodel(α)

σ(dAMFmeas(α))
)

2

(14)

In the equation, χ2 is value function, and the inversion result of aerosol profile is
obtained when the minimum value is taken. Considering the potential instability during
spectral analysis, the measured values of dAMF can be averaged hourly. dAMFmeas(α)
is hourly average of dAMF measurements and σ (dAMFmeas(α)) is standard deviation of
dAMF measurements.

Finally, place the aerosol profile that was obtained from inverting into the model and
read the concentration profile of NO2, SO2, and HCHO. Calculate tropospheric AMF of NO2,
SO2, and HCHO. Then calculate VCDtrop of gas components according to Equation (5).

4. Results and Discussion
4.1. The Diurnal Variation of Column Concentration

Taking July 2017 as an example, Figure 1 used diurnal variations of the HCHO VCDtrop,
NO2 VCDtrop, and SO2 VCDtrop, which were inverted by Geomtry, Model, and Table,
respectively. They indicate that the three algorithms have consistency (with differences) in
the diurnal variation of VCDtrop for the same (different) gas component inversions. The
correlation coefficients of the HCHO (NO2) VCDtrop that were inverted by Geomtry/Model,
Table/Geomtry, and Model/Table, respectively, are 0.938, 0.638, and 0.563 (0.746, 0.840, and
0.875), and all passed the 99% significance test. The correlation coefficients corresponding
to SO2 VCDtrop were 0.927, 0.939, and 0.940, respectively, which also passed the 99%
significance test. The HCHO VCDtrop inverted by Geomtry is higher than that of Model,
and that of Table is the lowest. The NO2 VCDtrop inverted by Geomtry is lower than the
others, while the difference between Model and Table is the smallest. The three algorithms
have the smallest relative difference in inverting SO2 VCDtrop.

Due to the correlation between the diurnal variation characteristics of gases with
strong chemical activity and factors such as solar radiation and environmental meteoro-
logical conditions [37], Table 4 shows the HCHO VCDtrop, NO2 VCDtrop, and SO2 VCDtrop
that were inverted by three algorithms, the downward solar radiation flux (DSRF), and
the correlation coefficients between diurnal variations in relative humidity (RH) and tem-
perature (T). The diurnal variations of HCHO VCDtrop, NO2 VCDtrop, and SO2 VCDtrop
are not only affected by local emissions but also related to changes in solar radiation and
environmental meteorological conditions in Figure 1 and Table 4. The HCHO VCDtrop
exhibits a unimodal diurnal variation from 12:00 to 15:00 (Beijing time, BJT), and it has
consistent variation characteristics with solar radiation and temperature but is negatively
correlated with relative humidity. At noon, the strong solar radiation and increasing tem-
perature enhance the photochemical reaction of NO2 results in a short survival time in
the atmosphere. Meanwhile, the VCDtrop is low and positively correlated with relative
humidity. The life of SO2 in the boundary layer can reach 1–2 days, and it is extremely
susceptible to the non-uniformity of the atmosphere, making the diurnal variation of the
VCDtrop non-significant. However, it can also exhibit a certain trend of single peak and
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single valley diurnal variation and is negatively correlated with solar radiation and relative
humidity while positively correlated with temperature.
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Figure 1. Comparing the diurnal variations of (a) HCHO VCDtrop, (b) NO2 VCDtrop, and (c) SO2

VCDtrop which were inverted by Geomtry (red), Model (blue), and Table (green), respectively, in
July 2017.

Table 4. The correlation coefficients for diurnal variation between the HCHO VCDtrop, NO2 VCDtrop,
and SO2 VCDtrop inverted by Geomtry, Model, and Table and DSRF, RH, and T at the Qingpu
observation station in July 2017, which all passed the 99% significance test.

Geomtry Model Table

Factor HCHO
VCDtrop

NO2
VCDtrop

SO2
VCDtrop

HCHO
VCDtrop

NO2
VCDtrop

SO2
VCDtrop

HCHO
VCDtrop

NO2
VCDtrop

SO2
VCDtrop

DSRF 0.564 −0.198 −0.235 0.442 −0.208 −0.065 0.498 −0.152 −0.222
RH −0.428 0.405 −0.265 −0.361 0.712 −0.205 −0.431 0.531 −0.268
T 0.402 −0.326 0.300 0.322 −0.690 0.284 0.473 −0.452 0.335

