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Abstract: Digital array radar (DAR) can fully realize digitalization at both the transmitting and
receiving ends. However, the development of freedom at the transmitting end is far from mature. So,
the new concept of multi-dimensional waveform coding array has appeared, which can optimize the
transmitting resources in space–time/frequency waveform or another dimension. Space–time coding
array (STCA) is a typical kind of multi-dimensional waveform coding array, which can make full use
of the high degree of freedom at the transmitting end. It realizes emission diversity by introducing
a small time delay between different transmission array elements. In this paper, an optimization
method for STCA, which combines the array spatial coding at the transmitting end and mismatched
filter design at the receiving end, is proposed. This method aims to solve the sidelobe problems
of STCA: the inherent resonance phenomenon and the resolution loss problem. The experimental
verification and quantitative comparative analysis prove the effectiveness of the proposed method.
The resolution is restored to the ideal level under the premise of maintaining the beam-scanning
ability and ultra-low sidelobe, and the resonance phenomenon caused by spectrum discontinuity is
eliminated simultaneously.

Keywords: digital beamforming (DBF); mismatched filter (MSF); multi-dimensional ambiguity function;
multi-input and multi-output (MIMO); sidelobe optimization; space–time coding array (STCA)

1. Introduction

Radar systems have been widely applied due to their all-weather and all-day detection
ability. However, with the rapid development of scientific and technological levels, many
new kinds of targets have emerged. The trend of new aerial targets is becoming more
diversified, miniaturized, high-speed and covert, which will bring higher challenges to
radar early-warning and detection technology. This requires the new radar system to have
the continuous observation ability of forming multiple beams and various waveforms in
different key areas at the same time, and should realize the flexible allocation of transmitting
resources in airspace. With the development of digital beamforming technology and
semiconductor device technology, digital array radar (DAR) comes into being [1], which
could fully realize digitalization at both the transmitting end and the receiving end. DAR
has high application potential due to its advantages of multi-tasking, multi-mode model,
and high degree of freedom [2]. It will significantly promote the performance improvement
of new radar systems.

Although the digital array radar has proved that it can realize full digitalization at
both the transmitting end and the receiving end, the current research is basically focus-
ing on the digital beamforming (DBF) at the receiving end, such as the commonly used
mode with wide-beam transmitting and narrow-beam receiving (SIMO, Single-Input and
Multi-Output), which only uses receiving DBF to realize multi-beam reception; and the
MIMO (Multi-Input and Multi-Output) mode, with the orthogonality of the transmitting
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waveforms, which can be used to obtain effective transmitting DBF after signal processing
at the receiver end, but it is not directly transmitting DBF [3,4]. The MIMO technique
is widely applied in SAR (Synthetic Aperture Radar) especially, because it can break the
constraint between azimuth resolution and range swath width [5–7]. Both of the two modes
mentioned above are omnidirectionally transmitting, but without the focus of transmitting
resources to some directions that require key attention. It will lead to a waste of energy
resources, and the signal-to-noise ratio, signal-to-clutter ratio, or other performance is not
ideal. Therefore, the development of DBF at the transmitting end is far from mature, and
the high degree of freedom at the transmitting end is waiting to be explored and utilized.
The research of transmitting and receiving a fully digital array radar is greatly significant.

Multi-dimensional waveform coding array is a new concept developed on the basis
of the MIMO radar, which can fully explore the degree of freedom at the transmitting
end [8]. Its connotation includes but is not limited to the generalized coding optimization
design of the transmitting signal in terms of time domain, frequency domain, and array
domain [8–10]. Compared with the MIMO radar system, it has more advantages in gain
consistency, low range sidelobe, engineering ease of implementation, and so on [10]. In
2008, G. Krieger of DLR gave the following expression for the mathematical definition of
multi-dimensional waveform coding array [9]:

s(τ, ΘT, ΘR) ̸= x(τ) · A(ΘT) · A(ΘR) (1)

where x(τ) represents the transmitting original waveform, A(ΘT) and A(ΘR) represent
the spatial gain coefficients of the transmitting and receiving arrays, respectively. The syn-
thetic transmitting waveform s(τ, ΘT, ΘR) of multi-dimensional waveform coding array is
space–time coupled and cannot be simply represented as the product of x(τ) with A(ΘT)
and A(ΘR). At present, the two most typical kinds of array sensors conforming to the
concept of multi-dimensional waveform coding array are space–time coding array (STCA)
and Frequency Diverse Array (FDA) [11–13]. Their space–time/frequency coupling trans-
mitting mechanism and flexible beam-scanning capability could provide a feasible solution
for the multi-degree-of-freedom joint optimization design, which has great application
potential in target detection, target tracking, and observation imaging.

Space–time coding (STC) for MIMO waveform design was introduced in Refer-
ences [14–17] to introduce a further degree of freedom at the transmitting end. The
Chevalier team first proposed the concept of STCA [18], which uses single waveforms and
introduces a small time delay between array elements, and then the whole space coverage
of transmitting can be realized [19]. It was also called colored transmission in [18]; the
principle of colored transmission consists of simultaneously transmitting different wave-
forms in different directions. The directivity and high degree of freedom on transmit is then
recovered by signal processing on the receiving end. The transmitting DBF capability is
utilized to make up the deficiency of receiving DBF. Reference [20] demonstrated that STCA
has the characteristics of good energy consistence of the pattern, simple system structure,
controllable Doppler tolerance, and so on.

