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Abstract: This study was undertaken to address how near-surface soil water content (SWC) pat-
terns have varied across diverse agroecological regions (AERs) of mainland India from 1979 to 2022
(44 years) and how these variations relate to environmental factors. Grid-wise trend analysis using
the Mann–Kendall (MK) trend test and Sen’s slope was conducted to determine the trends and
their magnitudes. Additionally, we used Spearman’s rank correlation (ρ) to explore the relation-
ships of ESA CCI’s near-surface SWC data with key environmental variables, including rainfall,
temperature, actual evapotranspiration, and the normalized difference vegetation index (NDVI).
The results revealed significant variations in SWC patterns and trends across different AERs and
months. The MK trend test indicated that 17.96% of the area exhibited a significantly increasing trend
(p < 0.1), while7.6% showed a significantly decreasing trend, with an average annual Sen’s slope of
0.9 × 10−4 m3 m−3 year−1 for mainland India. Areas with the highest decreasing trends were
AER-16 (warm per-humid with brown and red hill soils), AER-15 (hot subhumid to humid with
alluvium-derived soils), and AER-17 (warm per-humid with red and lateritic soils). In contrast, in-
creasing trends were the most prominent in AER-5 (hot semi-arid with medium and deep black soils),
AER-6 (hot semi-arid with shallow and medium black soils), and AER-19 (hot humid per-humid
with red, lateritic, and alluvium-derived soils). Significant increasing trends were more prevalent
during monsoon and post-monsoon months while decreasing trends were noted in pre-monsoon
months. Correlation analysis showed strong positive correlations of SWC with rainfall (ρ = 0.70),
actual evapotranspiration (ρ = 0.74), and NDVI (ρ = 0.65), but weak or negative correlations with
temperature (ρ = 0.12). This study provides valuable insights for policymakers to delineate areas
based on soil moisture availability patterns across seasons, aiding in agricultural and water resource
planning under changing climatic conditions.

Keywords: agroecological regions; climate change; ESA CCI soil water content; Mann–Kendall trend;
Sen’s slope; Spearman’s rank correlation

1. Introduction

Soil moisture is an important factor affecting agricultural productivity, hydrological
cycles, and the sustainability of ecosystems. It serves as a vital link between the atmosphere
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and the land, influencing plant growth, groundwater replenishment, and surface runoff.
Grasping the spatial and temporal patterns of near-surface soil water content (SWC) is vital
for managing water resources efficiently, planning agricultural activities, and addressing
the impacts of climate variability [1]. Investigating the impacts of climate change on
ecological systems, with a particular emphasis on hydrological resources, is a crucial area of
study that scientists must prioritize. The occurrence of notable climate variations has been
documented since around 1950, and the modification has been ascribed to the release of
greenhouse gases (GHG) resulting from human activities [2]. As per Assessment Report 5
(AR5) [2], the earth’s average temperature is projected to increase by as much as 4 ◦C by the
year 2100. In recent decades, India has experienced a warming trend, which is consistent
with global warming patterns [3]. An increase in temperature and rainfall patterns can
have long-lasting consequences, potentially disrupting the availability of surface and
underground water resources [4]. The fluctuations in precipitation, temperature, and
evapotranspiration have significantly impacted the hydrological cycle, stream flow, and
the corresponding water requirements of different sectors [5,6].

India’s diverse climatic zones and varied topography pose a distinctive challenge
when studying soil moisture patterns. The country encompasses agroecological regions
(AERs) that span from arid deserts in Rajasthan to tropical monsoon areas in Kerala and
temperate zones in the northern Himalayas. Different AERs are defined on the basis
of climate, landform, soils, and/or land cover, and, therefore, encompass temperature
and rainfall variability. Each of these regions features unique soil types, vegetation, and
agricultural methods, all impacting SWC in distinct ways [7]. A recent study on the
Narmada River in India investigated the impacts of long-term changes in precipitation
and evapotranspiration [8]. Several studies have been conducted to assess the influence of
climatic fluctuations on yearly and seasonal precipitation patterns and their intensity [9–11],
the frequency of rainy days in diverse regions of India, and temperature trends [12–16].
The alterations in climatic parameters have a substantial impact on the country’s overall
economic condition and pose a challenge to the effective management of water resources
and agricultural activities [17,18].

Consequently, there is a significant focus on conducting thorough investigations into
the analysis of long-term trends pertaining to hydrologic variables such as SWC. This
involves utilizing climatic data to examine the potential effects of climate variability on
the hydrological cycle. Understanding the dynamics of surface soil moisture on a regional
level is crucial for various applications, such as hydrological modeling, weather forecasting,
and predicting crop yields [19,20]. Therefore, it is essential to accurately quantify surface
soil moisture on a regional scale. While the gravimetric method is an accurate technique
for measuring SWC, it is not feasible for large-scale monitoring [21,22]. Many networks
worldwide use sensor-based techniques to monitor soil moisture continuously, but these
measurements are limited to field or plot scale due to high maintenance costs for large-
density networks at the regional level [23,24].

One way to determine regional soil moisture patterns is by utilizing data from global net-
works like Global Navigation Satellite System reflectometry (https://www.space4water.org/,
accessed on 15 June 2024). Another option is obtaining soil moisture at a larger spatial scale
through remote sensing and land surface models. However, studies have shown that these meth-
ods have varying levels of accuracy and uncertainty, as demonstrated by Entekhabi et al. [25],
Kerr et al. [26], Mohanty et al. [27], and Wagner et al. [28]. The acquisition of SWC data
has been facilitated by multiple platforms in recent years [29]. Notable among these are the
European Space Agency Climate Change Initiative’s (ESA CCI) multi-satellite soil moisture
(SM), the Global Land Data Assimilation System (GLDAS) land surface models’ simulated
SM, and ERA-Interim reanalysis data. These products have undergone validation at various
locations across the globe using observed SWC and have been employed in studies examining
spatial-temporal SWC variations, hydrometeorology, and crop modeling [30–32]. However,
significant uncertainties persist in surface soil moisture measurements, particularly in tropical
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and subtropical regions [1], and the potential applications of these products in the Indian context
remain largely unexplored.

It is important to note that simulated (GLDAS) and reanalysis (ERA5) SWC products
carry model-dependent uncertainties, whereas satellite observations (ESA CCI) are free
from such errors. While several satellites, including SMOS (Soil Moisture and Ocean
Salinity), SMAP (Soil Moisture Active Passive), and ASCAT (Advanced Scatterometer),
provide near-surface SWC data, their records only extend back to 2007, limiting their utility
for long-term trend analysis. In contrast, the ESA CCI soil moisture product offers a distinct
advantage for trend studies. By integrating observations from multiple satellites, it provides
near-surface SWC data dating back to November 1979. This extended temporal coverage
makes the ESA CCI product particularly suitable for analyzing long-term trends in soil
moisture dynamics. Moreover, Agrawal and Chakraborty [33] found good agreement
of ESACCI SM data with in-situ soil moisture observations over India. Several studies
have been carried out to investigate the SWC trend, both on global [34,35] and regional
scales [36–38]. However, the SWC trend analyses are highly sensitive to the study period
and spatial scale, especially when monotonic approaches are followed [38].

