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Abstract: Meteorological satellite remote sensing is important for numerical weather forecasts, but its
accuracy is affected by many things during observation and retrieval, showing that it can be improved.
As a standard way to measure wind from space, atmospheric motion vectors (AMVs) are used. They
are separate pieces of information spread out in the troposphere, which gives them more depth than
regular surface or sea surface wind measurements. This makes rectifying problems more difficult. For
error correction, this research builds a deep-learning model that is specific to AMVs. The outcomes
show that AMV observational errors are greatly reduced after correction. The root mean square error
(RMSE) drops by almost 40% compared to ERA5 true values. Among these, the optimization of
solar observation errors exceeds 40%; the discrepancies at varying atmospheric pressure altitudes are
notably improved; the degree of optimization for data with low QI coefficients is substantial; and
there remains potential for enhancement in data with high QI coefficients. Furthermore, there has
been a significant enhancement in the consistency coefficient of the wind’s physical properties. In the
assimilation forecasting experiments, the corrected AMV data demonstrated superior forecasting
performance. With more training, the model can fix things better, and the changes it makes last
for a long time. The results show that it is possible and useful to use deep learning to fix errors in
meteorological remote-sensing data.

Keywords: deep learning; atmospheric motion vectors; error correction; data assimilation;
meteorological remote sensing

1. Introduction

Numerical weather prediction (NWP) is a modern approach to meteorological forecast-
ing that combines mathematical, physical, and computer science techniques to accurately
and impartially predict upcoming weather patterns [1,2]. This intricate interdisciplinary
system is widely recognized as a groundbreaking accomplishment in the field of physics [3].
The heart of NWP involves solving differential equations that describe atmospheric motion.
This requires providing initial fields and boundary conditions. The accuracy of the initial
fields has a direct impact on the overall prediction results. Advanced data-assimilation
techniques enable the use of multiple data sources to refine initial field information, which
is a key reason for significant improvements in NWP systems [4,5]. In order to ensure the
accuracy of the initial fields, it is essential to have high-quality observational data.

Advancements in detection technologies have significantly expanded the availability
of meteorological data sources, especially after the United States launched the world’s
first meteorological satellite in 1960. Breakthroughs in satellite remote-sensing technology
have introduced new methods for acquiring atmospheric information, greatly enriching
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meteorological data. Satellite data are among the most important observation sources for
global numerical weather prediction, comprising over 90% of all data [6–8].

Compared to traditional observations, satellite remote sensing stands out for its
exceptional resolution, consistent spatiotemporal coverage, and unrestricted observation
capabilities. The observational elements include common variables such as temperature,
pressure, wind fields, and humidity. Nevertheless, errors can arise in remote-sensing
equipment and the retrieval process, leading to a need for enhanced accuracy in certain data.
Atmospheric motion vectors (AMVs), typical satellite remote-sensing wind measurement
data, estimate atmospheric wind fields by tracking cloud clusters in meteorological satellite
images [9,10]. Wind fields are more complex than variables like temperature and pressure
because they include both wind direction and wind speed components. Additionally, AMVs
are discrete data distributed throughout the troposphere, adding a vertical dimension
compared to conventional surface or sea surface wind measurements, presenting greater
challenges for error correction.

AMVs play a crucial role in enhancing our understanding of atmospheric wind pat-
terns, providing valuable data on upper-level wind fields. They can effectively improve
the accuracy of typhoon intensity and path predictions and precipitation forecasts in nu-
merical predictions [11–13]. This makes them valuable for error correction. There are
two main sources of error when it comes to AMVs: inaccurate estimation of wind vectors
and significant errors in height assignment [14]. Numerous researchers have conducted
extensive studies on error correction for AMVs, particularly regarding height assignment
issues. These include using infrared cloud imagery for height correction of AMVs [15],
applying Feature Tracking Correction (FTC) to the AMV observation operator for height
adjustment [16], and adjusting low-level AMV heights using numerical model cloud in-
formation [17]. Still, there is potential for enhancing the effectiveness of corrections. The
complexity and uncertainty of the meteorological environment, along with the massive
data accumulation from the exponential growth of meteorological data that has yet to be
fully mined and utilized [18], necessitate more effective methods for error correction of
meteorological remote-sensing data.

Artificial intelligence (AI) technology has been extensively utilized in meteorology and
oceanography since the 1980s [19]. Its primary applications include identifying, classifying,
and ensuring the quality of various observations, such as clouds, tornadoes, strong winds,
hail, precipitation, and storms. Over the past few years, researchers have incorporated
advanced AI technologies into meteorological and oceanographic forecasting. This includes
utilizing infrared cloud images to identify and predict tropical cyclones, as well as detecting
mesoscale eddies in the ocean [20–22]. AI technology can offer a “lightweight” method for
higher precision forecasting, utilizing fewer computational resources [23]. It can address
challenges in NWP related to initial values, physical processes, and error correction.

Deep learning, an essential component of AI technology, is commonly referred to as
representation learning. With the continuous growth in data-acquisition capabilities and
advances in hardware technology (such as high-performance GPUs), deep learning has led
to new research in deep and distributed learning. Emerging from the realm of traditional
machine learning has proven to be far superior to its predecessor. Utilizing transformation
and graph technologies, this approach constructs multi-layer learning models that yield
exceptional outcomes in audio and speech processing, visual data processing, and natural
language processing [24–27]. Deep learning continuously improves model performance
with increasing data scales, making it highly suitable for the ever-growing meteorological
data. Scholars have made substantial contributions in this field. For instance, Tao et al. [28]
utilized a deep neural network with radar echo and optical flow images to study intelligent
identification of severe convective weather. Seok-Geun et al. [29] applied deep learning
to nowcasting heavy precipitation, showing it can outperform numerical predictions in
short-term forecasting of heavy precipitation. In their study, Wang et al. [30] created a
deep-learning model that was able to detect tropical cyclones and make estimates about
their radii using satellite infrared cloud images.
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This study aims to improve the accuracy of initial fields in NWP and enhance fore-
casting performance. It focuses on addressing initial error issues in meteorological satellite
remote-sensing data, specifically AMVs. These data present significant correction chal-
lenges and have high utilization values. This study explores the advantages of deep
learning by constructing a network model for AMVs, effectively utilizing their deep spa-
tiotemporal features for error correction, which were designed to minimize observational
errors, resulting in more precise upper-level atmospheric wind field data. As a result, the ac-
curacy of meteorological satellite remote-sensing data and overall forecasting performance
can be significantly improved.