However, the adoption of STCA will bring some problems. Firstly, it will cause the loss
of range resolution because it sacrifices part of the resolution to obtain the spatial scanning
coverage capability and ultra-low sidelobe [18,21–23]. In order to solve it, Reference [24]
proposed a hybrid coding combining STAC and spatial coding. Reference [25] proposed a
hybrid coding combining STAC and slow-time coding. Reference [26] optimized the range
sidelobe of STCA by subarray partitioning. However, there is a contradiction between
the width of the mainlobe and the level of the sidelobe; the resolution recovery will bring
the increase in the sidelobe level [24,25,27]. So, we need to further optimize the sidelobe
performance after resolution recovery.

Secondly, Reference [28] pointed out the inherent resonance problem of STCA, which
is caused by the spectrum discontinuity at the beginning and end during beam scanning,
resulting in a mismatch at some specific angles, and then the phase correction method
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was proposed to solve this problem [28]. But it will be inapplicable if the whole space
observation is required.

So, the motivation of our work is to solve the two sidelobe problems of STCA: deterio-
ration of the sidelobe due to the resolution recovery, and the inherent resonance problem.
In this paper, array element spatial coding is applied at the transmitting end to recover the
resolution and solve the resonance problem. The mismatched filter (MSF) design at the re-
ceiving end is applied to further optimize sidelobe performance. MSF is a popular method
to optimize the sidelobe [29–32]. Cilliers designed MSF based on p-norm, minimizing
the integrated sidelobe level or peak sidelobe level [33]. De Maio used QCQP (quadratic
constrained quadratic programming) and other convex optimization methods to design
MSF, and the influence of filter length or other factors on the sidelobe suppression effect was
studied [34–36]. Jiu realized the great improvement of SNR by carrying out the joint design
of emission waveform and MSF [37]. Zhou realized sidelobe reduction and SAR anti-ISRJ
(Interrupted-Sampling Repeater Jamming) through the joint optimization of transmitting
waveform and MSF design on receive [38–40]. Yu proposed the low peak sidelobe level
(PSL) MSF designed for an FDA radar, which can be further modified to improve the clutter
suppression performance and Doppler tolerance performance [41]. However, for the STCA,
the normal MSF design method is not applicable since the waveform is space–time coupled.
Therefore, an improved space–time MSF optimization model is established in this paper to
design an MSF that is applicable to STCA.

Above all, in this manuscript, firstly, the brief signal model and array characteristics of
STCA are analyzed, and then we point out that there are two key problems in the sidelobe
of STCA. One is the inherent resonance effect in STCA, which is caused by the spectrum
discontinuity at the beginning and end of the pulse, resulting in sidelobe deterioration at
some specific angles [28]. This phenomenon has negative effects in practical engineering
applications. The second problem is deterioration of the sidelobe due to the resolution
recovery, because STCA sacrifices part of the range resolution to obtain the spatial scanning
coverage capability and ultra-low sidelobe, so the issue of how to restore the resolution
under the premise of maintaining the whole spatial coverage capability and low sidelobe
is also a key research point. Then, the multi-dimensional ambiguity function is proposed
as the performance evaluation tool. In order to solve these two problems, this manuscript
proposes an optimization method with the combination of array element spatial coding
at the transmitting end and an MSF optimization design at the receiving end, which can
solve the inherent resonance problem and improve the rang resolution while the spatial
scanning capability and low sidelobe level of STAC can still be maintained. Section 1 is
the research background and introduction of our research content. Section 2 is the basic
introduction of the signal model and characteristics of STCA, and then it introduces the
two key problems of sidelobe of the STCA that we want to solve, which is the motivation
of our work. Section 3 proposes the multi-dimensional ambiguity function that is the
evaluation tool for STAC. Section 4 proposes the joint optimization method and introduces
it in detail. Section 5 is the simulation verification, performed through software simulation
and comparative quantitative analysis, to verify the effectiveness and optimization effect
of the proposed method. Section 6 is a discussion of the simulation results and proposes
the further research direction. Section 7 is a summary of the main work in this manuscript,
which then points out the problems that exist and explains the ideas for our further research.

2. Model and Problems
2.1. Signal Model

Materials and STCA achieve emission diversity by adding a small time delay between
different transmission channels, which results in the range–angle–frequency coupling and
beam-scanning characteristics [18].