For trend analysis, researchers can employ either parametric methods or nonparamet-
ric tests [39], each with its own strengths and limitations. Nonparametric methods are often
preferred for trend analysis due to their fewer assumptions compared with parametric tests
as failing to meet the latter’s stricter requirements can lead to unreliable results, especially
when dealing with environmental data. Since most of the hydrometeorological data are
not normally distributed [40], a nonparametric distribution-free statistical method such
as Sen’s slope method [41] may be employed to determine the trend magnitude and its
statistical significance by the MK test [42,43]. A combined approach, along with equa-
tions and procedures for the MK test statistic and Sen’s estimator, is also explained by
Bandyopadhyay et al. [44] and Subash et al. [45].

Despite various studies on SWC in India [32,46], none have utilized satellite-derived
soil moisture products to determine SWC trends nationwide. There is a need to examine
how near-surface SWC has changed over the past four decades across different AERs of
India and how it is spatiotemporally associated with environmental variables such as rain-
fall, temperature, evapotranspiration, and vegetation status. This study was undertaken to
answer these specific research questions. The significance of this research study lies in its
comprehensive analysis of SWC trends across India’s diverse AERs over a 44-year period
(1979–2022). By revealing spatial and temporal patterns of soil moisture and their rela-
tionships with climate variables, this study provides crucial insights for sustainable water
resource management, agricultural planning, and climate change adaptation strategies.

2. Materials and Methods
2.1. Study Area

India is a vast country located in South Asia, extending from 8◦4′N to 37◦6′N latitudes
and 68◦7′E to 97◦25′E longitudes. India has an area of approximately 328.7 million hectares,
with gross and net cultivated areas of 200.2 and 139.4 million hectares, respectively [47].
Administratively, India is divided into 28 states and 8 union territories. India has varied
topography, from the Himalayan Mountains in the northern and northeastern regions to
the fertile Indo-Gangetic plains. The Thar Desert is present in the northwestern region. The
peninsular plateau extends from the central to the southern parts of India where the Eastern
and Western Ghats surround the southern coastlines. Mainland India is surrounded by the
Bay of Bengal, the Arabian Sea, and the Indian Ocean at the eastern, western, and southern
coastlines. Andaman and Nicobar Islands are situated in the Bay of Bengal, whereas
Lakshadweep Islands are in the Arabian Sea. India has a broadly tropical monsoon-type
climate. As per India Meteorological Department (IMD), India has four meteorological
seasons, i.e., winter (January–February), summer or pre-monsoon (March–May), monsoon
(June–September), and autumn or post-monsoon (October–December). The Southwest
monsoon provides rainfall to most parts of India during the months of June to September,
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whereas some portions of South India, like Tamil Nadu and Kerala, also receive rainfall
from the Northeast monsoon from October to December. The failure of the monsoon
or inadequate rainfall during the monsoon, variability in rainfall distribution, and the
delayed onset or break in the monsoon can cause drought, whereas the excess and high-
intensity rainfall leads to flash floods in some areas. The frequency of droughts and
floods is expected to increase in India due to climate change [48]. The net irrigated area
has increased from 18% in 1951 to 52% in 2021 due to government interventions [49,50].
The states of Punjab, Haryana, Uttar Pradesh, and Bihar have more than 70% of the area
under irrigated agriculture, while the northeastern states—Chhattisgarh, Jharkhand, Goa,
Himachal Pradesh, Karnataka, Kerala, Maharashtra, and Orissa—have less than 40% of the
area under irrigated agriculture [50]. According to the National Bureau of Soil Survey and
Land Use Planning (NBSS&LUP), India is divided into 20 AERs based on physiography,
climate, length of growing period (LGP), and soil type (Figure 1). Each AER has similar
suitability and constraints for agricultural production and is effective for the transfer of
agro-technology. The details of these AERs are given by Gajbhiye and Mandal [51] and are
briefly discussed in Table 1. In our study, we focused exclusively on the AERs of mainland
India, excluding the Andaman and Nicobar Islands and the Lakshadweep Islands, which
are part of AER-20. This exclusion is due to their relatively small and dispersed areas, as
well as the lack of reliable data for these regions.
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Table 1. Characteristics of different agroecological regions (AERs) of India.

AER No. Agroecological Region Geographical
Distribution Brief Characteristics Major Crops

AER-1
Cold arid ecoregion

with shallow
skeletal soils

Northwestern
Himalayan region

covering Ladakh and
Gilgit districts

Mild summers and severe winters
with a mean annual temperature of
less than 8 ◦C and a mean annual

rainfall of less than 15 cm, acidic soil
moisture, and cryic soil temperature

regime, and an LGP < 90 days

Vegetables, millet,
and fodder
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Table 1. Cont.

AER No. Agroecological Region Geographical
Distribution Brief Characteristics Major Crops

AER-2 Hot arid ecoregion with
desert and saline soils

Western plain
comprising Kachchh

and part of the
Kathiawar Peninsula

Hot summers and cool winters with
mean annual rainfall less than 40 cm,
LGP < 90 days, aridic soil moisture,

and a hyperthermic soil
temperature regime

Pearl millet and fodder

AER-3 Hot arid ecoregion
with red and black soils

Some parts of the
Deccan Plateau

Hot and dry summers and mild
winters with mean annual rainfall
ranging from 40 to 50 cm, LGP <

90 days, aridic-ustic soil moisture, and
isohyperthermic soil
temperature regimes

Pearl millet, sorghum,
and safflower

AER-4
Hot semi-arid
ecoregion with

alluvium-derived soils

Some areas of Gujarat,
the northern plains and
the Central Highlands

Hot and dry summers and cool
winters with annual rainfall ranging
from 50 to 100 cm, LGP ranging from

90 to 150 days, typic ustic soil
moisture, and a hyperthermic soil

temperature regime

Wheat, paddy, maize,
and pulses

AER-5
Hot semi-arid

ecoregion with medium
and deep black soils

Some areas of the
Central Highlands

(Malwa), Gujarat Plains
and Kathiawar

peninsula, western
Madhya Pradesh,

southeastern Rajasthan
and Gujarat

Hot and wet summer and dry winter
with annual rainfall ranging from 50 to

100 cm, LGP ranging from 90 to
150 days, typic ustic soil moisture, and

hyperthermic and isohyperthermic
soil temperature regimes

Sorghum, pearl millet,
pigeon pea, groundnut,

soybeans, maize,
pulses, and wheat

AER-6

Hot semi-arid
ecoregion with shallow

and medium
(dominant) black soils

Some parts of the
Deccan Plateau

Hot and humid summers and mild
and dry winters with annual rainfall
ranging from 60 to 100 cm, LGP of