Figure 2 shows the diurnal variation characteristics of wind direction and speed at
the Qingpu observation station in July 2017. According to the analysis in Figure 1, the
wind speed starts to increase at noon, enhancing the atmospheric non-uniformity. The
mixing conditions of turbulence and diffusion are good, resulting in an increase in the
VCDtrop of HCHO and SO2 at noon and a decrease in the VCDtrop of NO2. However, the
chemical activity of HCHO, NO2, and SO2 varies, and the significant correlation between
the VCDtrop diurnal variation inverted by the three algorithms and solar radiation as well
as meteorological elements is consistent.
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In order to verify the inverted VCDtrop, semi-quantitative analysis [38] of gas com-
ponent concentrations observed synchronously from near the surface can be used. Only
the NO2 VCDtrop and SO2 VCDtrop diurnal variations inverted by the three algorithms
compared with NO2 and SO2 observed synchronously from near the surface are shown
in Figures 3 and 4 due to the lack of measurement for the HCHO concentration near the
surface. They indicate that the correlation coefficients between the NO2 VCDtrop inverted
by Geomtry, Model, and Table and the variation of NO2 concentration in the near ground
are 0.585, 0.823, and 0.888; all passed the 99% significance test. The result displays that
the dominant role of near-ground NO2 concentration in the proportion of NO2 VCDtrop
changes and that the NO2 VCDtrop is related to the lower distribution height of NO2.
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Figure 4. The comparison between the SO2 VCDtrop inverted (red) by (a) Geomtry, (b) Model, and
(c) Table, respectively, and the SO2 observed (blue) synchronously near the surface.

The correlation coefficients between the SO2 VCDtrop inverted by the three algorithms
and the variation of SO2 concentration in the near ground are 0.205, 0.382, and 0.275, also
passing the 99% significance test. However, the consistency between the SO2 VCDtrop and
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concentration changes of the near-ground SO2 is not as good as the NO2. Although the
diurnal variation of the SO2 VCDtrop is not significant and only slightly increases at noon,
there is still similarity with the diurnal variation of the near-surface SO2 concentration. It is
related to the height of the elevated chimney in the factory as a source of SO2 emissions.
According to the assumption of the box-shaped profile distribution, related information of
vertical concentration distribution at different altitudes can be inferred by the matching
status between the VCDtrop and the near-ground concentration [38], thereby quantitatively
obtaining the characteristics of vertical distribution changes of NO2 and SO2.

4.2. Seasonal Variation of Column Concentration

Seasonal variations of the HCHO VCDtrop, NO2 VCDtrop, and SO2 VCDtrop inverted by
Geomtry and the diurnal variation characteristics of the VCDtrop for the seasonal averages
are shown in Figures 5 and 6. They indicate the seasonal variations of the negative phase
between the HCHO VCDtrop and NO2 VCDtrop as well as SO2 VCDtrop, and that the diurnal
variations of the HCHO VCDtrop, NO2 VCDtrop, and SO2 VCDtrop vary between different
seasons. The HCHO VCDtrop is relatively high (low) in summer (autumn and winter), and
the diurnal variation is the largest (stable). The source of HCHO is complex in summer,
which includes natural and anthropogenic emissions and photochemical reactions [39,40].
The observation of the near-ground HCHO concentration in Shanghai obtained by an active
DOAS system shows the diurnal variation in summer (other seasons) is the largest (smaller)
and the concentration relatively enhances (declines) at noon (morning and afternoon) [41],
and the HCHO VCDtrop measured by MAX-DOAS in summer is also higher than in
winter [37].
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Figure 5. The diurnal variation characteristics of the (a) HCHO VCDtrop, (b) NO2 VCDtrop, and
(c) SO2 VCDtrop for different season inverted by Geomtry. The black dot represents the hourly average
value of the VCDtrop; the red, blue, and green dashes represent the median values of the VCDtrop for
HCHO, NO2, and SO2, respectively; and the point on the error bar represents the average value.

The NO2 VCDtrop is higher (lower) in the autumn and winter (summer), and the
same seasonal variation characteristics are also exhibited at different observation stations
in Shanghai [37,42–44]. The weaker solar radiation in autumn and winter compared to
summer cause the photochemical reaction of NO2 to dwindle, and the lower boundary
layer height is conducive to the accumulation of NO2. The increasing OH radical content
strengthens the oxidation of atmosphere, making NO2 prone to photolysis, and the diurnal
variation of the NO2 VCDtrop exhibits a concave distribution. The NO2 VCDtrop is usually
prone to highs every morning (afternoon) before work (after work), which is precisely the
increase in car exhaust emissions generated during peak commuting hours for people, and
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the weaker solar radiation leads to a weakened photolysis reaction and a lower boundary
layer height which is conducive to the accumulation of NO2. The increasing temperature
leads to an enhanced boundary layer height that is beneficial for atmospheric diffusion.
Meanwhile, the enhancement of solar radiation leads to the photochemical removal of NO2,
resulting in a relatively flat low value of NO2 VCDtrop.
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VCDtrop inverted by Geomtry in different seasons. Red, blue, and green represent summer, autumn,
and winter, respectively.