2. Data
2.1. AMV Data

Over the past few years, advancements in observation instruments and retrieval
methods for AMVs have sparked a surge of research and experimentation conducted by
many scholars. Otsuka et al. [31] analyzed the error characteristics of AMV data from
Japan’s Himawari-8 satellite relative to the Japan Meteorological Agency (JMA) model
background field. Velden et al. [32] utilized AMV data from geostationary meteorological
satellites to conduct assimilation experiments aimed at predicting tropical cyclones. Kunii
et al. [33] found that assimilating Himawari-8 satellite AMV data positively impacts rainfall
forecast timing and intensity. Zhao Juan et al. [34] conducted assimilation experiments
using AMV data from the GEOS-16 satellite. The results showed that this method effectively
improved wind fields and equivalent potential temperature fields in storm environments,
thus enhancing short-term severe weather forecasting.

The Fengyun (FY) series of geostationary meteorological satellites from China are
leading the way in global observation efforts. In recent years, the FY-4 series, including the
FY-4A model, has been enhanced with the Advanced Geosynchronous Radiation Imager
(AGRI). Compared to the FY-2 series, FY-4A has added seven infrared channels and two
water vapor channels, with a disk scan taking only 15 min, and it can achieve 5 min
imaging over China. This significantly improves the spatiotemporal resolution and data
volume of AMV data [35,36]. The AMV data in this study come from the C009 upper-level
water vapor channel (λ = 6.5 µm), the C010 mid-level water vapor channel (λ = 7.2 µm),
and the C012 infrared channel (λ = 11.0 µm). Research has shown that the use of AMVs
data has a positive impact on atmospheric observation information, leading to improved
upper-level circulation structures and more accurate forecasts of precipitation location and
intensity [37–39].

This study utilizes data from the FY-4A AMVs, spanning a period of 36 months from
January 2020 to December 2022. The data include information from three channels: the
upper-level water vapor channel, the mid-level water vapor channel, and the infrared
channel. The data interval is 3 h, covering a geographical range from 45◦E to 165◦E
and 60◦S to 60◦N. Figure 1 illustrates the FY-4A three-channel AMVs data at 00 UTC on
1 January 2020. It also shows the vertical statistical distribution of the data volume
for January.

The distribution of FY-4A AMVs data is mainly observed in East Asia, the Western
Pacific, and the Atlantic regions, as depicted in the figure. The data are primarily concen-
trated in the troposphere, specifically in mid-troposphere cloud systems, with the infrared
channel (C012) providing the most information. The water vapor channel (C009 and C010)
data are mainly concentrated in the upper and middle tropospheres and are denser than the
infrared channel information. There is a higher number of observations for the water vapor
channel data compared to the infrared channel. The peak of these observations occurs
between 500 hPa and 200 hPa.
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Figure 1. The horizontal distribution of the upper-level water vapor channel (a), C009), mid-level
water vapor channel (b), C010), and infrared channel (c), C012) data at 00 UTC on 1 January 2020,
and the vertical distribution of AMV data volume from 1 to 31 January for the three channels (d).

2.2. Reanalysis Data

Obtaining meteorological data usually involves direct observation and remote-sensing
observation. Over the past few decades, there has been a significant accumulation of meteo-
rological data due to continuous technological advancements. However, direct observation
from meteorological stations is often spatially sparse due to observation conditions. Spar-
sity can help to smooth out mesoscale meteorological data when performing interpolation.
The accuracy of remote-sensing observation data can be impacted by various factors, includ-
ing cloud cover, changes in satellite orbit, and the lifespan of the satellite. As a result, there
may be temporal discontinuities in the data [40]. To address these shortcomings and fully
utilize the physical properties of massive meteorological datasets, an effective approach is
to assimilate data from different sources into the numerical prediction system, a process
known as reanalysis. Reanalysis produces long-term, comprehensive meteorological data
that cover multiple elements and time periods. It is regarded as a highly effective method
for determining past atmospheric conditions [41].

The ERA5 dataset from the European Centre for Medium-Range Weather Forecasts
(ECMWF) is a highly accurate representation of weather conditions. It provides hourly
data for over 240 atmospheric, land, and oceanic variables from 1950 to the present with
a spatial resolution of 0.25◦ × 0.25◦ [42]. Multiple studies have demonstrated that ERA5
outperforms other reanalysis datasets in terms of data quality, spatial resolution, and
temporal coverage [43,44], making it highly suitable for various data-driven analyses,
especially those employing machine learning.

This study uses hourly multi-layer atmospheric data from ERA5 spanning a 36-month
period, starting in January 2020 and ending in December 2022. The meteorological variables
include upper-level wind fields, pressure fields, and temperature fields, with a spatial
resolution of 0.25◦ × 0.25◦. This dataset covers the entire globe and is vertically divided
into 25 layers, fully encompassing the FY-4A AMVs data. Here is a visualization of the
wind field at 00 UTC on 1 January 2020, as depicted in Figure 2.
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2.3. Error Estimation

This research study utilizes two approaches to assess the validity of the research
findings:

(1) Using various quality-evaluation functions, such as Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and correlation coefficient (R), along with a coefficient for
measuring the consistency of wind field fluid characteristics.

(2) Based on numerical weather prediction models and their corresponding assimilation
systems, we can conduct assimilation forecast experiments to evaluate the real-world
effectiveness of our research findings.