Assuming that the transmitting array is a one-dimensional uniform linear array (ULA)
as shown in Figure 1 below, with a total of M transmitting array elements, the distance
between the array elements is dT = λ/2, and the carrier frequency is fc.
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For the time delay ∆tm between the m-th transmitting channel and the reference
channel (first array element), the time-domain expression of the transmitting signal of the
m-th transmitting channel is given by the following:

sm(t) = s(t − ∆tm), m = 1, 2 . . . , M (2)

So here, the synthesized transmitting signal in the direction of θ can be written
as follows:

sθ(t) =
M

∑
m=1

e
j2π

fc · (m − 1)dT
c

sin θ
· sm(t) (3)

In order to draw general conclusions here, assuming ∆tm = (m − 1)∆t, then the
frequency spectrum of sθ(t) is given by the following:

sθ( f ) = FFT[
M
∑

m=1
e

j2π
fc · (m − 1)dT

c
sin θ

· s(t − (m − 1) ∗ ∆t)]

=
M
∑

m=1
e

j2π
fc · (m − 1)dT

c
sin θ︸ ︷︷ ︸

term1

· e−j2π f (m−1)∆t︸ ︷︷ ︸
term2

· s( f )

(4)

The translational property of FFT is applied here [25]. It can be rewritten as follows:

sθ( f )= AH
θ · A f · s( f )

Aθ=

[
1, e−j2π

fc ·dT
c sin θ , e−j2π

fc ·2dT
c sin θ , · · · , e−j2π

fc ·(M−1)dT
c sin θ

]T

A f=
[
1, e−j2π f ·∆t, e−j2π f ·2∆t, · · · , e−j2π f ·(M−1)∆t

]T

(5)

In the equation, Aθ is the spatial steering vector, and A f is the equivalent steering
vector in the frequency domain. Thus, it can prove the space–frequency coupling charac-
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teristics of STCA. Then, the amplitude of the array factor (AF) in the frequency domain is
as follows:

AFSTCA( f , θ) =
∣∣∣AT

θ · A f

∣∣∣ =
∣∣∣∣∣∣∣

M
∑

m=1
e

j2π
fc · (m − 1)dT

c
sin θ︸ ︷︷ ︸

term1

· e−j2π f (m−1)∆t︸ ︷︷ ︸
term2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 − e

jM2π(
fc · dT

c
sin θ− f ∆t)

1 − e
j2π(

fc · dT
c

sin θ− f ∆t)

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
sin

[
Mπ

(
fcdT sin θ

c
− ∆t · f

)]
sin

[
π

(
fcdT sin θ

c
− ∆t · f

)]
∣∣∣∣∣∣∣∣

(6)

It can be seen that the array factor of the STCA has a frequency–range–angle three-
dimensional coupling characteristic, which expands the target detection capability of the
radar, and also provides the range–angle parameters joint estimation capability and anti-
deception jamming capability. The disadvantage is that it reduces the energy focusing
performance of the beam, and can cause range or Doppler ambiguity in some cases. At the
same time, the equation shows that the array factor of STCA has obvious periodicity.

The array factor depends on the arrangement form of the array elements, the array
element spacing, and so on. It can reflect the beamforming effect of the array, and is also an
important embodiment of array characteristics. The array emission pattern is the product
of the array factor and the element factor (EF); the element factor is the radiation pattern of
a single array element, independent of the array. It usually can be expressed as a simple
cosine function:

EFSTCA(θ) = cos
c
2 (θ) (7)

where c is a constant, usually between 1 and 2; it is set to 1.5 in our analysis. So, the actual
array pattern is given by the following:

APSTCA( f , θ) = EFSTCA(θ) · AFSTCA( f , θ) (8)

We can see that AFSTCA( f , θ) is the function of frequency and angle, which brings
STCA the space–frequency coupling characteristics and spatial scanning ability. But
EFSTCA(θ) is only the function of the angle, so the element factor will only change the
absolute amplitude in different directions but will not change the distribution along the
frequency domain in different directions, and also will not affect the array characteristics.

For a clearer and more intuitive observation, we simply draw the emission frequency
domain antenna pattern and array gain, as shown in Figure 2. Here, the LFM signal is used as
the original waveform and the parameters are set as M = 11, fc = 3.6 GHz, Br = 55 MHz,
∆t = 1/Br, dT = λ/2.

It can be seen in Figure 2b that the emission pattern forms an angle-frequency “sliding
window” effect. Due to the frequency–space weighting, there is a frequency window
at a different angle. The frequency and energy are concentrated in the mainlobe of the
window. The frequency window will move circularly in the bandwidth with the change
of direction. It also shows that the beam direction of the synthesized transmitting signal
changes with the frequency, which is the fundamental reason that STCA has the spatial
scanning coverage ability.

As shown in Equation (6), the emission signal spectrum reaches its peak value when

fc · dT
c

sin θ − f ∆t = n, n ∈ Z (9)

According to the time–frequency relation of the LFM signal:

f (t) = fc −
Br

2
+

Br

Tp
· t (10)
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Substituting Equation (10) into Equation (9), and dT = λ/2:

θ(t) = arcsin(
2Br∆t

Tp
· t + 2 fc · ∆t − Br · ∆t + 2n) n ∈ Z (11)

The beam-scanning range within the pulse is as follows:

θstart = θ(t = 0) = arcsin(2 fc · ∆t − Br · ∆t + 2n)
θend = θ

(
t = Tp

)
= arcsin(2 fc · ∆t + Br · ∆t + 2n)

sin θend − sin θstart = 2Br · ∆t
(12)

In can be concluded that when ∆t = 1/Br, θstart = θend and the transmitting beam will
exactly scan the whole space once within the pulse; when ∆t < 1/Br, the scanning range
is [θstart, θend]; when ∆t > 1/Br, the beam will periodically scan the whole space within
the pulse.