The average diurnal variation for the SO2 VCDtrop is lower than that of the NO2
VCDtrop in different seasons. Similar change characteristics can be found from the analysis
of observation for MAX-DOAS and the comparison between the concentration of SO2 and
NO2 near the surface [37]. The SO2 VCDtrop in autumn and winter is higher than that in
summer, and it is relatively high only at noon. The SO2 VCDtrop is prone to low values
every morning and afternoon which is likely due to the dynamic balance between the
photolysis rate, atmospheric heterogeneity, and industrial emissions.

By comparing and analyzing Figures 5 and 6, similar change characteristics also exist
between the SO2 VCDtrop and HCHO VCDtrop as well as the NO2 VCDtrop, which were
inverted by Model and Table, respectively (image omitted).

4.3. Statistic and Analysis
4.3.1. Variation in Relative Differences

We used the most traditional and widely used Geomtry inverted results as a ref-
erence to analyze the relative differences of the VCDtrop between different algorithms.
Figures 7 and 8 show the comparison of statistical characteristics between the HCHO
VCDtrop, NO2 VCDtrop, and SO2 VCDtrop which were inverted by Model and Table, respec-
tively, and those inverted by Geomtry from July to December 2017. Figure 7 indicates that
the frequency with a NO2 VCDtrop less than (greater than) 2.5 × 1016 molec/cm2 inverted
by Model is slightly less (greater) than that by Geomtry. However, the frequency with a SO2
VCDtrop greater than (less than) 1.5 × 1016 molec/cm2 inverted by Model is less (greater)
than that by Geomtry, and the frequency with a HCHO VCDtrop less than (greater than)
2.5 × 1016 molec/cm2 inverted by Model is slightly greater (less) than that by Geomtry.
For different frequency distribution changes, the NO2 (SO2) VCDtrop inverted by Model
or Geomtry aggregates within the range of 1.5 to 4.0 (1.0 to 2.0) × 1016 molec/cm2, while
HCHO VCDtrop aggregates within the range of 2.0 to 7.0 × 1016 molec/cm2.

The correlation coefficients of the NO2 (SO2, HCHO) VCDtrop inverted by Model/Geomtry
is 0.865 (0.837, 0.880) which passed the 99% significance test; the slope of the fitting line is
0.914 (0.663, 0.741) and the corresponding intercept is 0.443 (0.230, −0.109). The median
relative difference for the VCDtrop is 9.69% (−20.34%, −35.35%). When the theoretical val-
ues of the NO2 VCDtrop inverted by Geomtry is less (greater) than 5.151 × 1016 molec/cm2,
the inversion values of the corresponding Model are slightly larger (smaller). The relative
difference between Model and Geomtry decreases (increases) with the increase of the
VCDtrop, but the VCDtrop inverted by Model is somewhat large. When the SO2 VCDtrop
inverted by Geomtry is less (greater) than 0.683 × 1016 molec/cm2, the inversion values
of the corresponding model are slightly larger (smaller). The relative difference between
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Model and Geomtry diminishes (increases) with the increase of the VCDtrop, but the overall
VCDtrop inverted by Geomtry is too large. When the HCHO VCDtrop inverted by Geomtry
is greater than 0.147 × 1016 molec/cm2, the VCDtrop inverted by Model is increasing but
is always smaller than that by Geomtry, and the relative difference between Model and
Geomtry declines with the increase of VCDtrop.
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Figure 7 shows that the consistency of variation trend between the NO2 (SO2) VCDtrop
inverted by Model and that inverted by Geomtry is good, and the relative difference
reduces first and then increases with the enhancement of the VCDtrop. The overall NO2
(SO2, HCHO) VCDtrop inverted by Model is slightly greater (less) than that inverted by
Geomtry. The relative difference between the inversion of the HCHO VCDtrop for Model
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and that for Geomtry is greater than that for the VCDtrop of NO2 and SO2. The sensitivity
of the NO2 VCDtrop, HCHO VCDtrop, and SO2 VCDtrop for the Model inversion to Geomtry
inversion value changes diminishes in turn.