90–150 days, loamy and clayey soils
with ustic soil moisture, and

isohyperthermic soil
temperature regimes

Sorghum, pigeon pea,
pearl millet, safflower,

sunflower, cotton,
and groundnut

AER-7
Hot semi-arid

ecoregion with red and
black soils

Some parts of the
Deccan Plateau
(Telangana) and
Eastern Ghats of
Andhra Pradesh

Hot and moist summers and mild and
dry winters with an annual rainfall of
60–110 cm, LGP of 90–150 days, ustic
soil moisture, and isohyperthermic

soil temperature regimes

Sorghum, cotton,
pigeon pea, paddy,
groundnut, castor,

sunflower, safflower,
and oilseeds

AER-8
Hot semi-arid

ecoregion with red
loamy soils

Some parts of the
Eastern Ghats,

southern parts of the
Deccan Plateau, Tamil
Nadu Uplands, and
western Karnataka

Hot and dry summer and mild winter
with an annual rainfall of 60–100 cm,

LGP of 90–150 days, ustic soil
moisture, and isohyperthermic soil

temperature regimes

Millet, pulses,
groundnut, sorghum,

safflower, paddy,
sugarcane, and cotton

AER-9
Hot subhumid (dry)

ecoregion with
alluvium-derived soils

Northern
Indo-Gangetic Plains

Hot summers and cool winters with an
annual rainfall of 100–120 cm, LGP of
150–180 days, deep and loamy alluvial

soils with ustic soil moisture, and a
hyperthermic soil temperature regime

Paddy, maize, barley,
pigeon pea, jute, wheat,

mustard, lentil,
sugarcane, and cotton

AER-10
Hot subhumid

ecoregion with red and
black soils

Malwa Plateau and
Bundelkhand Uplands

of the Central
Highlands

Hot summers and mild winters with
an annual rainfall of 100–150 cm, LGP

of 150–180 days, deep black soils
interspersed with patches of red soils

with typic ustic soil moisture, and
hyperthermic soil temperature regimes

Paddy, sorghum,
pigeon pea, soybean,

gram, wheat, and
vegetables

AER-11
Hot subhumid

ecoregion with red and
yellow soils

Chhattisgarh region of
the eastern plateau

Hot summers and cool winters with
an annual rainfall of 120–160 cm, LGP

of 150–180 days, deep loamy,
non-calcareous, neutral to slightly

acidic soils, ustic soil moisture, and
hyperthermic soil temperature regimes

Paddy, millet, pulses,
and wheat
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Table 1. Cont.

AER No. Agroecological Region Geographical
Distribution Brief Characteristics Major Crops

AER-12
Hot subhumid

ecoregion with red and
lateritic soils

Some parts of the
Chhota Nagpur region

of the Eastern Plains
and Eastern Ghats

Hot summers and cool winters with
an annual rainfall of 100–160 cm, LGP
of 150–210 days, fine loamy to clayey,
non-calcareous, slightly to moderately
acidic soils with low cation exchange
capacity, typic ustic soil moisture, and
hyperthermic soil temperature regimes

Paddy, pulses,
groundnut, and wheat

AER-13
Hot subhumid (moist)

ecoregion with
alluvium-derived soils

Some parts of the
Eastern Plains

Hot, wet summers and cool, dry
winters with an annual rainfall of
140–180 cm, LGP of 180–210 days,

gently sloping alluvium-derived soils,
udic and ustic soil moisture regimes,

and a hyperthermic soil
temperature regime

Paddy, wheat, maize,
pulses, groundnut,

sugarcane,
and vegetables

AER-14

Warm subhumid to
humid with the
inclusion of a

per-humid ecoregion
with brown forest and

podzolic soils

Western Himalayas

Mild summers and cold winters with
an annual rainfall of 100–200 cm,

brown forest and podzolic soils, and
udic or udic-ustic soil moisture

regimes

Wheat, millet, maize,
paddy, and apples

AER-15

Hot subhumid (moist)
to humid ecoregion

with alluvium-derived
soils

Bengal Basin and
Assam Plain

Hot summers and mild to moderately
cool winters with an annual rainfall of

140–160 cm in the Ganga Plain and
180–200 cm in Tripura and

Teesta-Brahmaputra Plains, LGP
greater than 210 days, slightly to

strongly acidic soils with udic-ustic
soil moisture and a hyperthermic soil

temperature regime

Paddy, jute, pulses,
oilseeds, tea, and

horticultural crops like
pineapple, citrus,

and banana

AER-16
Warm per-humid

ecoregion with brown
and red hill soils

Some parts of the
Eastern Himalayas

Warm summer and cool winter with
an annual rainfall of more than 200 cm,
LGP of more than 270 days, deep and
organic matter-rich brown forest soils,
and udic soil moisture regime, with

soil temperature regimes varying from
thermic, mesic to hyperthermic based

on the elevation

Jhum or shifting
cultivation with mixed
crops like millet, potato,
maize, paddy, mustard,

sesamum, pulses,
plantation, and

horticultural crops

AER-17
Warm per-humid

ecoregion with red and
lateritic soils

Northeastern hills

Warm summers and cool winters with
an annual rainfall of 200–300 cm, LGP
of more than 270 days, shallow to very
deep, loamy, red and lateritic and red
and yellow soils, udic soil moisture

regime, and hyperthermic to thermic
soil temperature regimes based

on topography

Jhum or shifting
cultivation with paddy,
millet, maize, jute, and
potato, plantation, and

horticultural crops

AER-18

Hot subhumid to
semi-arid ecoregion

with coastal
alluvium-derived soils

Eastern Coastal Plains

Annual rainfall of 90–110 cm, most of
which is received during October to

December, LGP of 90–150 days, and an
isohyperthermic soil
temperature regime

Coconut, paddy, black
gram, lentil, sunflower,

and groundnut

AER-19

Hot humid per-humid
ecoregion with red,

lateritic, and
alluvium-derived soils

Some parts of the
Western Ghats and

coastal plains

Hot and humid summers and warm
winters with an annual rainfall of
more than 200 cm, LGP of 150–210

days, red and lateritic soils with udic
soil moisture, and an isohyperthermic

soil temperature regime

Paddy, tapioca,
coconut, and spices

AER-20

Hot humid/per-humid
island ecoregion with

red loamy and
sandy soils

Andaman and Nicobar
Islands, and

Lakshadweep Islands

Tropical climate with little difference
between mean summer and winter
temperatures and annual rainfall

ranging from 160 to 300 cm, LGP of
more than 210 days, red loamy soils on

Andaman and Nicobar Islands and
calcareous and sandy soils on

Lakshadweep Islands with udic soil
moisture and an isohyperthermic soil

temperature regime

Paddy, coconut, areca
nut, and oil palm
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2.2. Data