2.2. Problems

The frequency-angle “sliding window” effect brings the spatial scanning ability, but it
also brings some problems, especially in the range sidelobe.

Firstly, due to the frequency window, the frequency covered for each direction is no
longer the entire bandwidth, but part of the bandwidth, as shown in Figure 2b, which
leads to resolution loss. The resolution will drop by M times compared with phased
array; M is the number of array elements [17,18]. However, recovering the resolution will
bring the increase in the sidelobe level. So, we need to further optimize the sidelobe after
resolution recovery.

Secondly, due to the sliding characteristic and periodicity of the frequency window,
the window will be separated in the direction around θstart and θend. One part of the
frequency window mainlobe is from the high-frequency part, and the other part is from the
low-frequency part, as shown in the red box in Figure 2b, which will lead to the spectrum
discontinuity and mismatch when processing, which is called the “resonance” problem [28].

Here, when fc = 3.6 GHz, Br = 55 MHz, ∆t = 1/Br, dT = λ/2, so the resonance
angle can be calculated as follows:

θp = θstart = θend = arcsin
(

2 fc

Br
− 1 + 2n

)
≈ −5.22◦ (13)

It is consistent with Figure 2; here, we draw several range profiles to observe the
problems in the range domain more intuitively. The results are shown in Figure 3 below.

Figure 3 shows the range profiles of STCA and phased array that are obtained by
the range-angle ambiguity function, which is a one-dimensional reduced expression of
multi-dimensional ambiguity function [19]. It will be introduced in detail in the following
Section 3. These range profiles can reflect the imaging performance in the range domain of
the antenna array at different directions. The results could verify our theoretical analysis.
On the one hand, as shown in Figure 3a,b, there is an obvious resonance phenomenon
and performance deterioration in the angle region adjacent to θp = −5.22◦. However, the
resonance phenomenon does not appear in other directions far from θp, such as Figure 3c.
On the other hand, the mainlobe of STCA is greatly widened compared with the phased
array and can be obviously seen in Figure 3c,d, which will bring the range resolution
loss problem.

The method of phase correction to solve the resonance problem is mentioned in
Reference [28], but this method does not fundamentally solve the problem; it just indirectly
avoids this problem through controlling the phenomenon that occurs in the unconcerned
airspace. It will be inapplicable if the whole space observation is required.
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3. Evaluation Tool

As a powerful tool to evaluate the range and Doppler resolution of a transmitting
waveform, an ambiguity function reveals the inherent ambiguous characteristics. However,
the conventional ambiguity function only focuses on the range and Doppler characteristics
of the transmitting waveform, and does not consider the multi-dimensional coupling char-
acteristic of STCA. Therefore, based on the traditional ambiguity function, we introduce
the steering vector to obtain the multi-dimensional ambiguity function, which not only
expands the resolution ability of the conventional ambiguity function in the angle dimen-
sion, but also can represent the spatial focusing ability of the STCA. The multi-dimensional
ambiguity function is more suitable for evaluating the transmitted waveform of the STCA,
which is specifically defined in Equation (14) below.

|χ(τ, fd, θ, θ0)|2 =

∣∣∣∣∣∣∣∣∣∣
M

∑
n=1

M

∑
m=1

e
j
2πdT(m − 1) sin θ

λ e
−j

2πdT(n − 1) sin θ0

λ︸ ︷︷ ︸
term1

∫ +∞

−∞
sm(t)sn

∗(t − τ) · ej2π fdtdt︸ ︷︷ ︸
term2

∣∣∣∣∣∣∣∣∣∣

2

(14)

where sm(t) and sn(t) are transmitting signals of the m-th and n-th array element, θ is
the angle of the target, θ0 is the angle of the equivalent transmitting DBF, which is the
angle during STCA scanning. τ is the time delay in range domain; fd is the Doppler
frequency in Doppler domain; dT is the distance between the adjacent array elements.
Term 1 evaluates the spatial focusing performance of the array radar; term 2 is similar to
the conventional ambiguity function that can evaluate the autocorrelation performance
and Doppler tolerance of the transmitting waveform.

Due to the high dimension of multi-dimensional ambiguity function, it is not easy to
analyze directly, so different dimensional reduced expressions are usually used to evaluate
the performance. Several commonly used dimensional reduced expressions are as follows:

1). Range–angle ambiguity function χ(τ, fd = 0, θ, θ0 = c) represents the resolution
of the waveform to target at a different angle under the condition of zero Doppler and the
fixed transmitting DBF angle θ0 = c;
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2). Angle–angle ambiguity function χ(τ = 0, fd = 0, θ, θ0) represents the spatial
coverage capability of the transmitting waveform under the condition of τ = 0, fd = 0;

3). Range–Doppler ambiguity function χ(τ, fd, θ = θ0) can evaluate the autocorrela-
tion performance and Doppler tolerance of the transmitting waveform.