According to Figure 8, corresponding to the frequency variation of the VCDtrop of
NO2, SO2, and HCHO in the Table/Geometry inversion, the VCDtrop of NO2 (or SO2) is
mainly concentrated in the range of 1.0 to 4.0 (or 0.5 to 2.5) × 1016 molec/cm2, while that
of HCHO is distributed within the range of 1.5 to 7.5 × 1016 molec/cm2. The correlation
coefficients between the NO2 (SO2, HCHO) VCDtrop inverted by Table and that inverted
by Geomtry is 0.929 (0.836, 0.736) which passed the 99% significance test. The slope and
intercept of linear fitting are, respectively, 0.885 (0.700, 0.460) and 0.206 (−0.020, 0.678), and
the median relative difference for the VCDtrop is −4.44% (−31.28%, −42.52%). When the
NO2 VCDtrop inverted by Geomtry is less (greater) than 1.791 × 1016 molec/cm2, the inver-
sion values of the corresponding Table are slightly larger (smaller). The relative difference
between Table and Geomtry decreases (increases) with the increase of the VCDtrop, and the
overall VCDtrop inverted by Table is slightly smaller. When the SO2 VCDtrop inverted by
Geomtry is greater than 0.029 × 1016 molec/cm2, the inversion values of Table increase, and
the relative difference between Table and Geomtry gradually diminishes, but the inversion
values of Geomtry are always too large. When the HCHO VCDtrop inverted by Geomtry
is less (greater) than 1.256 × 1016 molec/cm2, the inversion values of the corresponding
Table are slightly larger (smaller). The relative difference between Table and Geomtry
decreases (increases) with the increase of the VCDtrop. Obviously, the relative difference of
the VCDtrop between Table/Geomtry inversions are similar to the results of comparative
analysis between Model/Geomtry inversions.

Figures 8 and 9 indicate that all of the inversion values of the three algorithms have
significant correlation and consistency with changing trends, but there are still certain dis-
crepancies in different gases. The most relative discrepancies exist between the inversion of
the HCHO VCDtrop for different algorithms, but the relative difference of the SO2 VCDtrop
is greater than that of the NO2 VCDtrop. It is likely for this reason that the uncertainty
errors introduced are different and are related to the discrepancies in the characteristics,
distribution heights, and daily variations of different gases in the atmosphere during the
spectral analysis and processing of different gases. The observation near the surface for
the MAX-DOAS technology is the most sensitive [13], and the uncertainty of the VCDtrop
inversion would increase if gases had a higher altitude of concentrated distribution. The
calculations of vertical distribution height are based on the concentrations near the surface,
so that the greater concentrations would be prone to the errors of the VCDtrop. Thus, it can
be inferred that the distribution altitude of HCHO is likely one of the reasons why there are
greater relative discrepancies for the inversion VCDtrop of different algorithms [45]. How-
ever, the discrepancy between the relative difference of the NO2 VCDtrop and SO2 VCDtrop
is produced by the difference of concentration near the surface and the distribution heights
and diurnal variations of NO2 as well as SO2. According to comprehensive comparative
analysis, the median value of the VCDtrop inversion based on Table/Geomtry are greater
than that based on Model/Geomtry; that is, the VCDtrop inverted by Table is about 10%
lower than that inverted by Model. For Model/Table inversion with the same quantile
height, the relative differences between the NO2 VCDtrop and SO2 VCDtrop are no more
than 4–7% (image omitted).

Figure 9 shows the relationship with seasonal variation in the NO2 VCDtrop, SO2
VCDtrop, and HCHO VCDtrop inverted by the three algorithms and the AOD. When the
AOD < 1, the greater the inversion the VCDtrop, the more difference between the three
algorithms, which gradually decreases with the increase in the AOD. When the AOD
> 1, the discrepancies of the VCDtrop inverted by the three algorithms decline and are
relatively stable with the variation in the AOD. It should be considered for this result that
the sensitivity of aerosol inverted by MAX-DOAS declines when the AOD increases, so
that it leads to the “flattening” effect of a system error on the VCDtrop inversion results.
The NO2 (SO2) VCDtrop in autumn is greater than that in winter, and it is the lowest in
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summer. The values inverted by Model (Table) are the greatest (lowest), but the inversion
values between Table/Geomtry (Model/Geomtry) are relatively consistent. The HCHO
VCDtrop in summer and autumn is greater than that in winter, and the inversion values of
Geomtry, Model, and Table decrease in turn.
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Figure 9. Seasonal variations of three algorithms to invert the relationship of VCDtrop with AOD
quartiles. (a–c) denote the relationship of NO2 VCDtrop with AOD quartiles in summer, autumn, and
winter, respectively; (d–f) denote the relationship of SO2 VCDtrop with AOD quartiles in summer,
autumn, and winter, respectively; (g–i) denote the relationship of HCHO VCDtrop with AOD quartiles
in summer, autumn, and winter, respectively. Geomtry is black, Table is blue, Model is red, and the
median of VCDtrop is represented by the dots.