ERA5 data are widely accepted as the most accurate representation of the atmospheric
state in this study. Here are the formulas for the four evaluation functions:

MAE = ∑
|(Ai − Bi)|

N
(1)

R =
∑
(

Ai − A
)(

Bi − B
)√[

∑
(

Ai − A
)2
][

∑
(

Bi − B
)2
] (2)

RMSE =

√
∑(Ai − Bi)

2

N − 1
(3)

ρm = DmLm (4)

In the first three formulas, Ai represents the FY-4A AMVs data, Bi represents the
ERA5 reanalysis data, and N is the sample size. The three statistical evaluation functions,
as conventional quality-evaluation methods, can most directly test the error magnitude
between the data and the relative true values. When the evaluation target is not correlated
with the relative true values, the RMSE between the two can be considered the error
value [45,46]. The MAE measures the discrepancy between the evaluation values and the
relative true values, providing additional information to the RMSE about the evaluation
error. The correlation coefficient R indicates the degree of dispersion of the evaluation data
by measuring the correlation between the evaluation values and the relative true values.

For Formula (4), ρm represents the consistency coefficient between the cloud motion
vector Vi at point i and the environmental wind vector Vm at the nearby m points [14]. Dm
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and Lm are the consistency coefficients for wind direction and wind speed, respectively,
with the specific calculation formulas as follows:

Dm = cos θm (5)

Lm = 1 − |Vi| − |Vm|
max(|Vi|, |Vm|)

(6)

In the above formulas, θm represents the directional difference between wind vectors.
According to the principle of continuity of fluid motion, there is a correlation and consis-
tency in the speed and direction of fluid motion at neighboring points. If the corrected
AMV data do not align with the environmental wind field at the corresponding levels, the
consistency coefficient will decrease. Thus, the model’s ability to extract physical features
can be assessed using this coefficient.

3. Methods
3.1. Dataset

Researchers frequently utilize deep learning in forecasting experiments involving
meteorological data, often employing straightforward data-processing techniques. For
instance, they may directly calibrate the data [47] or treat meteorological data as image
data [21,48]. These methods streamline training processes, but there is a possibility of
overlooking data correlations, which could result in the omission of certain features. As
typical atmospheric wind field data, AMVs have distinct physical characteristics and cannot
be simply treated as image data. Therefore, before constructing the model, it is necessary to
reconstruct a dataset that fully reflects the feature correlations in AMV data based on its
wind field characteristics.

The movement of air, in the context of AMVs, is mainly influenced by the pressure
gradient force. There is a strong connection between the pressure field and the wind field.
Pressure changes are fundamentally caused by uneven heating, which results in pressure
variations at the same horizontal level, creating the pressure gradient force that drives
wind. Thus, there is a connection between the temperature field and the wind field. Wind
field data include two dimensions: wind speed and wind direction. In previous studies,
researchers have often converted wind fields into U and V wind components and processed
them separately [49]. This method ignores the dependency between U and V components,
compromising the integrity of the original wind field information.

Creating a separate dataset for the wind field using the mentioned conditions could
potentially lead to the omission of important physical attributes, resulting in less-than-
optimal correction outcomes. Hence, this study integrates the wind field, pressure field,
and temperature field into a multi-channel dataset without vector splitting the wind
field. Instead, it utilizes comprehensive wind field data and incorporates pressure and
temperature features to refine the wind field’s physical conditions. This process also
involves making adjustments to the wind field and reassigning heights accordingly.

Firstly, horizontal processing is undertaken to consolidate data from various sources
into a unified spatial and temporal resolution, facilitating subsequent comparisons and
analyses. Since AMV data typically encompass only a subset of grid points within the
satellite-detected cloud regions, with the remaining positions being absent, and considering
that the ERA5 reanalysis data consist of global grid point data, which spatially exceed the
area of the AMV data, it was determined, after multiple trials, to interpolate the reanalysis
data onto the AMV grid points for the sake of research. Bilinear interpolation is employed
in the horizontal direction, as illustrated in the accompanying Figure 3.



Remote Sens. 2024, 16, 3522 7 of 25

Remote Sens. 2024, 16, x FOR PEER REVIEW 7 of 26 
 

 

temperature features to refine the wind field’s physical conditions. This process also in-
volves making adjustments to the wind field and reassigning heights accordingly. 

Firstly, horizontal processing is undertaken to consolidate data from various sources 
into a unified spatial and temporal resolution, facilitating subsequent comparisons and 
analyses. Since AMV data typically encompass only a subset of grid points within the 
satellite-detected cloud regions, with the remaining positions being absent, and consider-
ing that the ERA5 reanalysis data consist of global grid point data, which spatially exceed 
the area of the AMV data, it was determined, after multiple trials, to interpolate the rea-
nalysis data onto the AMV grid points for the sake of research. Bilinear interpolation is 
employed in the horizontal direction, as illustrated in the accompanying Figure 3. 

 
Figure 3. Bilinear interpolation diagram. (The red dots represent the location of ERA5 data, the 
green dots represent the location of AMV data, and the blue dots represent the intermediate val-
ues.) 

Point P represents a designated location for AMV data, while points 𝑄ଵଵ to 𝑄ଶଵ sig-
nify representative locations for ERA5 reanalysis data. Initially, the values of the two R 
points are computed using Equation (1), followed by the calculation of the data for point 
P through Equation (2). 𝑓ሺ𝑥, 𝑦ଵሻ ൎ 𝑥ଶ − 𝑥𝑥ଶ − 𝑥ଵ 𝑓ሺ𝑄ଵଵሻ  𝑥 − 𝑥ଵ𝑥ଶ − 𝑥ଵ 𝑓ሺ𝑄ଶଵሻ (7) 

𝑓ሺ𝑥, 𝑦ଶሻ ൎ 𝑥ଶ − 𝑥𝑥ଶ − 𝑥ଵ 𝑓ሺ𝑄ଵଶሻ  𝑥 − 𝑥ଵ𝑥ଶ − 𝑥ଵ 𝑓ሺ𝑄ଶଶሻ (8) 