The following Figure 4 is a comparison diagram of multi-dimensional ambiguity
function evaluation between STCA and the traditional phased array.
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In Figure 4a,b, the fluctuation along the main diagonal physically stands for the
difference in transmitting gain. The energy is uniformly distributed on the main diagonal
for STCA, which reflects the spatial scanning capability and gain consistency of STCA.
However, for the phased array, we can see that the energy is mainly concentrated near
the beam center, and it has no spatial scanning coverage capability. In Figure 4c,d, we
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can see that the Doppler tolerance performance of STCA and the phased array are both
satisfactory when transmitting the LFM signal. Simultaneously, the vertical profile can also
reflect the autocorrelation performance in conditions of different Doppler frequencies, and
we can find that STCA will bring significant mainlobe widening. In Figure 4e,f, the vertical
profile can reflect the imaging performance in different angular directions, and we can find
that STCA has a lower sidelobe but a wider mainlobe compared with the phased array.
These figures could verify our theoretical analysis. STCA has spatial scanning capability
and ultra-low sidelobe, but it will bring an obvious mainlobe broadening; the resolution
deteriorates significantly, which will be solved in the following sections.

4. Proposed Method

In order to solve the problems outlined in Section 2, an improved optimization method
is proposed here.

When transmitting, we can change the pattern of the transmitting array by introducing
the array element spatial code between transmitting array elements. The signal with spatial
code is given by the following:

s(t, θ) =
M

∑
m=1

e
j2π

fc · (m − 1)dT
c

sin θ
· C(m) · s(t − (m − 1)∆t) (15)

where C(m) is the array element spatial code. The scanning capability of STCA can still
be maintained since it is a time-invariant code. The Barker code is a typical kind of array
element spatial coding, which is an aperiodic binary code with a special law. Each element
can only take the value +1 or −1 [24]. Similarly, the frequency profile of antenna pattern of
STCA with the Barker code is shown below in Figure 5.
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Barker code).

We can clearly see that the mainlobe of the frequency window can be compressed.
It makes the frequency window more flat and uniform, so the frequency covered in each
direction is almost recovered to whole bandwidth, and the spectrum discontinuity and
mismatch caused by the “sliding window” effect can be greatly alleviated. Therefore, the
resolution problem and resonance problem can be solved.
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However, because the mainlobe is compressed, it will bring the decrease in the main-
lobe and the increase in the sidelobe level. Therefore, at the receiving end, the MSF is
designed to optimize the sidelobe level further.

Matched filter (MF) is widely used in the field of radar. According to the detection
theory, it has been verified that the performance of MF for detecting a single target in the
case of Gaussian white noise is optimal, and the maximum processing gain can be obtained.
But it also brings a higher sidelobe, so in the case of multiple targets, the weak targets
are likely to be submerged by the sidelobe of the strong targets, so many scholars have
studied the mismatched filter (MSF) [27–42]. However, for the STCA, the normal MSF
design method is not applicable since the waveform is space–time coupled.

Therefore, in the STCA system, the MSF design needs to consider the space factor. The
improved convolution matrix is as follows:

ΛK,θ0 =



sN,θ0 0 · · · · · · · · · · · · 0
... sN,θ0

. . .
...

s2,θ0

...
. . . 0

...

s1,θ0 s2,θ0 · · · sN,θ0 0
...

0 s1,θ0

. . .
... sN,θ0

. . .
...

...
. . . . . . s2,θ0

...
. . . 0

... 0 s1,θ0 s2,θ0 sN,θ0

... 0 s1,θ0

. . .
...

...
. . . . . . s2,θ0

0 · · · · · · · · · · · · 0 s1,θ0


︸ ︷︷ ︸

K columns

(16)

where sn,θ0 is the n-th element of the signal vector, which is the discrete form of s(t, θ0) in
Equation (15). Then the output of MSF is as follows:

yθ0 = ΛK,θ0 · qθ0 (17)

where qθ0 is the filter vector of length K, so the output is a vector of length K + N − 1, for
convenience assuming K = N + 2p, so that K + N − 1 = 2N + 2p − 1 is guaranteed to
be an odd number, the peak value of the convolution output will appear at the position
of N + p.