It can be noted that the seasonal variations of the HCHO VCDtrop, NO2 VCDtrop, and
SO2 VCDtrop are different when the aerosol content is low. The HCHO VCDtrop inverted by
Table is only 1/3 of the Geomtry inversion value, and is only 1/2 of the Model inversion
value in summer and autumn. The NO2 VCDtrop inverted by Table is 1/2 of the Model
inversion value. The NO2 VCDtrop and SO2 VCDtrop enhance with the increase of aerosol
content, but for the HCHO VCDtrop, it is the opposite. The changing relationship between
the low aerosol content and high HCHO VCDtrop shows that a considerable portion of
HCHO emissions is likely caused by natural factors. Due to the AOD usually being about 1
at the Qingpu observation station [46,47], there is the greatest difference in the different gas
VCDtrop values inverted by the three algorithms. Therefore, the relative difference of the
VCDtrop corresponding to the AOD shows that the VCDtrop average inverted by Table is
about 25% lower than that by Model, but the relative difference of the NO2 VCDtrop, SO2
VCDtrop, and HCHO VCDtrop inversion between Model and Table with the same AOD
can reach 8%, 10%, and 7%, respectively. Evidently, the influence of aerosol content on the
inversion of the VCDtrop is greater than the influence of the vertical distribution height of
gas components.

4.3.2. The Variation of Distribution Height

Figure 10 shows the diurnal variations of the vertical distribution height for NO2 and
SO2 which are inverted by Geomtry in different seasons. The diurnal variation of NO2 is
obvious below a height of 0.5 km, and SO2 is prone to fluctuate at a height of 0.5 km to
1.0 km, so that the distribution height of NO2 is lower than that of SO2. The balloon-borne
sounding experiment for Fengxian District, Shanghai, also shows that NO2 concentrates
under 0.6 km [48]. The reason why the distribution height of NO2 in summer is lower
than that in autumn and winter is that NO2 is prone to photolysis with the increasing
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solar radiation in summer; therefore, the distribution height of the NO2 profile is relatively
“shallow” and NO2 shows a low concentration. By contrast, the distribution height of SO2
shows an enhancement in summer and a diminishment in winter, which is same as the
seasonal variations of aerosol distribution height and boundary layer height. The higher
boundary layer height in summer than that in winter is beneficial to the diffusion of SO2
which has a longer lifespan, so that its distribution height is raised. By comparative analysis,
the diurnal variations of the NO2 and SO2 vertical distribution heights for different seasons
that were inverted by Model and Table, respectively, (image omitted) parallel Figure 11.
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is not sensitive to the shape of the profile. 

Figure 10. (a) Geometric inversion of daily changes in the vertical distribution height of NO2 in
different seasons; (b) Geometric inversion of daily changes in the vertical distribution height of
SO2 in different seasons. The hourly average heights are black dots, the distribution height before
10:00 (BJT) is in red, the distribution height after 12:00 (BJT) is in blue, the heights of the median
correspond to the blue and red short horizontal lines, respectively, and the points on the error bar are
the average heights.
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Figure 11. The statistical characteristics of the distribution height for NO2 and SO2 inverted by
Model/Geomtry (Table/Geomtry); (a,b), together with (c,d), are the frequency changes presented by
Model (red line)/Geomtry (blue line) and Table (red line)/Geomtry (blue line) for the inversion of
NO2 and SO2 distribution heights, respectively.

Thus, the diurnal variations of NO2 and SO2 show that the distribution heights in
the morning are slightly lower than those in the afternoon with different seasons; in the
afternoon, the thickening of the boundary layer and the enhancement of turbulent mixing
increase their distribution height, and this is similar to the diurnal variation of aerosol
distribution height. It can be seen from this that the distribution height of gas components
is related to the state where the concentrations near the ground match each other, which is
why the consistency of the same gas VCDtrop inverted by the three algorithms is better in the
afternoon than in the morning. For example, the high concentration and low distribution
height of NO2 near the ground in the morning, especially in the early morning, lead to an
increase in the relative differences of the VCDtrop inverted by the three algorithms.
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In order to compare the relative differences of different gases’ distribution heights
between the three algorithms’ inversion values, Figure 11 shows the frequency variations
of distribution height inverted by Model, Table, and Geomtry. Analysis shows that corre-
sponding to the variations in distribution height frequency presented by Model/Geomtry
and Table/Geomtry inversion, NO2 (SO2) concentrates below the height of 0.5 km (0.8 km)
and the relative difference of distribution height between Model and Table inversion in-
creases with the increase in height. The relative difference of the NO2 distribution height is
smaller than that of SO2. The range of variation in the distribution height for SO2 inverted
by Table is lower than that by Model. When using Table to reflect the concentration changes
of SO2 profiles within a height range of 0.5 to 1 km, it may not represent the real situation
but rather “decline” the altitude of the profile [49]. The reason why the relative difference
of SO2 VCDtrop inversion between Model and Table is only 8% is that the VCDtrop is the
integration of the concentration with the distribution height and is not sensitive to the
shape of the profile.