The European Space Agency’s Climate Change Initiative for Soil Moisture (ESA CCI
SM) project (https://www.esa-soilmoisture-cci.org/, accessed on 15 June 2024) provides
multi-decadal, long-term, global, daily, satellite-derived surface volumetric soil moisture
(0–5 cm depth) starting from November 1978 onward at 0.25◦ spatial resolution. The ESA
CCI provides three types of soil moisture products, i.e., active, passive, and combined.
The active product is produced from the observations of C-band scatterometers onboard
ERS-1, ERS-2, MetOp-A, and MetOp-B satellites. The passive product is produced from
the multifrequency radiometers from Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua
AMSR-E, Coriolis WindSat, GCOM-W1 AMSR2, FengYun-3B/C/D MWRI, SMAP, and
SMOS MIRAS sensors. The combined product is produced by the combination of both
active and passive products depending on their relative sensitivity to vegetation density.
The detailed algorithm for the development of this product is given by Gruber et al. [52].
Agrawal and Chakraborty [33] reported good agreement with the ESACCI SM dataset
with in-situ soil moisture observations from 117 Continental Tropical Convergence Zone
Programme stations spread across India, having relatively higher accuracy over the plains
of northern and central India. In this study, the ESA CCI SM (version 8.1) combined product
was used from 1979 to 2022 (44 years) as the combined product was reported to have higher
accuracy compared with the other products [53,54]. The pixel-wise monthly average of
near-surface SWC was computed using the daily data from the ESA CCI dataset spanning
from January 1979 to December 2022, encompassing a total of 528 months.

For evaluating the effects of weather parameters such as rainfall and temperature
on near-surface SWC, we obtained the gridded daily rainfall data at 0.25◦ resolution, and
the minimum and maximum temperature data at 1◦ resolution from the IMD spanning
the period from 1979 to 2022. The mean air temperature was computed by averaging
the daily minimum and maximum temperatures. Monthly rainfall and air temperature
were derived by summing the daily values and computing averages, respectively. To
assess the relationship between SWC and vegetation dynamics, we acquired and processed
actual evapotranspiration and Normalized Difference Vegetation Index (NDVI) data for
mainland India. We used MODIS (Moderate Resolution Imaging Spectroradiometer) actual
evapotranspiration data, available from 2000 onward at 500 m spatial resolution and 8-day
temporal intervals. Monthly actual evapotranspiration was calculated by summing the
corresponding 8-day data. Monthly NDVI data were obtained from AVHRR (Advanced
Very High Resolution Radiometer) and MODIS, available from 1982 onward at 5 km spatial
resolution. To ensure consistency across datasets, all data were resampled to a 0.25◦ spatial
resolution, matching that of the ESA CCI SWC data. This resampling process allowed
for direct comparison and analysis across all variables. Table 2 summarizes the satellite
datasets used in this study, including their source, temporal coverage, original spatial
resolution, and temporal frequency.

Table 2. Satellite datasets used in this study.

Input Parameter Dataset Name Data Source Temporal Period Spatial Resolution Temporal Resolution

Near-surface SWC ESA CCI SM (v 8.1)
https://www.esa-

soilmoisture-cci.org/ (accessed
on 15 June 2024)

1979 to 2022 0.25◦ Daily

Rainfall IMD gridded rainfall IMD [55] 1979 to 2022 0.25◦ Daily

Maximum temperature IMD maximum
temperature IMD [56] 1979 to 2022 1◦ Daily

Minimum temperature IMD minimum
temperature IMD [56] 1979 to 2022 1◦ Daily

Actual
evapotranspiration MODIS MOD16A2GF NASA 2000 to 2022 500 m 8-day

NDVI
AVHRR and MODIS

https://zenodo.org/doi/10.5
281/zenodo.4305974 (accessed

on 15 June 2024)
1982 to 2019 5 km Monthly

MODIS MOD13C2 NASA 2020 to 2022 5 km Monthly

https://www.esa-soilmoisture-cci.org/
https://www.esa-soilmoisture-cci.org/
https://www.esa-soilmoisture-cci.org/
https://zenodo.org/doi/10.5281/zenodo.4305974
https://zenodo.org/doi/10.5281/zenodo.4305974
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2.3. Methods
2.3.1. Mann–Kendall Trend Test

The time series of SWC were analyzed using the Mann–Kendall (MK) trend test, and
their magnitude was estimated through Sen’s slope estimator. The MK trend test [42,43] is a
nonparametric, rank-based correlation test used to detect monotonic upward or downward
trends in time-series data. The MK test is easy to perform and is robust to the presence
of outliers or missing data. The null hypothesis of the MK test is the absence of a trend,
while the alternate hypothesis is the presence of a trend. In the MK test, each value in the
time-series data is compared with the other values sequentially. The expression of the MK
test (S) statistic is

S = ∑n−1
k=1 ∑n

j=k+1 sign
(
xj− xk) (1)

where n is the length of time-series data, xj and xk are two sequential values of data. The
function sign(xj − xk) obtains the values as expressed below:

sign
(
xj − xk

)
=

+1,
(

xj − xk
)
> 0

0,
(

xj − xk
)
= 0

−1,
(
xj − xk

)
< 0

 (2)

Var(S) =
n(n − 1)(2n + 5)

18
(3)

Here, Var(S) is the variance of the dataset. The Z-statistic is computed as follows:

Z − statistic =


S−1√
Var(S)

, i f S > 0

0, i f S = 0
S+1√
Var(S)

, i f S < 0

 (4)

The positive value of standardized Z statistic denotes increasing trend, whereas the
negative value denotes a decreasing trend. The Kendall Tau (τ) or Kendall rank correlation
coefficient is computed as follows:

τ =
S
D

(5)

where D is the total number of pair combinations computed using the following equation:

D =
n(n − 1)

2
(6)

Kendall’s Tau measures the monotony of the slope. Its value ranges from −1 to
+1, where a positive value denotes an increasing trend, and a negative value denotes a
decreasing trend. The magnitude of the slope of the trend or change in the variable per
unit time of a trend is estimated using Sen’s slope estimator [41]. Sen’s slope is the median
of all the slopes computed between each pair of points in the time series. Sen’s slope is
calculated using the following equation:

Sen’s slope = Median {(xj - xk)/(j - k)}, j > k (7)

where xj and xk are the values of variables at time steps j and k, respectively.
The MK test was performed on the monthly time-series data of near-surface SWC

ranging from 1979 to 2022 (44 years). Kendall’s Tau and Sen’s slope were computed for
each pixel for a particular month and for a whole year. This method has been used for
the time-series analysis of precipitation, temperature, soil water, and vegetation dynamics
by several researchers [1,31,57–61]. For the computation of the MK test and Sen’s slope
over the raster dataset of SWC, ‘raster’ [62], ‘Kendall’ [63], and ‘trend’ [64] packages of
R software v 4.2.0 were used. The analysis was conducted at a 10% level of significance
(p < 0.1) so that the balance between Type I and Type II errors can be established given
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the exploratory nature of our research as well as the complex and noisy nature of data.
While the conventional 5% level is more stringent, the 10% level allows for the detection of
weaker but potentially meaningful trends in our large-scale, long-term dataset. The use of a
10% significance level is supported by various researchers in ecological and environmental
studies [65–67], particularly when dealing with complex natural systems where subtle
trends may have important cumulative effects.