𝑓ሺ𝑥, 𝑦ሻ ൎ 𝑦ଶ − 𝑦𝑦ଶ − 𝑦ଵ 𝑓ሺ𝑥, 𝑦ଵሻ  𝑦 − 𝑦ଵ𝑦ଶ − 𝑦ଵ 𝑓ሺ𝑥, 𝑦ଶሻ (9) 

Although each step of this method is linear in terms of sampled values and positions, 
the overall interpolation is not linear. For each AMV data point, interpolation is performed 
using the nearest four uniformly spaced ERA5 grid points, thereby deriving the horizontal 
data from the ERA5 dataset at the discrete AMV stations. In the vertical direction, analysis 
of multiple experimental results indicates negligible differences among various vertical 
interpolation methods, such as nearest neighbor interpolation, linear interpolation, and 
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Point P represents a designated location for AMV data, while points Q11 to Q21 signify
representative locations for ERA5 reanalysis data. Initially, the values of the two R points
are computed using Equation (1), followed by the calculation of the data for point P through
Equation (2).

f (x, y1) ≈
x2 − x
x2 − x1

f (Q11) +
x − x1

x2 − x1
f (Q21) (7)

f (x, y2) ≈
x2 − x
x2 − x1

f (Q12) +
x − x1

x2 − x1
f (Q22) (8)

f (x, y) ≈ y2 − y
y2 − y1

f (x, y1) +
y − y1

y2 − y1
f (x, y2) (9)

Although each step of this method is linear in terms of sampled values and positions,
the overall interpolation is not linear. For each AMV data point, interpolation is performed
using the nearest four uniformly spaced ERA5 grid points, thereby deriving the horizontal
data from the ERA5 dataset at the discrete AMV stations. In the vertical direction, analysis
of multiple experimental results indicates negligible differences among various vertical
interpolation methods, such as nearest neighbor interpolation, linear interpolation, and
inverse distance weighting. Ultimately, linear interpolation is selected for processing
vertical data. This results in a dataset of ERA5 reanalysis data labels that mirrors the
structure of the AMV data. In terms of temporal alignment, the AMV data from FY-4A are
generated every 3 h, producing data at 15 min intervals. The wind field data from ERA5
coincide perfectly with the AMV observation times, thereby eliminating the need for any
further temporal interpolation.

3.2. Model Building

Meteorological data consist of spatiotemporal sequences that exhibit regular temporal
patterns, including fluidity, continuity, and periodicity. Additionally, there are noticeable
spatial correlations that coordinate and align meteorological elements across different
points. For AMV data, wind field information is retrieved by observing the movement
of clouds. As aggregations of water vapor, clouds are influenced in their formation,
dissipation, movement, and evolution by the surrounding wind vectors. Under these
circumstances, data from previous moments are related to the current data. At the same
time, it is important for each observation point to be in sync with the surrounding wind
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field, ensuring the smooth flow of the wind. AMV data exhibit strong spatial correlations
within a single dataset and strong temporal correlations across multiple datasets.

Thus, it is quite challenging to effectively correct errors in AMV data solely through
time series prediction or spatial feature analysis. Therefore, it is essential to develop a
model that can capture both the temporal and spatial characteristics of AMV data, enabling
the integration of these features to obtain a comprehensive feature field.

3.2.1. Multi-Task Learning

Multi-task Learning (MTL) is a widely used technique in deep learning that enables
the concurrent execution of multiple interconnected tasks, harnessing their processes to
improve model performance. These tasks are usually interrelated, and MTL uses these
correlations to enhance the generalization ability of single-task learning [50]. Researchers
have extensively developed MTL, using it to forecast convective storms, lightning, and
precipitation [51–53]. The main focus of MTL is “sharing”, leveraging the correlations be-
tween multiple tasks. MTL offers three different methods for sharing: instance sharing and
parameter sharing. Feature sharing is a method that allows for the transfer of knowledge
by identifying and utilizing common features across different tasks. Instance sharing is a
valuable way to provide data instances for other tasks during recognition, allowing for the
sharing of knowledge through identified instances. Model parameters can be shared across
different tasks to enhance learning. This can be achieved through the use of regularization
methods [54].

Considering the attributes of AMV data, MTL proves to be an optimal approach
for extracting both temporal and spatial features, while also facilitating the sharing of
various dimensional features. Therefore, this study adopts the feature-sharing method to
construct the MTL skeleton model with two branch models: a temporal network and a
spatial network. Figure 4 illustrates the basic MTL framework.
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3.2.2. Time Model

Time series analysis is commonly employed in meteorology due to the significant
temporal correlation of meteorological data. Many scholars use classical models such as
Recurrent Neural Network (RNN) or Long Short-Term Memory Network (LSTM) to con-
duct research [55–57]. In 2017, Ashish et al. [58] proposed the transformer model concept,
demonstrating its powerful capability in modeling temporal data for Natural Language
Processing (NLP). This model’s core technology incorporates an attention mechanism that
enables it to comprehend sequences in a manner more akin to human understanding. In
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NLP, it can traverse correlations between any two words in a sequence, solving the problem
of establishing long-term dependencies.

The transformer architecture effectively captures and utilizes the various time-scale
features present in meteorological data with great precision. The attention mechanism
can dynamically adjust the weights of data with large errors, reducing their impact on
temporal features. Moreover, compared to LSTM, the transformer has higher computational
efficiency, reducing costs. The transformer utilizes encoder–decoder architecture to handle
input and output sequences. This architecture incorporates position encoding, multi-head
attention mechanisms, and feed-forward networks. Position encoding enables the model to
distinguish relative positions of input data, crucial for capturing temporal dynamics. The
multi-head attention mechanism divides the query, key, and value vectors into multiple
segments to enable separate computations, enabling the model to acquire more intricate
feature representations. The feed-forward network in the transformer captures intricate
connections between data sequences, facilitating accurate comprehension. Here is a visual
representation of the transformer structure, as shown in Figure 5.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 5. Temporal branch network (based on the transformer network). 