The correlation coefficient of the variation in the NO2 distribution height inverted by
Model/Geomtry (Table/Geomtry) is 0.815 (0.919), which passed the 99% significance test;
the slope and intercept of the fitting line is 0.729 (0.789) and 0.167 (0.072), respectively; and
the median value of the relative difference in distribution height is 10.888% (−3.569%). The
overall range of variation in the NO2 distribution height inverted by Model (Table) is higher
(lower) than that by Geomtry, and the distribution height inverted by Model is evidently
higher than that by Table. Meanwhile, the inversion height of Geomtry is lower than that
of Model (Table) under 0.616 (0.341) km, but higher above 0.616 (0.341) km. The relative
difference in the NO2 distribution height inverted by Model/Geomtry (Table/Geomtry)
diminishes first and then enhances with the increase in altitude.

The correlation coefficient of the variation in the SO2 distribution height inverted by
Model/Geomtry (Table/Geomtry) is 0.948 (0.902), which passed the 99% significance test;
the slope and intercept of the fitting line is 0.706 (0.694) and 0.068 (−0.021), respectively; and
the median value of the relative difference in distribution height is −20.832% (−32.065%).
The overall range of variation in the SO2 distribution height inverted by Model (Table) is
lower than that by Geomtry, and the distribution height inverted by Model is evidently
higher than that by Table. Meanwhile, the inversion height of Geomtry is higher than that
of Model above 0.231 km, but lower under it. The relative difference of the SO2 distribution
height inverted by Model/Geomtry diminishes first and then enhances with the increase in
altitude. When the height inverted by Geomtry is above 0.0303 km, the height inverted
by Table continuously rises but always remains below Geomtry’s height, and the relative
difference in inversion height between Table and Geomtry gradually decreases with an
increase in height.

Figure 12 shows the seasonal variation in the relationship between the distribution
height of NO2 and SO2 inverted by the three algorithms with the AOD quantile. Figure 12
indicates that the distribution heights of NO2 and SO2 diminish with the increase in the
AOD in different seasons. When the AOD < 1, the distribution height of the NO2 inverted
by Model (Geomtry and Table) corresponding to the AOD is relatively high (low), the
distribution height of the SO2 inverted by Table (Geomtry) corresponding to the AOD
is low (high), and the distribution height of Model corresponding to the AOD is in the
middle. When the AOD > 1, the distribution heights of NO2 and SO2 inverted by the three
algorithms corresponding to the AOD decline obviously, and the height reduction of NO2
distribution inverted by Model in autumn is the most significant. The relative differences
in the NO2 and SO2 distribution heights diminish as the AOD increases because of the fact
that an increase in aerosol content can suppress atmospheric convective motion. Obviously,
the increase in the AOD also has a “flattening” effect on the distribution heights of different
gas components.
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4.4. Analysis of Inversion Characteristics of Algorithms

The statistical analyses of the correlation, relative difference, and quantile change of
the inversion results for the different algorithms indicate that although there are certain
differences between them, all of them can effectively reveal the variation characteristics
of seasons, diurnal variations, and distribution heights for different gases’ VCDtrop. On
the one hand, there exists in every algorithm the influence factor of uncertainty which
may have a certain impact or cumulative effects on the inversion results in every step of
the calculations. For instance, the accuracy of the VCDtrop inversion is susceptible to the
properties and photochemical characteristics of gas components, the concentration near
the surface, distribution height, atmospheric and meteorological conditions, and different
configurations of variations between aerosol contents and distribution heights and so
forth. The inability to obtain quantitative analytical expressions of these factors leads to
uncertainty in the inversion results. On the other hand, it is particularly important that the
relative differences between inversion results can be generated by the different settings
of aerosol for different algorithms. For example, the setting of aerosols is not considered
in Geomtry, and the VCDtrop can be quickly and conveniently inverted using only two
elevation angles of 30◦and 90◦. Model needs to divide the aerosol settings into seasons
based on different heights, humidity, visibility, and so forth, and uses the same aerosol
parameters in the same season, and Table can invert aerosol profiles in real time, which has
extremely improved the refinement of aerosol settings compared to Model.