2.3.2. Spearman’s Rank Correlation Test

To assess the relationships as well as similarity in the temporal patterns of the
near-surface SWC with other environmental variables such as rainfall, temperature, ac-
tual evapotranspiration, and NDVI in different AERs of mainland India, the pixel-wise
Spearman’s rank correlation coefficient was computed using the ‘raster’
package [62] in R software v 4.2.0. The Spearman’s rank correlation test, given by
Spearman [68], is a nonparametric test to assess the strength and direction of the
monotonic relationship between two datasets without assuming linearity or normal
distribution of the variables. The Spearman’s rank correlation coefficient (ρ) can be
computed using the following formula:

ρ = 1 −
6∑ d2

i
n(n2 − 1)

(8)

di = R(xi)− R(yi) (9)

where di is the difference between the ranks of the ‘i’ observation of two variables x and
y (denoted by R(xi) and R(yi)), and n is the number of observations. The value of ρ
ranges from −1 to +1, with values closer to ±1 indicating stronger monotonic relationships.
A positive ρ suggests that as one variable increases, the other tends to increase, while
a negative ρ indicates an inverse relationship. Similar to the MK test, the correlation
coefficients with p-values < 0.1 were considered as statistically significant. This test provides
valuable insights into the relationships between near-surface SWC and key environmental
variables across different AERs in mainland India. This test has been used by several
researchers to assess the relationship of soil moisture with other variables [31,60,69,70].
Understanding these correlations is essential for elucidating the drivers of SWC variability
and their implications for regional water management and agricultural practices.

3. Results
3.1. Spatial Variations of Near-Surface SWC

The spatial distribution of average annual near-surface SWC and its coefficient of
variation (CV) for the 44-year period (1979–2022) are presented in Figure 2. Figure 3 il-
lustrates the distribution of near-surface SWC data across different AERs using a boxplot,
which displays the mean, median, interquartile range, and potential outliers for each
region. Analysis of the data revealed significant spatial variability in SWC across differ-
ent AERs of mainland India. The lowest average annual SWC was observed in AER-2
(0.15 m3 m−3), followed by AER-4 (0.18 m3 m−3). Conversely, the highest average annual
SWC was recorded in AER-17 (0.30 m3 m−3), followed by AER-16 (0.28 m3 m−3) and
AER-15 (0.27 m3 m−3). The CV of near-surface SWC across mainland India ranged from
1.93% to 57.28%, with an average of 28.90%. Spatial patterns in CV were evident, with
AERs in northwestern, western, eastern, and central India with average CVs exceeding
30%. In contrast, northern, northeastern, and some parts of southern India showed lower
variability, with CVs below 20% (Figure 2).
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The monthly mean of the ESA CCI near-surface SWC for the 44-year period from
1979 to 2022 is illustrated in Figure 4. The data reveal that the monthly variation in SWC
closely follows the southwest monsoonal rainfall pattern in India, with higher SWC ob-
served during the monsoon season (June–September) and lower SWC during the pre-
monsoon or summer season (March–May). Additionally, some parts of southern and north-
eastern India exhibit higher SWC during the post-monsoon season (October–December)
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due to rainfall received through the Northeast monsoon winds during this period. The
northeastern parts of India also exhibited comparatively higher SWC during the pre-
monsoon season, primarily due to rainfall received during Nor’westers (Kal Baisakhi).
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Figure 4. Monthly mean of ESA CCI near-surface SWC for the period of 44 years (1979 to 2022) under
different AERs of mainland India.

3.2. Interannual Variation in the Near-Surface SWC

Figure 5 illustrates the interannual variations in near-surface SWC during the monsoon
season (June–September) across different AERs and mainland India from 1979 to 2022.
The analysis reveals notable fluctuations in monsoonal SWC over the study period. For
mainland India, several years exhibited markedly lower monsoonal near-surface SWC
compared with the long-term average. These years include 1979 (0.279 m3 m−3), 1982
(0.277 m3 m−3), 1987 (0.263 m3 m−3), 1992 (0.274 m3 m−3), 1993 (0.278 m3 m−3), 2002
(0.271 m3 m−3), 2009 (0.269 m3 m−3), 2012 (0.279 m3 m−3), 2014 (0.272 m3 m−3), and 2015
(0.275 m3 m−3). This pattern of lower SWC values in these specific years was generally
consistent across most AERs, suggesting widespread climatic influences affecting soil
moisture at the national scale. Spatial variability in SWC was evident among the AERs with
AER-2 consistently displaying the lowest SWC values across most years, while AER-17
exhibited the highest SWC values. This spatial pattern persisted throughout the study
period, indicating stable regional differences in soil moisture regimes, likely influenced by
local climate, topography, and soil characteristics.
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Figure 5. Interannual variations in the mean SWC of monsoon season (June–September) across
different AERs and mainland India from 1979 to 2022 (44 years).

3.3. Spatiotemporal Trends in Near-Surface SWC

Figure 6 illustrates the spatial patterns of Sen’s slope, depicting the magnitude of the
temporal trend for each month. It includes spatial patterns and the percentage area of
significantly increasing or decreasing trends (p < 0.1), as well as insignificant increasing
or decreasing trends (p > 0.1) by the MK trend test in the near-surface SWC from 1979 to
2022. Figure 7 illustrates the same for the annual near-surface SWC for mainland India.
Table 3 depicts the monthly and annual average Sen’s slope value for each AER. Analysis
of annual trends reveals that approximately 60% of mainland India exhibited an increasing
temporal trend with varying statistical significance in near-surface SWC, with 17.96% of
the area showing a significantly increasing trend (p < 0.1) and 7.6% demonstrating a sig-
nificantly decreasing trend (p < 0.1). The average annual Sen’s slope in mainland India
was 0.9 × 10−4 m3 m−3 year−1. Among different AERs, the maximum percentage of the
area under a significantly decreasing trend was found in the AER-16 (39%) followed by
AER-15 (25%), and AER-17 (22.5%) with an average annual Sen’s slope of −1.30 × 10−4,
−0.8 × 10−4, and −0.6 × 10−4 m3 m−3 year−1, respectively. The maximum percentage
of the area showing a significantly increasing trend was found in the AER-5 (40.9%) fol-
lowed by AER-6 (33.4%) and AER-19 (29.5%) with an average Sen’s slope of 2.6 × 10−4,
1.8 × 10−4, and 1.3 × 10−4 m3 m−3 year−1, respectively. AER-1 also showed 28.1% of the
area with a significant increasing trend in annual SWC and a Sen’s slope of
6.5 × 10−4 m3/m3 year−1, although its data are not reliable due to missing data for
many months.
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Table 3. Monthly and annual average Sen’s slope (m3 m−3 year −1) of near-surface SWC from 1979 to 2022 for each AER of mainland India.