The present research utilizes the transformer architecture as the basis for the tem-
poral branch model, making customized adjustments and enhancements to suit the spe-
cific characteristics of AMVs data. For data input, depthwise separable convolutions pro-
cess each channel, using spatial filters to compress the data and adjust its features for 
transformer processing. By minimizing the number of parameters and computational 
complexity, the overall efficiency is improved. Wind field variations in data processing 
are caused by atmospheric motion and display temporal characteristics at multiple scales. 
The time characteristics of the wind field cannot only consider the influence of the near 
moment, but the long-term wind field evolution characteristics reflect more macroscopic 
characteristics, which can be regarded as a constraint condition of the current wind field. 
Thus, this study presents a module that utilizes a sliding time window to analyze the 
temporal characteristics of AMV data at different scales and generate corresponding fea-
tures. The attention mechanism dynamically adjusts the influence weights of different 
time scales. Figure 6 demonstrates the analysis of time at multiple scales. 

Figure 5. Temporal branch network (based on the transformer network).

The present research utilizes the transformer architecture as the basis for the temporal
branch model, making customized adjustments and enhancements to suit the specific
characteristics of AMVs data. For data input, depthwise separable convolutions process
each channel, using spatial filters to compress the data and adjust its features for transformer
processing. By minimizing the number of parameters and computational complexity, the
overall efficiency is improved. Wind field variations in data processing are caused by
atmospheric motion and display temporal characteristics at multiple scales. The time
characteristics of the wind field cannot only consider the influence of the near moment, but
the long-term wind field evolution characteristics reflect more macroscopic characteristics,
which can be regarded as a constraint condition of the current wind field. Thus, this
study presents a module that utilizes a sliding time window to analyze the temporal
characteristics of AMV data at different scales and generate corresponding features. The
attention mechanism dynamically adjusts the influence weights of different time scales.
Figure 6 demonstrates the analysis of time at multiple scales.
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3.2.3. Space Model

When it comes to spatial feature extraction, numerous studies have demonstrated
the remarkable ability of Convolutional Neural Networks (CNNs) to uncover intricate
details in data. These networks have played a crucial role in advancing image recognition
and classification tasks. CNNs have been widely applied in meteorology, particularly in
meteorological remote sensing [59–61]. This study uses CNNs as the foundation for the
spatial branch model, constructing encoder–decoder architecture to extract deep spatial
features from AMV data. The specific structure is shown in Figure 7.
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Figure 7. Spatial branch network (based on Convolutional Neural Networks, the white squares
represent the input and output datasets, and the blue squares represent the data undergoing
convolution operations).

In the spatial branch model, the encoder module incrementally encodes the data,
enhancing the model’s ability to perceive low-frequency features by gradually expanding
its receptive field. During this phase, a channel attention module is created at each step
to enable feature sharing between channels, constraining the wind field using the spatial
features of the pressure and temperature fields. The decoder module systematically de-
codes the data and combines data of the same level through skip connections to merge
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information. This architecture facilitates better information and gradient flow, making the
network easier to train and enhancing performance. It is capable of extracting detailed
information at higher levels of the network and low-frequency information at lower levels.
By incorporating skip connections, the integration of data ensures the preservation of all its
features in a more comprehensive manner.

There is a variation in the importance of level features. In certain cases, feature
extraction may not be enough, or there is a risk of losing significant information. Therefore,
adjusting the weights of different levels is necessary. An attention module is created
during the skip-connection process to dynamically adjust the weight of each level, ensuring
complete extraction of AMV spatial features.

3.2.4. Time-Space Correction Network

This research employs various modules to construct a spatiotemporal network model
for error correction of AMVs. The model is developed within a multi-task learning frame-
work. The transformer serves as the foundation for the temporal branch model, while
convolutional neural networks serve as the foundation for the spatial branch model. En-
hancements are made to the model by considering the spatiotemporal characteristics of
AMVs. The following is a visual representation of the model training process, as shown in
Figure 8.
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In the temporal branch model, the input consists of time series data, specifically AMV
data collected over a certain period. After conducting numerous experiments and carefully
evaluating both the quality of the model and the computational resources required, we
have decided to choose a data-sequence length of 1 week. After format conversion using
depthwise separable convolutions, the data undergo positional encoding before entering
the encoder–decoder module to obtain temporal features at different time scales.

In the spatial branch model, the input is data at specific time points, focusing on
the spatial structural characteristics of AMV data, including the relationships between
observation points and the coupling between different channels. This branch acquires
spatial features using the encoder–decoder module and then transfers them to the temporal
features. At last, the attention mechanism combines temporal features of varying scales
with spatial features.

3.3. Assimilation Experiment Settings

Assessing the accuracy of corrected AMV data through an assimilation system is
crucial, and extensive research has been conducted on AMV data assimilation in the past.
This study uses version 4.4 of the Weather Research and Forecasting (WRF) model and
the WRF Data-Assimilation (WRFDA) system. The configuration consists of three nested
layers, with resolutions of 27 km, 9 km, and 3 km. It is vertically divided into 41 layers,
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with the uppermost layer having a pressure of 50 hPa. This research utilizes the 3DVar
assimilation method for conducting assimilation-forecast experiments. The assimilation
region covers Southeast Asia and the Western Pacific, ranging from 40◦S to 40◦N and 100◦E
to 160◦E. Figure 9 provides a schematic diagram of the region.
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The model utilizes a cold start approach, incorporating FNL (Final Operational Global
Analysis) data as the background field. The remaining model parameters are set according
to the study conducted by Chen Yaodeng et al. [62]. In addition to the pre- and post-
correction FY-4A AMVs data, conventional observational data from the Global Telecom-
munication System (GTS) are also assimilated. These include surface station observations
(SYNOP), upper air observations (SOUND), ship observations (SHIP), aircraft reports
(AIREP), buoy observations (BUOY), and so on.