So, the PSLR (Peak to Sidelobe Ratio) constraint is set as follows:

qH
θ0

AH
N+p+i,θ0

(s)AN+p+i,θ0(s)qθ0 ≤ µ f or |i| ≥ 1 (18)

where AN+p+i,θ0 is the N + p + i-th row of matrix ΛK,θ0 . Simultaneously, because the
matched filter maximizes the SNR (signal-to-noise ratio) at the peak, the MSF will bring the
LPG (loss-in-processing gain) at the peak [35,36], which is defined as the ratio of the MSF’s
SNR to the MF’s SNR, so we need to add the LPG constraint:

qH
θ0

AH
N+p,θ0

(s)AN+p,θ0(s)qθ0 ≥ (1 − α)
(

sH
θ0

sθ0

)2
(19)

The threshold α is a real constant between 0 and 1, and it is used to limit the LPG. At
the same time, we need to ensure the energy unity of the MF and the MSF:

qH
θ0

qθ0 = sH
θ0

sθ0 (20)
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Here, we assume that the energy of MF is N, so the optimization model established is
as follows:

minqθ0
µ

s.t. qH
θ0

qθ0 = sH
θ0

sθ0 = N
qH

θ0
AH

N+p+i,θ0
(s)AN+p+i,θ0(s)qθ0 ≤ µ for |i| ≥ 1

qH
θ0

AH
N+p,θ0

(s)AN+p,θ0(s)qθ0 ≥ (1 − α)N2

(21)

This optimization model mainly restricts LPG and PSLR. However, it can be found that
this QCQP (quadratically constrained quadratic programming) problem is not a convex
optimization problem, so it requires a large amount of computation to solve. In order
to reduce the computation, we consider transforming it to a SOCP (second-order cone
programming) problem through relaxing these constraints to a certain extent under the real
number condition and controlling the loss of optimization performance at an ideal level
simultaneously [42].

To transform the QCQP problem to the SOCP problem, we first need to convert the
parameters into the real number:

Ai,θ0 =

[
Re

(
Ai,θ0

)
Im

(
Ai,θ0

)
−Im

(
Ai,θ0

)
Re

(
Ai,θ0

)] (22)

hθ0 =
[
Re

(
qT

θ0

)
Im

(
qT

θ0

)]T
(23)

At the same time, the constraints also need to be relaxed. The energy constraint is
adjusted to the following:

hH
θ0

hθ0 ≤ N (24)

The LPG constraint is adjusted to the following:

AN+p,θ0(1, :)hθ0 ≥ N
√
(1 − α)

AN+p,θ0(2, :)hθ0 = 0
(25)

The PSLR constraint is adjusted to the following:∥∥AN+p+i,θ0 hθ0

∥∥
2 ≤ µ f or |i| ≥ 1 (26)

So, the SOCP optimization model is as follows:

minhθ0
µ

s.t. hH
θ0

hθ0 ≤ N
AN+p,θ0(1, :)hθ0 ≥ N

√
(1 − α)

AN+p,θ0(2, :)hθ0 = 0∥∥AN+p+i,θ0 hθ0

∥∥
2 ≤ µ f or |i| ≥ 1

(27)

After the real parts and imaginary parts of the optimal filter sequence are obtained,
the complex filter sequence qθ0 can be obtained by a recombination of two parts, and this
is the MSF actually used. But because of the relaxation in the energy constraint, a step of
energy normalization is also needed here:

qθ0
=

√
N

qH
θ0
· qθ0

· qθ0 (28)

So, the improved signal processing structure of the receiving end for STCA is shown
in following Figure 6:

Each receiving channel is the superposition of echoes from different directions, so
for each receiving channel, Ne space–time MSFs are required, where Ne is the number of
directions of interest in our observation. Then, Ne*M groups of output signals will be used
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for the receiving DBF processing, and then Ne groups of output signals will be used for
further application.
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5. Simulation

In this part, the multi-dimensional ambiguity function mentioned in Section 3 is
applied as the evaluation tool. The Matlab R2016a is used to carry software simulation to
verify the effectiveness and feasibility of the proposed optimization method. We mainly
focus on the range–angle ambiguity function and the range profile of it.

The main simulation parameters are set as Table 1 below:

Table 1. Main system parameters in this paper.

Symbol Parameters Value Unit

fc Carrier frequency 3.6 GHz
dT Array element spacing 0.0417 m
Br Bandwidth 55 MHz
∆t Time bias 0.018 us
Tp Pulse width 10 us
M Number of array elements 11 ---
α Threshold of LPG constraint 0.2 ---

According to the analysis in Section 2, under this parameter setting, the resonance ef-
fect will occur at −5.22◦ and its adjacent angle region. So firstly, we observe the range–angle
ambiguity function at −5.22◦ of normal STCA and STCA using the proposed optimization
method. The simulation results are shown in Figure 7 below:

Figure 7 show the range–angle ambiguity function of normal STCA and STCA ap-
plying the proposed method; it can show that the resolution loss problem and resonance
problem of STCA can be completely solved, and the sidelobe performance at the expected
direction is greatly improved through using the proposed method. In order to be more in-
tuitive, we observe the range profile of the expected direction, as shown in Figure 8 below:
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Figure 8 is the range profile of three modes: the ordinary STCA system, the STCA
system with the Barker code and MF, and the STCA system with the Barker code and
MSF. It can be seen that after adding the Barker code, the resolution is recovered and the
resonance problem is solved. But it will bring a significant increase in the sidelobe level,
so the MSF optimization method is further processed at the receiving end. It can be seen
that after MSF processing, the sidelobe level has been significantly optimized and can be
maintained at an ideal level on the basis of maintaining the resolution.

Then, we further compare the results of the MSF and MF to show the optimization
effect of MSF, and the results are shown in Figure 9 below.