AER No. January February March April May June July August September October November December Annual

AER-1 - - −3.14 × 10−3 −1.19 × 10−2 −8.47 × 10−3 1.17 × 10−3 1.14 × 10−3 1.99 × 10−3 −9.70 × 10−4 −3.24 × 10−3 −3.04 × 10−3 1.61 × 10−3 6.50 × 10−4

AER-2 3.10 × 10−4 −8.00 × 10−5 −3.00 × 10−5 1.00 × 10−5 5.00 × 10−5 3.80 × 10−4 1.90 × 10−4 3.00 × 10−5 6.70 × 10−4 2.30 × 10−4 2.10 × 10−4 2.80 × 10−4 9.00 × 10−5

AER-3 −1.00 × 10−5 8.00 × 10−5 2.00 × 10−5 −1.00 × 10−4 3.00 × 10−4 1.00 × 10−4 1.10 × 10−4 1.10 × 10−4 3.70 × 10−4 7.40 × 10−4 3.70 × 10−4 6.00 × 10−4 2.00 × 10−5

AER-4 2.30 × 10−4 −9.00 × 10−5 −1.00 × 10−5 0.00 × 100 1.20 × 10−4 1.00 × 10−4 2.10 × 10−4 −1.60 × 10−4 2.00 × 10−4 −2.00 × 10−5 3.30 × 10−4 3.90 × 10−4 5.00 × 10−5

AER-5 2.00 × 10−4 1.70 × 10−4 7.00 × 10−5 2.00 × 10−5 2.00 × 10−5 3.40 × 10−4 5.80 × 10−4 1.20 × 10−4 8.40 × 10−4 6.50 × 10−4 6.00 × 10−4 5.40 × 10−4 2.60 × 10−4

AER-6 1.70 × 10−4 1.40 × 10−4 8.00 × 10−5 0.00 × 100 5.00 × 10−5 5.30 × 10−4 4.90 × 10−4 3.00 × 10−4 4.80 × 10−4 8.30 × 10−4 4.60 × 10−4 4.90 × 10−4 1.80 × 10−4

AER-7 1.80 × 10−4 7.00 × 10−5 −6.00 × 10−5 −1.40 × 10−4 −1.90 × 10−4 2.60 × 10−4 1.00 × 10−4 −6.00 × 10−5 2.60 × 10−4 3.40 × 10−4 1.10 × 10−4 3.90 × 10−4 −6.00 × 10−5

AER-8 1.70 × 10−4 7.00 × 10−5 7.00 × 10−5 −3.00 × 10−5 4.30 × 10−4 −1.70 × 10−4 −7.00 × 10−5 1.50 × 10−4 2.80 × 10−4 5.70 × 10−4 4.60 × 10−4 8.20 × 10−4 5.00 × 10−5

AER-9 3.30 × 10−4 −1.30 × 10−4 −1.10 × 10−4 −1.10 × 10−4 1.30 × 10−4 −1.90 × 10−4 1.20 × 10−4 −2.60 × 10−4 −1.30 × 10−4 1.00 × 10−4 2.80 × 10−4 4.60 × 10−4 1.00 × 10−5

AER-10 1.10 × 10−4 7.00 × 10−5 1.40 × 10−4 0.00 × 100 2.00 × 10−5 3.00 × 10−4 2.20 × 10−4 −4.00 × 10−5 2.40 × 10−4 3.00 × 10−4 5.50 × 10−4 4.30 × 10−4 1.10 × 10−4

AER-11 1.90 × 10−4 2.00 × 10−5 9.00 × 10−5 −1.20 × 10−4 1.70 × 10−4 2.30 × 10−4 2.70 × 10−4 −2.00 × 10−5 5.00 × 10−5 3.90 × 10−4 3.30 × 10−4 3.30 × 10−4 9.00 × 10−5

AER-12 9.00 × 10−5 −7.00 × 10−5 −1.00 × 10−4 −1.30 × 10−4 7.00 × 10−5 −4.00 × 10−5 2.20 × 10−4 1.80 × 10−4 2.00 × 10−4 3.30 × 10−4 1.00 × 10−4 2.40 × 10−4 3.00 × 10−5

AER-13 2.40 × 10−4 −1.40 × 10−4 −7.00 × 10−5 −2.00 × 10−5 2.00 × 10−4 −2.00 × 10−5 2.40 × 10−4 −6.00 × 10−5 −1.90 × 10−4 1.20 × 10−4 4.50 × 10−4 3.10 × 10−4 2.00 × 10−5

AER-14 −1.23 × 10−3 −2.00 × 10−4 −8.40 × 10−4 −1.42 × 10−3 −5.30 × 10−4 −1.30 × 10−4 −2.00 × 10−5 2.40 × 10−4 4.90 × 10−4 −3.70 × 10−4 −8.10 × 10−4 4.60 × 10−4 7.00 × 10−5

AER-15 6.00 × 10−5 2.40 × 10−4 −2.40 × 10−4 −1.60 × 10−4 −7.00 × 10−5 −1.60 × 10−4 5.00 × 10−5 3.00 × 10−5 −5.00 × 10−5 −4.00 × 10−5 −6.00 × 10−4 2.00 × 10−5 −8.00 × 10−5

AER-16 −1.09 × 10−3 −4.70 × 10−4 −1.06 × 10−3 −5.10 × 10−4 1.20 × 10−4 1.90 × 10−4 5.00 × 10−5 −2.00 × 10−5 0.00 × 100 1.30 × 10−4 −2.60 × 10−4 −7.10 × 10−4 −1.30 × 10−4

AER-17 1.10 × 10−4 −9.00 × 10−5 −6.00 × 10−4 −2.60 × 10−4 2.00 × 10−4 1.30 × 10−4 1.40 × 10−4 8.00 × 10−5 5.00 × 10−5 2.10 × 10−4 2.20 × 10−4 −3.00 × 10−5 −6.00 × 10−5

AER-18 9.30 × 10−4 3.90 × 10−4 1.60 × 10−4 −1.20 × 10−4 −3.00 × 10−5 −6.80 × 10−4 −9.00 × 10−5 4.60 × 10−4 2.70 × 10−4 −1.00 × 10−5 7.90 × 10−4 1.95 × 10−3 2.00 × 10−5

AER-19 4.10 × 10−4 1.40 × 10−4 2.60 × 10−4 1.20 × 10−4 3.50 × 10−4 4.70 × 10−4 4.00 × 10−4 2.90 × 10−4 4.20 × 10−4 3.60 × 10−4 3.10 × 10−4 6.80 × 10−4 1.30 × 10−4

India 1.30 × 10−4 3.00 × 10−6 −7.00 × 10−5 −1.40 × 10−4 4.00 × 10−5 1.70 × 10−4 2.40 × 10−4 1.20 × 10−4 2.60 × 10−4 2.50 × 10−4 2.50 × 10−4 4.00 × 10−4 0.9 × 10−4
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(m3 m−3 year−1)) and direction of the significant (p < 0.1) and insignificant (p > 0.1) temporal
trend (indicated by MK trend test) in the near-surface SWC for each month from 1979 to 2022.