4. Results
4.1. Error-Correction Effectiveness

Utilizing the quality-evaluation functions mentioned earlier, the study begins by
using data from August 2022 as an illustrative example. Comparing the original data and
corrected data at eight time points each day, we treat ERA5 reanalysis data as the relative
true values. Figure 10 shows the model’s daily correction performance for that month.

The errors in the AMV data from all three channels were significantly reduced due to
model correction. To further verify the sustainability of the correction effect and to avoid
the “false optimization” effect caused by data leakage, this study conducted an in-depth
analysis of the correction effect using the data from November 2022. In November, Figure 11
displays the wind field errors before and after correction, while Figures 12 and 13 illustrate
the comparison of wind speed distributions before and after correction.

It is worth noting that the error-correction effect continues to be significant even
after a period of 3 months. Based on the daily comparison of the root mean square
error (RMSE) in Figure 10, it is evident that the errors in all three channels have shown
significant improvement. Furthermore, the errors have exhibited reduced fluctuations after
the correction, suggesting a relatively stable correction effect. Among them, the correction
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effect of the C012 infrared channel is the most noticeable, with the smallest error fluctuation,
while the effect on the C010 mid-level water vapor channel is slightly less pronounced.
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Figure 10. RMSE comparison between data before correction and data after correction against ERA5
data in Month 8 (purple, data after correction; pink, data before correction). C009 represents the
high-level water vapor channel, C010 denotes the low-level water vapor channel, and water vapor
channel data mainly focus on the mid-to-upper troposphere. C012 represents the infrared channel,
with data primarily concentrated in the mid-level troposphere.
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Figure 11. RMSE comparison between data before correction and data after correction against ERA5
data in Month 11 (purple, data after correction; pink, data before correction). C009 characterizes the
high-level water vapor channel, C010 represents the low-level water vapor channel, and water vapor
channel data mainly focus on the mid-to-upper troposphere. C012 denotes the infrared channel, with
data primarily concentrated in the mid-level troposphere.
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According to the wind speed error chart (Figure 12), it is evident that the corrected
wind speeds are significantly closer to the ERA5 reanalysis wind field. This further validates
the model’s ability to correct AMV errors and highlights its effectiveness in smoothing
out data errors. In Figure 13, the pre-correction data scatter around the diagonal but with
significant deviations, and the areas of high data density are concentrated near the diagonal
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but with many points deviating from it, especially in regions with higher wind speeds
(greater than 20 m/s). After making the necessary adjustments, the data now exhibit
a more concentrated distribution along the diagonal, indicating improved consistency.
Additionally, there has been a noticeable decrease in the number of data points that deviate
from the diagonal. Overall, the consistency between the corrected AMVs data and the
ERA5 data is significantly improved, and the dispersion is notably reduced.

In the study by Chen Yaodeng et al. [39], it was discovered that the data from FY-4A
AMVs showed notable vertical error characteristics. To further examine the correction
effects at different heights, the data from the three observation channels were stratified verti-
cally and subjected to separate statistical analysis. This was done based on the stratification
settings of the ERA5 reanalysis data as shown in Figure 14.
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Figure 14. RMSE comparison between data before correction and data after correction at different
atmospheric pressure levels against ERA5 data (red, data before correction; blue, data after correction;
green, data volume at respective pressure levels).

The statistical results show that the correction effects for AMV data at different pressure
heights indicate that the correction effects are highly significant. From the data shown in the
figure, it can be observed that for the two water vapor channels (C009 and C010), the error
correction effects are quite evident at the levels with more data and more complete wind
field information. Even at higher altitude levels with larger initial errors (500–300 hPa), the
model’s ability to correct is highly noticeable. This is particularly true for the C009 channel,
where the original AMV data had significant errors during this period, but after model
correction, the optimization effect was very pronounced.

The data from the infrared channel (C012) were extensively optimized at various
pressure height levels. The correction process resulted in consistently low root mean square
error (RMSE), even at levels with a substantial amount of data. Additionally, influenced
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by the model dataset, the correction effects for U and V wind components were similar,
without a significant difference between the two wind vector corrections. In addition, the
vertical variation characteristics of AMV errors showed a significant reduction, suggesting
the simultaneous optimization correction scheme is both feasible and effective.

4.2. Further Evaluation

Globally, the Quality Indicator (QI) code serves as a metric for assessing the data
quality of AMVs. It assigns values on a scale of 1 to 100. Higher values indicate better
quality of the original AMV data [62,63]. To further investigate the optimization effects of
the model and avoid negative corrections on originally high-quality data, it is necessary
to analyze the model’s correction and optimization effects on AMV data of different
quality levels.

Figure 15 illustrates the impact of corrections on data with varying QI values. Based
on the data presented in the figure, it can be observed that the model has a significant
impact on correcting AMV data across various QI values. Particularly for data with QI > 85,
where the original data errors are larger, the correction effects are more noticeable. Even for
data with QI greater than 85, there is still a certain correction effect. When dealing with
AMV data that have QI values close to 100, which can be considered as being “correct”, the
impact of correction is minimal. This further demonstrates that the model does not simply
approximate the data to the ERA5 data during error correction. Instead, it depends on
the relationships between various element fields to limit the wind field, ensuring accurate
adjustments without the risk of overfitting.
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QI against ERA5 data (red, data before correction; blue, data after correction; green, data volume at
respective QI).

RMSE, MAE, and R all judge the errors of AMV data from a statistical standpoint.
Nevertheless, the data from AMVs, being actual atmospheric wind field data, display
distinct fluid physical characteristics. Therefore, it is necessary to use the fluid consistency
coefficient to assess the quality of wind field characteristics. Figure 16 presents the eval-
uation results of the fluid consistency coefficient for the entire month of November. The
model clearly demonstrates notable enhancements in specific statistical error metrics and
also incorporates optimizations to ensure smooth continuity of the entire wind field.
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Figure 16. Consistency coefficient comparison between data before correction and data after correction
against ERA5 data (dotted line, data before correction; solid line, data after correction). C009
represents the high-level water vapor channel, C010 represents the low-level water vapor channel,
and water vapor channel data mainly focus on the mid-to-upper troposphere. C012 represents the
infrared channel, with data primarily concentrated in the mid-level troposphere.