It can be seen in Figure 9 that through solving the SOCP problem that containing
LPG and PSLR constraints can optimize the PSLR under the premise of accepting a certain
degree of LPG at the peak. In order to get more accurate conclusions, we select multiple
directions for quantitative analysis to verify the optimization effect of MSF.. The results are
shown in Table 2 below:
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Figure 8. Range profile comparison in three directions of resonance angle region. Three modes used
for comparison: STCA, STCA with Barker code and MF, STCA with Barker code and MSF. (a) At the
angle of −10◦; (b) at the angle of −5.22◦; (c) at the angle of 0◦. The horizontal values in the figure
represent multiples of the pulse width.
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Figure 9. The range profile comparison of MF and MSF. Subtitle is the value of LPG and PSLR. (a) At
the angle of −5.22◦; (b) at the angle of −10◦.

Table 2. Performance comparison of MF and MSF.

Angle LPG PSLR PSLR Difference

−15◦ −1.89 dB −37.48 dB −17.26 dB
−10◦ −1.86 dB −36.04 dB −15.61 dB
−5.22◦ −1.54 dB −30.30 dB −9.58 dB

0◦ −1.95 dB −38.30 dB −17.78 dB
10◦ −1.94 dB −38.27 dB −18.69 dB
15◦ −1.96 dB −38.44 dB −18.57 dB

It can be seen that through the proposed MSF optimization method, the PSLR can be
reduced by at least 10 dB, and even close to 20 dB at some angles, while the LPG can be
controlled no more than 2 dB. Through image comparison and quantitative analysis, the
optimization of the MSF at the receiving end is further verified.

All of the above are model-level simulation experiments. In order to verify the
practical feasibility, we also carry out a simple point target simulation experiment. The
system parameters are set as the same as Table 1. Two point targets are set as A1 (1300,
−5.22◦), A2 (1300, 40◦); in parentheses, the former is the range value of the target, and the
latter is the angle of the direction of the target. According to our previous analysis, target
A1 is within the resonance angle region and target A2 is not. The point target simulation
results are shown in Figure 10 below:



Remote Sens. 2024, 16, 3322 17 of 21

Remote Sens. 2024, 16, x FOR PEER REVIEW 18 of 22 
 

 

It can be seen that through the proposed MSF optimization method, the PSLR can 

be reduced by at least 10 dB, and even close to 20 dB at some angles, while the LPG can 

be controlled no more than 2 dB. Through image comparison and quantitative analysis, 

the optimization of the MSF at the receiving end is further verified. 

All of the above are model-level simulation experiments. In order to verify the prac-

tical feasibility, we also carry out a simple point target simulation experiment. The sys-

tem parameters are set as the same as Table 1. Two point targets are set as A1 (1300, 

5.22− ), A2 (1300, 40 ); in parentheses, the former is the range value of the target, and 

the latter is the angle of the direction of the target. According to our previous analysis, 

target A1 is within the resonance angle region and target A2 is not. The point target sim-

ulation results are shown in Figure 10 below: 

(a) (b)

(c) (d)

(e) (f)
 

Figure 10. The point target simulation results. (a) Imaging result of normal STCA at the angle of 

5.22− ; (b) imaging result of normal STCA at the angle of 40 ; (c) imaging result of STCA with 

Barker code and MF at the angle of 5.22− ; (d) imaging result of STCA with Barker code and MF 

at the angle of 40 ; (e) imaging result of STCA with Barker code and MSF at the angle of 5.22− ; 

(f) imaging result of STCA with Barker code and MSF at the angle of 40 . 

Figure 10. The point target simulation results. (a) Imaging result of normal STCA at the angle of
−5.22◦; (b) imaging result of normal STCA at the angle of 40◦; (c) imaging result of STCA with Barker
code and MF at the angle of −5.22◦; (d) imaging result of STCA with Barker code and MF at the angle
of 40◦; (e) imaging result of STCA with Barker code and MSF at the angle of −5.22◦; (f) imaging
result of STCA with Barker code and MSF at the angle of 40◦.

First, echo simulation and imaging processing were carried out for the normal STCA,
as shown in Figure 10a,b. In accordance with our theoretical analysis, there is an obvious
resonance phenomenon at the resonance angle −5.22◦; however, the ideal imaging result is
obtained in the direction far away from the resonance angle. Figure 10c,d show the imaging
result of STCA with the Barker code and MF; it can be seen that through adding the Barker
code, we can eliminate the resonance phenomenon and recover the resolution. But the
sidelobe will increase at the same time, so the MSF optimization method is applied at the
receiving end. Figure 10e,f show the imaging result of STCA with the Barker code and MSF.
The performance of the range sidelobe can be optimized by combining the Barker code at
transmitting and MSF at receiving, so the sidelobe is reduced and maintained at an ideal
level. This simple point target experiment is completely consistent with our analysis and
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simulation conclusions, which can prove the effectiveness of the proposed optimization
method. Our team is also currently developing an actual prototype of the STCA, which
will be used for more rigorous and complex practical experiments.