The more concentrated the gases’ concentrations within the boundary layer distributed
near the surface, the higher the accuracy of the VCDtrop inverted by Geomtry. But Geomtry
does not consider the influence of aerosol, so it may not be suitable in areas with severe
pollution. Statistical analysis indicates that there is an optimum consistency for the NO2
VCDtrop between the three algorithms, and that the relative difference of the NO2 (SO2)
VCDtrop inversion between Model and Table for the quantile of the same heights do not
exceed 7% to 15%. Also note that the more intense diurnal variations of gas distribution
near the surface and the lower the distribution height, the greater the relative differences of
the VCDtrop inversion between different algorithms. When the AOD < 0.5, the discrepancy
in the NO2 (HCHO) VCDtrop inverted by the three algorithms with AOD quantiles remains
significant. When the AOD > 2, the MAX-DOAS causes systematic reduction to the
VCDtrop. All of this indicates that besides the two internal factors which are the near-surface
distributions and vertical distribution heights of gas components, the aerosols are one of
the important external factors affecting the inversion of the VCDtrop. Therefore, the more
precise the setting of aerosols, in principle, the higher the accuracy of the VCDtrop inversion.
That means this is helpful in enhancing the accuracy of the Table VCDtrop inversion.
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According to the comparison of the relative differences in the VCDtrop in Figures 7 and 8,
the peak value of the frequency distribution of the relative difference between Table and
Geomtry shows a “left shift” in the negative direction of the horizontal axis relative to
Mode/Geomtry. Overall, the VCDtrop inverted by Table is slightly smaller, and the relative
difference of the VCDtrop inversion between Table and Model is 10% on average. The
VCDtrop inverted by Table is about 25% lower than that by Model for the same AOD
quantile. Through mode simulation, the ratio of the VCDtrop inverted by Geomtry to the
real (simulated) VCDtrop is greater than 1, which enhances relative to the increase in the
AOD. That means the VCDtrop inverted by Geomtry is prone to be overestimated with
greater aerosol concentration. Therefore, the settings of the aerosol in Model and Table
are indeed a correction to the VCDtrop inversion, and the more refined the aerosol settings,
the better it is at reducing the overestimation of the VCDtrop inversion by MAX-DOAS.
Furthermore, there are obvious diurnal variations in the concentration of gas components
(including aerosols) in the boundary layer, and Table can describe the diurnal variation
characteristics of the VCDtrop so that good inversion results can be achieved.

4.5. The Verification and Comparison of MAX-DOAS and the OMI Satellite

We compared the average VCDtrop retrieved by MAX-DOAS at the Qingpu observation
station within half an hour before and after the OMI satellite transit with the OMI product,
and the comparison area was limited within a 50 km range centered around the location
of the MAX-DOAS instrument. Figure 13 shows the comparison between the VCDtrop
inverted by Table for MAX-DOAS and the products corresponding to OMI. According to
analysis, the relative coefficients of the NO2 VCDtrop, SO2 VCDtrop, and HCHO VCDtrop
inversions between the OMI and Table are 0.919, 0.552, and 0.776, and all passed the 99%
significance test. The inversion result of Table is slightly higher than the satellite data,
and the averages of the NO2 VCDtrop, SO2 VCDtrop, and HCHO VCDtrop are 1.1, 2.6, and
1.8 times higher than satellite data, respectively. The reason for the low average VCDtrop
is the discrepancy in observation methods and spatial and temporal resolutions between
the OMI and MAX-DOAS, and the wider scope of OMI observation may contain areas
with different levels of pollution. Meanwhile, the observation times between the space-
based and ground-based methods are not fully synchronized, MAX-DOAS takes an hourly
average, and the OMI is the observed value during transit. In addition, the discrepancy in
the AMF caused by different observation methods and that between satellite measurement
and MAX-DOAS observation can be simulated by the SCIATRAN model.
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Figure 13. (a–c) represent the comparison of the MAX-DOAS inverted NO2 VCDtrop, SO2 VCDtrop,
and HCHO VCDtrop with the corresponding products from the OMI satellite, respectively.

The influence of aerosols during satellite observation is exceedingly important. Taking
NO2 as an example, the sensitivity of satellite observation will decline (enhance) if the
aerosol layer is above (below) the NO2 layer [50]. Our research found that aerosols are
mostly concentrated and distributed at an altitude of 1 km, and NO2 is located near 0.5 km.
In order to explore the discrepancy of the AMF between the MAX-DOAS measurement
and satellite measurement, in the experimental scheme of the SCIATRAN model, the
distribution height of the aerosols is set to 0–1 km, while NO2 is set to 0–0.3 km and
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0–0.5 km, and the AOD values are set to 0, 0.4, 0.8, 1.2, and 1.6. When setting the geometric
parameters of MAX-DOAS observation in the model, 30◦and 90◦elevation angles are used.
The elevation and altitude parameters measured by the satellite are set to −90◦and the
height of the OMI detector is 705 km. The relative azimuth and solar zenith angle are
extracted from a combination of satellite transit at 13:30 local time (BJT) in Shanghai.