Tables 1 and 2 display the monthly average outcomes of the four evaluation functions
throughout November 2022. These results are presented both before and after correction
and are based on various observation channels of the AMV data.

Table 1. Monthly average comparison results of the four evaluation functions (U wind vector, B–C
represents pre-correction data, A–C represents post-correction data).

C009 C010 C012

B–C A–C B–C A–C B–C A–C

R 0.940 0.986 0.958 0.986 0.910 0.976
MAE(m/s) 0.577 0.379 0.709 0.566 0.743 0.466
RMSE(m/s) 6.466 3.253 5.056 3.480 5.996 3.148

Consistensy Cofficient 0.737 0.795 0.743 0.787 0.612 0.700

Table 2. Monthly average comparison results of the four evaluation functions (V wind vector, B–C
represents pre-correction data, A–C represents post-correction data).

C009 C010 C012

B–C A–C B–C A–C B–C A–C

R 0.826 0.946 0.879 0.951 0.792 0.928
MAE(m/s) 0.495 0.328 0.618 0.430 0.602 0.389
RMSE(m/s) 5.172 2.832 4.073 2.613 4.404 2.616

Consistensy Cofficient 0.737 0.795 0.743 0.787 0.612 0.700

Based on the evaluation results that consider mathematical statistics and physical
characteristics, the model showcases exceptional performance. The quality of the corrected
data has significantly improved, and the corrected wind field characteristics better conform
to actual fluid characteristics. Conventional methods for preprocessing AMV data usually
entail comparing it directly with reanalysis data and then eliminating data with significant
deviations. As a result, some AMV data are often lost before entering the assimilation
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system. In contrast, the error correction method in this study optimizes errors while
preserving the integrity of the data.

This study delves deeper into the cost of training the model. We performed model
training using varying data volumes, specifically 6 months, 12 months, and 24 months of
data. (The test data used in this study are all from November 2022, while the training set is
based on data up to August 2022, going back to the corresponding months. For example,
the training data for 6 months include data from February 2022 to August 2022, and the
training data for 12 months include data from August 2021 to August 2022.) Following
that, we conducted quality evaluations of the respective models. Figure 17 presents the
respective quality-evaluation results. The results indicate that a data period of 6 months is
enough to achieve favorable error correction outcomes for AMV data. Furthermore, as the
data volume increases, the correction effect continues to improve.
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Figure 17. Analysis of model correction results with training data of different periods (red represents
the original root mean square error, green represents the root mean square error corrected by the
model trained with 6 months of data, pink represents the root mean square error corrected by the
model trained with 12 months of data, and blue represents the root mean square error corrected by
the model trained with 24 months of data).

4.3. Assimilation Experiment Results

This study involved four assimilation experiments utilizing the WRF and WRFDA
systems:

(1) Assimilation of single-channel AMVs data before error correction (BC-Single);
(2) Assimilation of single-channel AMVs data after error correction (AC-Single);
(3) Assimilation of multi-channel AMVs data before error correction (BC-Multi);
(4) Assimilation of multi-channel AMVs data after error correction (AC-Multi).

In order to assess the effect of error correction on assimilation experiments, the as-
similated analysis fields were compared with ERA5 data to determine any differences in
impact. Figure 18 presents the vertical profiles of root mean square error (RMSE) for four
variables (u and v wind fields, temperature field t, and relative humidity rh). The figure
demonstrates that the main improvements brought by the corrected AMVs data primar-
ily exhibit improvements in the wind fields at higher altitudes. For the C009 and C010
water vapor channels, the improvements are primarily above the 500 hPa level, with the
most significant improvements around 450–300 hPa, which is consistent with the vertical
profile characteristics of their own observational errors. The data distribution of the C012
infrared channel covers a wider vertical range, impacting a broader range of meteorological
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elements. The figure indicates that the C012 infrared channel data quality significantly
improves after model error correction compared to the two water vapor channels. In addi-
tion, despite the presence of minor initial errors, the corrected data demonstrate noticeable
optimization effects on the upper-level temperature field.
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Figure 18. Vertical profiles of root mean square error (RMSE) for the three-dimensional variational
assimilation experiment results of AMVs data before and after correction for different channels (U
wind vector: (a,e,i,m); V wind vector: (b,f,j,n); temperature: (c,g,k,o); relative humidity: (d,h,l,p);
blue represents the C009 channel, green represents the C010 channel, purple represents the C012
channel, and red represents the multi-channel fusion; solid lines represent pre-correction data, dashed
lines represent post-correction data).

Figure 19 and Table 3 display the cost and gradient functions throughout the assimi-
lation process. They also show the observation innovations and analysis residuals of the
AMV data before and after correction.

Table 3. Observation innovations (OI) and analysis residuals (AO) of the three-channel AMVs data
before and after correction.

C009 C010 C012

Origin New Origin New Origin New

OI
U 3.786 3.088 3.825 3.274 4.680 3.264
V 4.894 3.364 4.579 3.090 6.077 3.271

AO
U 2.710 2.249 2.612 1.982 2.946 1.861
V 2.884 2.012 2.785 1.772 3.091 1.674
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Figure 19. Loss and gradient functions in the assimilation experiments before and after correction
for C009 channel data (AC-AMVs represent the corrected AMV data, BC-AMVs represent the pre-
correction AMV data).