Monthly trend analysis revealed significant variations in near-surface SWC trends
across different seasons. December showed the highest percentage of areas with signifi-
cantly increasing trends (35%), followed by September (30%), October (23%), July (23%),
and November (21.3%). The average Sen’s slopes for these months ranged from 2.4 × 10−4

to 4 × 10−4 m3 m−3 year−1. In contrast, March and April exhibited the largest areas with
significantly decreasing trends (11% each), with average Sen’s slopes of −7.00 × 10−5 and
−1.40 × 10−4 m3 m−3 year−1, respectively. Notably, August displayed both significantly
increasing (19%) and decreasing (11%) trends across different regions, with an average
Sen’s slope of 1.2 × 10−4 m3 m−3 year−1, highlighting the spatial variability in SWC trends
even within a single month.

Substantial variability was observed in the trend patterns of near-surface soil water
content (SWC) across different AERs and months in mainland India. This variability highlights
the complex spatiotemporal patterns likely influenced by regional climate variability, land
use changes, and local hydrological conditions. In January, AER-16 showed the maximum
percentage of areas with a significantly decreasing trend (39.8%) with an average Sen’s slope
of −1.09 × 10−3 m3 m−3 year−1. Conversely, several AERs showed significantly increasing
trends, including AER-19 (31.4%), AER-5 (30.8%), AER-13 (29.5%), AER-2 (29%), AER-9
(29%), and AER-18 (28.4%). The average Sen’s slopes for these increasing trends ranged from
2.0 × 10−4 to 9.3 × 10−4 m3 m−3 year−1. February presented a different pattern, with AER-4
showing the maximum area under a significantly decreasing trend (39.8%) and an average
Sen’s slope of −0.9 × 10−4 m3 m−3 year−1. The areas with significantly increasing trends were
found in AER-10 (31.4%), AER-15 (30.8%), AER-6 (29.5%), and AER-8 (29%), with average
Sen’s slopes ranging from 7.00 × 10−5 to 2.40 × 10−4 m3 m−3 year−1.
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March exhibited strong decreasing trends in several AERs, with AER-17 (50%), AER-
16 (49.2%), and AER-15 (33.5%) showing the largest areas under significantly decreasing
trends. The average Sen’s slopes for these regions were −6.00 × 10−4, −1.06 × 10−3, and
−2.40 × 10−4 m3 m−3 year−1, respectively. AER-19 showed the maximum area with a
significantly increasing trend (25%) and an average Sen’s slope of 2.60 × 10−4 m3 m−3

year−1. In April, AER-16 continued to show a significantly decreasing trend over 30.8%
of its area, with an average Sen’s slope of −5.10 × 10−4 m3 m−3 year−1. Notably, no AER
exhibited more than 20% area under a significantly increasing trend during this month.
May saw a shift in trends, with no AER showing more than 20% area with significantly
decreasing trends. However, AER-8 displayed a significantly increasing trend over 39.1%
of its area, with an average Sen’s slope of 4.30 × 10−4 m3 m−3 year−1.

June presented mixed trends across different AERs. AER-18 showed the maximum area
with a significantly decreasing trend (27.3%) and an average Sen’s slope of
−6.80 × 10−4 m3 m−3 year−1. AER-19 exhibited the largest area with a significantly in-
creasing trend (33.5%) and an average Sen’s slope of 4.70 × 10−4 m3 m−3 year−1. Inter-
estingly, AER-15 displayed both increasing and decreasing trends, with 31.1% area show-
ing a significantly increasing trend and 24% area showing a significantly decreasing trend
with an average Sen’s slope of −1.60 × 10−4 m3 m−3 year−1. July marked a shift toward
predominantly increasing trends. No AER showed more than 20% area with significantly
decreasing trends, while significantly increasing trends were observed in AER-19 (52.9%),
AER-6 (45.9%), and AER-5 (43%). The average Sen’s slopes for these regions ranged from
4.00 × 10−4 to 5.80 × 10−4 m3 m−3 year−1. August displayed a mix of increasing and
decreasing trends. AER-9 (44.3%) showed maximum area with a significantly decreas-
ing trend followed by AER-4 (25.7%) with an average Sen’s slope of 2.60 × 10−4 and
−1.60 × 10−4 m3 m−3 year−1, respectively, while the maximum area with a significantly in-
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creasing trend was found in the AER-19 (50.6%) followed by AER-12 (39%) and AER-18 (38.6%)
with an average Sen’s slope of 2.90 × 10−4, 1.80 × 10−4, and 4.60 × 10−4 m3 m−3 year−1,
respectively. September continued to show variability, with AER-13 (34.8%) and AER-9
(23.4%) displaying the largest areas of significantly decreasing trends with an average Sen’s
slope of −1.90 × 10−4 and −1.30 × 10−4 m3 m−3 year−1, respectively. However, several
AERs showed substantial areas with significantly increasing trends, including AER-5 (65.6%),
AER-19 (53.2%), AER-6 (49.1%), and AER-12 (45.4%) with an average Sen’s slope ranging
from 2.00 × 10−4 to 8.40 × 10−4 m3 m−3 year−1.

October marked a shift toward predominantly increasing trends, with no AER show-
ing more than 20% area under significantly decreasing trends, while the maximum area
under significantly increasing trend was found in AER-8 (59.7%) followed by AER-3
(53%) and AER-6 (48.5%) with an average Sen’s slope of 5.70 × 10−4, 7.40 × 10−4, and
8.30 × 10−4 m3 m−3 year−1, respectively. In November, AER-16 showed the maximum area
with a significantly decreasing trend (24.2%) and an average Sen’s slope of
−2.60 × 10−4 m3 m−3 year−1. Several AERs exhibited significantly increasing trends,
including AER-10 (39.2%), AER-8 (39%), AER-5 (37.6%), and AER-13 (32.5%) with an aver-
age Sen’s slope of 5.50 × 10−4, 4.6 × 10−4, 6.00 × 10−4, and 4.50 × 10−4 m3 m−3 year−1,
respectively. December displayed a pattern similar to November, with AER-16 showing
the largest area of a significantly decreasing trend (27.4%) and an average Sen’s slope of
−7.10 × 10−4 m3 m−3 year−1. However, numerous AERs exhibited substantial areas with
significantly increasing trends, including AER-5 (57.4%), AER-18 (55.7%), AER-8 (54.4%),
AER-19 (52.6%), AER-4 (49.3%), AER-10 (49.2%), and AER-9 (43.8%). The average Sen’s
slopes for these increasing trends ranged from 0.39 to 1.95 × 10−3 m3 m−3 year−1.