Above all, the effectiveness of the proposed sidelobe optimization method is proved.
The resonance problem of STCA can be eliminated, the lost resolution is recovered, and the
sidelobe is optimized and maintained at an ideal level while the spatial scanning capability
is maintained.

6. Discussion

The main work of this paper is performed to optimize the sidelobe problems of STCA:
the resonance phenomenon and the resolution loss problem. An optimization method
combining array element spatial coding at the transmitter and mismatched filtering at
the receiver is proposed. In the simulation, the multi-dimensional ambiguity function is
applied as the evaluation tool.

Firstly, the range–angle ambiguity function is drawn in Figure 7. We can see that in
our expected angle, the range mainlobe width is obviously compressed and the resolution
is recovered. The resonance phenomenon shown in Figure 7a is also eliminated. This
simulation can prove the optimization effect of the proposed method. Then, in order to
see the results more clearly, we mainly focus on the range profile in different directions, as
shown in Figure 8. We compare the following three modes: normal STCA, STCA with the
Barker code and MF, and STCA with the Barker code and MSF. It can be concluded that
after using the Barker code, the resolution can be recovered and the resonance problem can
be solved. However, it will bring an increase in the sidelobe. The MSF processing at the
receiver can further optimize the sidelobe level while the resolution is maintained. Figure 8
can prove the effectiveness of the proposed method, especially the array element spatial
code. Then, we further use the statistical method to quantitatively analyze the optimization
effect of MSF at the receiving end. Figure 9 shows that the sidelobe level is significantly
reduced and maintained at the ideal level, with the application of MSF compared with MF.
Table 2 shows the PSLR and LPG of different directions after MSF processing. At −15◦,
LPG is −1.89 dB and PSLR is −37.48 dB, which is 17.26 dB lower than MF; at −10◦, LPG
is −1.86 dB and PSLR is −36.04 dB, which is 15.64 dB lower than MF; at −5.22◦, LPG is
−1.54 dB and PSLR is −30.30 dB, which is 9.58 dB lower than MF; at 0◦, LPG is −1.95 dB
and PSLR is −38.30 dB, which is 17.78 dB lower than MF; at 10◦, LPG is −1.97 dB and
PSLR is −38.27 dB, which is 18.69 dB lower than MF; at 15◦, LPG is −1.96 dB and PSLR is
−38.44 dB, which is 18.57 dB lower than MF. Through the proposed MSF optimization, the
PSLR can be reduced by at least 10 dB while the LPG can be controlled below 2 dB. Finally, a
simple point target simulation is carried out to verify the proposed method experimentally,
and the imaging results shown in Figure 10 are consistent with our theoretical expectation.
This can prove the effectiveness of the proposed MSF processing.

In summary, through a simulation image comparison and quantitative analysis, we
fully verify the optimization effect of the proposed method for STCA. The two sidelobe
problems can be solved while the spatial scanning ability of STCA can be maintained. Of
course, our work can still be improved. Because of the space–time coupling characteristic
of STCA, it has not only the time sidelobe that we optimize in this paper, but also the
space sidelobe. Figure 7 shows that the proposed method can only optimize the range
sidelobe of a specific direction; once the angle is slightly off, the optimization effect will be
obviously worse. This also can be called the “Angular sensitivity” of STCA. We hope that
an MSF can achieve a good optimization effect in an angular mainlobe, which is our next
research direction.

7. Conclusions

The main goal of this paper is to study the optimization method of STCA, aiming at the
two key problems of the resonance phenomenon and the resolution loss problem of STCA.
A joint optimization method is proposed. At the transmitting end, the array spatial coding
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is used to adjust the array pattern to achieve resolution recovery and eliminate the inherent
resonance problem in some specific angle regions. But it will bring obvious deterioration
of the range sidelobe performance, so the method of mismatched filter design is used at
the receiving end to further optimize the sidelobe performance. By setting suitable LPG
and PSLR constraints, the optimal sidelobe level can be achieved by sacrificing part of
the gain at the peak. The experimental analysis and quantitative comparison also show
that the sidelobe performance of STCA is significantly optimized through the proposed
joint optimization method. The resonance problem and the resolution loss problem are
eliminated, while the PSLR is reduced to the ideal level, which reflects the effectiveness of
the proposed method. This proposed method has certain significance for the performance
optimization of the STCA radar system, which has application potential in Earth imaging
and target detection or tracking.

Of course, the research in this paper can be further studied. Firstly, the optimization of
the mismatched filter is not only limited to PSLR, but also can optimize other performances
by adding other appropriate constraints. For example, adding integral sidelobe ratio
constraint can control the ISLR; adding angle constraint can suppress the clutter signal from
the known direction; and adding Doppler constraint can improve the Doppler tolerance of
the radar system. The radar performance can be further improved by the mismatched filter
design. Secondly, the main work in this paper is performed to optimize the range sidelobe
performance of STCA. At the same time, the STCA also has the angular sidelobe in space
domain due to its space–time coupling characteristics. The next step is to conduct in-depth
research on the space–time coupling sidelobe, optimize the spatial angle sensitivity of the
STCA, and further improve the radar system.
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