By examining the figures and tables, it becomes clear that the data from the three
channels have distinct impacts on the wind field adjustments resulting from assimilation.
Additionally, the adjustment heights exhibit significant variations. Therefore, based on the
preliminary statistical results, this study proposes a new optimization strategy for the cross-
fusion of data from different channels during multi-channel data-assimilation experiments:

(1) When analyzing the data, it is important to consider the proximity of each data
point in terms of both horizontal distance and pressure height. In this study, a close
horizontal distance is defined as 0.5 degrees of latitude and longitude, while a similar
pressure height is determined by data within 50 hPa of each other. By considering
these factors, we can ensure that we are comparing data points that are in the same
pressure layer and are geographically close to each other. If multiple data points exist
simultaneously, make the following judgments: if the data point is located between
150–300 hPa, prioritize selecting data from the C009 channel; if the data point is
between 300–500 hPa, prioritize selecting data from the C010 channel; if the data point
is below 500 hPa, prioritize selecting data from the C012 channel. If there are multiple
data points from the same channel, select the data with the higher QI value;

(2) When there is a single data point within the same horizontal distance and height layer,
it should be used;

(3) When data points are spread out across various height layers but have the same
horizontal distance, it is recommended to utilize all of them.

Taking the data from 1 November as an example, the optimized data showed better
assimilation quality, particularly in adjusting the upper wind field. Additionally, some
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optimization was done to fine-tune the upper-temperature field. Here are the results of the
assimilation experiment, as shown in Figure 20.

Remote Sens. 2024, 16, x FOR PEER REVIEW 22 of 26 
 

 

between 300–500 hPa, prioritize selecting data from the C010 channel; if the data 
point is below 500 hPa, prioritize selecting data from the C012 channel. If there are 
multiple data points from the same channel, select the data with the higher QI value; 

(2) When there is a single data point within the same horizontal distance and height 
layer, it should be used; 

(3) When data points are spread out across various height layers but have the same hor-
izontal distance, it is recommended to utilize all of them. 
Taking the data from 1 November as an example, the optimized data showed better 

assimilation quality, particularly in adjusting the upper wind field. Additionally, some 
optimization was done to fine-tune the upper-temperature field. Here are the results of 
the assimilation experiment, as shown in Figure 20. 

 
Figure 20. Comparison of multi-channel fusion before and after improvement on 1 November, 2022: 
(a) is the U wind vector, (b) is the V wind vector, (c) is the temperature, (d) is the relative humidity; 
BC-ALL means before correction, AC-ALL means after correction, NF-ALL means new fusion 
method). 

5. Discussions 
Remote-sensing data from meteorological satellites play a crucial role in numerical 

weather prediction (NWP). However, there is still room for enhancing the accuracy of the 
data due to inherent errors in the observation and retrieval processes. As one of the mete-
orological remote-sensing data, atmospheric motion vectors (AMVs) play a crucial role in 
refining upper-level wind fields. However, the data characteristics of AMVs are complex, 
exhibiting strong temporal continuity and high spatial complexity. This research focuses 
on using AMVs as an example to enhance the initial field quality of NWP systems, opti-
mize observation errors, and improve NWP performance. The goal is to improve the qual-
ity of meteorological satellite remote-sensing data. It breaks through the limitations of 

Figure 20. Comparison of multi-channel fusion before and after improvement on 1 November,
2022: (a) is the U wind vector, (b) is the V wind vector, (c) is the temperature, (d) is the relative
humidity; BC-ALL means before correction, AC-ALL means after correction, NF-ALL means new
fusion method.

5. Discussions

Remote-sensing data from meteorological satellites play a crucial role in numerical
weather prediction (NWP). However, there is still room for enhancing the accuracy of
the data due to inherent errors in the observation and retrieval processes. As one of the
meteorological remote-sensing data, atmospheric motion vectors (AMVs) play a crucial
role in refining upper-level wind fields. However, the data characteristics of AMVs are
complex, exhibiting strong temporal continuity and high spatial complexity. This research
focuses on using AMVs as an example to enhance the initial field quality of NWP systems,
optimize observation errors, and improve NWP performance. The goal is to improve the
quality of meteorological satellite remote-sensing data. It breaks through the limitations of
conventional preprocessing methods by using high-quality reanalysis data as relative true
values and explores the effect of deep learning on correcting observation errors. A deep-
learning network model was constructed to adapt to spatiotemporal characteristics of the
data retrieved from FY-4A AMVs and ERA5 reanalysis. Here are the benefits of the model:

(1) By analyzing the temporal and spatial aspects of AMVs independently and combining
their features, the model effectively utilizes the unique data properties of AMVs and
improves its ability to extract and fit features;

(2) The multi-scale temporal dimension module set for AMV temporal characteristics
effectively extracts temporal features, retaining long-term continuous features and cap-
turing small-scale variation features, thus making the wind field’s temporal continuity
more complete;
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(3) In the spatial dimension, a setup with multiple layers for encoding and decoding
is utilized. This setup not only learns the larger spatial features of AMVs but also
improves the ability to capture finer details. The channel attention module, created
separately, aids in constraining the features of AMVs by considering the pressure and
temperature field characteristics, thereby enhancing their physical attributes.

The analysis results using relevant quality-evaluation functions, fluid consistency tests,
and NWP assimilation systems for error correction results indicate:

(1) The model’s correction effect has a long-lasting duration. In challenging circumstances
where there is a lack of new data for training, the model’s correction effect can remain
stable for a minimum of 4 months;

(2) Deep-learning technology can effectively correct AMV errors, showing significant
correction effects across various dimensions, including daily observation errors of
different channels, observation errors at different pressure levels, and observation
errors with different QI quality labels;

(3) As the amount of data increases, the error-correction capabilities of deep-learning
technology can be further enhanced. By utilizing extensive historical observation data
and top-notch reanalysis data, the model’s ability to correct errors will enhance as it
continuously receives and undergoes training with more data;

(4) The WRFDA assimilation experiment results further confirm the effectiveness of
AMV error correction. The assimilation effect of corrected AMV data is significantly
enhanced, and the newly set multi-channel fusion optimization strategy can further
improve the assimilation effect of AMVs data.

The results of this research highlight the feasibility and effectiveness of utilizing
deep-learning technology to correct errors in meteorological remote-sensing data. For
further improvement in research results, the next step will be to conduct error-correction
experiments on a wider range of meteorological remote-sensing data, including altimeter
and scatterometer data. Additionally, incorporating more input data, such as longer time
spans and additional channels, will be essential.
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