Substituting all parameters into the SCIATRAN model can simulate the AMF (VCDtrop)
of MAX-DOAS and the satellite under different settings, which serve as the actual (sim-
ulated) AMF (VCDtrop) values of MAX-DOAS and the satellite, respectively. In order to
facilitate comparison and analysis, only the dAMF value calculated by Geomtry using
dAMF30◦ ,trop/((1 − sin(30◦)/sin(30◦)) is selected here. The dAMF represents the differ-
ence in atmospheric mass factor minus the zenith mass factor of 90◦ for the MAX-DOAS
elevation of 30◦ (dAMF = dAMF30◦ − dAMF90◦). For satellites, we refer to the AMF calcu-
lated by the SCIMACHY detector for standard gas profile inversion (without considering
aerosols) as an approximation (APP) [17,51,52]. The ratio of the real AMF to the dAMF
of Geomtry (the approximate AMF of the satellite) is the ratio of the VCDtrop of Geomtry
(satellite) to the real VCDtrop (the AMF is inversely proportional to the VCDtrop). The ratio
being greater than (less than) 1 indicates that the real AMF is larger (smaller) than the
approximate AMF or dAMF, while the VCDtrop measured by MAX-DOAS or satellite is
greater (less) than the real VCDtrop. If the ratio is equal to 1, both of them are the real AMF
and VCDtrop.

Figure 14 is the ratio between the real AMF and the approximate AMF (dAMF),
which is the OMI satellite (MAX-DOAS) corresponding to the NO2 layer and aerosol layer
under different matching scenarios. The result indicates that all of the ratios between
the real AMF and the approximate AMF (dAMF), which are the satellite (MAX-DOAS)
corresponding to NO2, are less (greater) than 1. This means that when the NO2 layer is
below the aerosol layer, the VCDtrop inverted by MAX-DOAS will be overestimated (higher
than the real value), and the products of the OMI will be widely underestimated (lower
than the real value). Compared with the SCIMACHY detection, although the NO2 profile
of the OMI products has already been updated and the correction of clouds may append to
the algorithms (Jin Junli, 2016), Figure 14 cannot completely represent the relative difference
of the NO2VCDtrop measurement between the MAX-DOAS and OMI satellite and it is still
possible to semi-quantitatively explain the direct reasons for the discrepancies between the
two sets of data. This means that the fundamental reason for the difference between the two
observation methods lies in the close relationship between the relative height configuration
of the aerosol layer and the NO2 layer. The results inverted by the three algorithms in
MAX-DOAS are about 5~35% higher than the real VCDtrop, and those by the OMI are about
20~30% lower than the real VCDtrop. At the same time, the greater the AOD, the larger
the difference between the dAMF and real AMF; the increasing AOD makes it easier for
MAX-DOAS (the OMI satellite) to estimate a high (low) VCDtrop. When the AOD is set to
less than 1.6, the inversion results can approximately vary about 30% for MAX-DOAS.
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5. Conclusions

We selected the observed spectra of MAX-DOAS from Qingpu Observatory, Shanghai,
and adopted Geomtry, Model, and Table to invert the vertical column concentration of
NO2, SO2, and HCHO, respectively. We explored the reasons behind and characteristics
of the relative differences in the column concentration of inversion between the different
algorithms, and obtained the following conclusions:

Among the three inversion algorithms, the calculation results of Geomtry are slightly
higher, those of Table are lower, and the calculation results of Model and Table are relatively
close. The relative difference in column concentration for the different algorithms was
influenced by the diurnal variation that occurred at different vertical distribution heights
due to the influence of atmospheric heterogeneity and other factors in the same atmospheric
composition. The vertical column concentrations of NO2 and SO2 in the afternoon are
higher than those in the morning, and different algorithms exhibit good consistency in
inverting column concentrations in the afternoon.

The relative difference in the column concentration inverted by the three algorithms
are NO2, SO2, and HCHO, in descending order. The lower the distribution height of
polluting gases, the better the consistency of column concentration inverted by the different
algorithms. Comparing the calculation results of Table with the OMI products, there is a
significant correlation between them, and the inversion values of MAX-DOAS are higher
than those of the OMI products.

Aerosols are an important factor affecting the column concentrations of inversion,
and the impact of the AOD on column concentration is greater than that caused by the
vertical distribution variation of pollutants in the atmosphere. The maximum deviation
between the Geomtry inversion result and the true value did not exceed 35%, and the
larger the AOD, the higher the calculation result of Geomtry. Thus, the aerosol settings
are corrections to the results inverted by Geomtry. Table can invert aerosol profiles in real
time and greatly improve the setting of aerosol refinement compared to Model. The finer
aerosol settings are more conducive to reducing the inversion error of MAX-DOAS due to
the atmospheric components having obvious diurnal variation characteristics. Therefore,
Table can be regarded as an effective algorithm for inverting the VCDtrop of NO2, SO2,
and HCHO.
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