3.4. Temporal Association of Near-Surface SWC with Environmental Variables

The temporal association between near-surface SWC and environmental variables,
including rainfall, temperature, actual evapotranspiration, and NDVI, was investigated
using Spearman’s rank correlation coefficient (ρ). The spatial pattern of significant (p < 0.1)
Spearman’s correlation coefficient (ρ) between the time-series datasets of near-surface SWC
with rainfall, temperature, actual evapotranspiration, and NDVI is depicted in Figure 8. The
average Spearman’s correlation coefficient for each AER is presented in Table 4. The Spear-
man’s correlation coefficient of near-surface SWC with rainfall ranged from 0.09 (AER-1)
to 0.80 (AER-6) with an average value of 0.70 for mainland India as a whole. Most AERs
exhibited a strong correlation (ρ > 0.6) with rainfall, indicating a close relationship be-
tween precipitation events and near-surface SWC. In contrast to rainfall, near-surface SWC
showed a negative or weak correlation with temperature, ranging from −0.30 (AER-8) to
0.80 (AER-17), with an average value of 0.12 for mainland India. This suggests minimal
or even an inverse relationship between temperature and SWC across mainland India.
Interestingly, AER-15 (ρ = 0.63), AER-16 (ρ = 0.73), and AER-17 (ρ = 0.80), which also exhib-
ited declining temporal trends in near-surface SWC, showed highly positive correlations
with temperature. The correlation of near-surface SWC with actual evapotranspiration
varied from 0.36 (AER-1) to 0.88 (AER-6 and AER-11), averaging 0.74 for mainland India.
In most AERs, the correlation with actual evapotranspiration was above 0.60, indicating a
strong association between actual evapotranspiration and SWC. Similarly, the correlation of
near-surface SWC with NDVI ranged from -0.06 (AER-1) to 0.85 (AER-17), with an average
value of 0.65. This trend mirrored the relationship observed with actual evapotranspiration
where most AERs exhibited a positive correlation greater than 0.6, suggesting a close link
between vegetation health (as indicated by NDVI) and SWC.
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Figure 8. Spatial pattern of the significant Spearman’s rank correlation coefficient (ρ) (p < 0.1) of
near-surface SWC with (a) rainfall, (b) temperature, (c) actual evapotranspiration, and (d) NDVI.

Table 4. Average Spearman’s correlation coefficient (ρ) of the near-surface SWC with environmental
variables for each AER of mainland India.

AER No. Rainfall Temperature Actual Evapotranspiration NDVI

AER-1 0.09 −0.21 0.36 −0.06
AER-2 0.67 0.19 0.65 0.43
AER-3 0.79 −0.19 0.83 0.72
AER-4 0.65 0.07 0.72 0.49
AER-5 0.78 0.11 0.87 0.71
AER-6 0.80 −0.10 0.88 0.75
AER-7 0.77 −0.21 0.81 0.76
AER-8 0.72 −0.30 0.70 0.66
AER-9 0.62 0.21 0.73 0.56
AER-10 0.77 0.09 0.86 0.73
AER-11 0.75 0.13 0.88 0.80
AER-12 0.78 0.17 0.83 0.83
AER-13 0.63 0.29 0.76 0.55
AER-14 0.47 0.26 0.54 0.37
AER-15 0.74 0.63 0.79 0.72
AER-16 0.59 0.73 0.56 0.65
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Table 4. Cont.

AER No. Rainfall Temperature Actual Evapotranspiration NDVI

AER-17 0.68 0.80 0.55 0.85
AER-18 0.75 −0.15 0.67 0.56
AER-19 0.78 −0.26 0.39 0.73

India 0.70 0.12 0.74 0.65

4. Discussion

This study examined the spatiotemporal variations and trends in near-surface SWC
across different AERs in mainland India over a 44-year period (1979–2022) using ESA
CCI SM data. The temporal relationships between SWC and climatic variables (rainfall,
temperature) alongside response variables (actual evapotranspiration, NDVI) were also
explored. The primary driver controlling near-surface SWC across different AERs is rainfall,
as evidenced by its strong correlation (ρ = 0.70) with SWC, highlighting the crucial role of
precipitation in determining soil moisture levels. The spatial heterogeneity in SWC across
various AERs and the distinct monthly variations are closely tied to the seasonal patterns
of monsoonal rainfall. The monthly mean near-surface SWC data from 1979 to 2022 reveal
a clear alignment with the Southwest monsoonal rainfall pattern, with higher SWC during
the monsoon season (June–September) and lower SWC during the pre-monsoon or summer
season (March–May) [71]. Additionally, the post-monsoon season (October–December) sees
elevated SWC levels in southern and northeastern regions due to rainfall from the Northeast
monsoon [72], highlighting the dual influence of both monsoon systems on soil moisture
dynamics. Apart from that, the higher SWC in northeast India during the pre-monsoon
season was found primarily due to rainfall received from Nor’westers or Kal Baisakhi [73].
The spatial patterns of SWC variation across different months align well with the onset,
progression, and withdrawal of the Southwest and Northeast monsoons, emphasizing
the critical role of monsoonal rains in replenishing SWC across India (Figure 4). These
findings are consistent with previous studies by Sathyanadh et al. [32], Zheng et al. [74],
Varikoden and Revadekar [75], and Guntu and Agarwal [76], all of which highlight the
significant impact of monsoonal rainfall on soil moisture dynamics.

The analysis of near-surface SWC across various AERs of mainland India underscores
significant spatial variability, driven by distinct climatic conditions, soil types, and topo-
graphical features inherent to each region (Figure 3). The lowest average annual SWC
values observed in AER-2 (0.15 m3 m−3) and AER-4 (0.18 m3 m−3) highlight the challenges
posed by the hot arid and semi-arid environments of these regions. AER-2, encompassing
the western plains of Kachchh and parts of the Kathiawar Peninsula, is characterized by
extreme aridity, minimal annual rainfall (<40 cm), and high evaporation rates, leading to
persistently low soil moisture levels. Similarly, AER-4, covering parts of Gujarat, north-
ern plains, and the Central Highlands, experiences hot and dry summers with moderate
rainfall (50–100 cm), contributing to lower soil moisture retention. Conversely, the highest
average annual SWC values in AER-17 (0.30 m3 m−3), AER-16 (0.28 m3 m−3), and AER-
15 (0.27 m3 m−3) can be attributed to the favorable climatic conditions of these regions.
AER-17, representing the warm per-humid regions of the northeastern hills, benefits from
substantial annual rainfall (200–300 cm) and a long growing period (>270 days), resulting in
consistently high soil moisture levels. Similarly, AER-16, located in the Eastern Himalayas,
and AER-15, covering the Bengal Basin and Assam Plain, receive abundant rainfall and
have extended growing seasons, enhancing SWC [51].

The coefficient of variation (CV) in near-surface SWC, ranging from 1.93% to 57.28%
with an average of 28.90%, further illustrates the pronounced spatial variability across
mainland India (Figure 2). Regions in the northwestern, western, eastern, and central parts
of India exhibit high variability, with CVs exceeding 30%, indicating significant fluctuations
in SWC. This variability can be linked to the diverse climatic and soil conditions, ranging
from arid deserts to semi-arid plains. In contrast, northern, northeastern, and parts of
southern India, with CVs below 20%, exhibit more stable soil moisture regimes, benefiting
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from consistent rainfall patterns and favorable soil properties. The spatial pattern of
CV variation in SWC aligns closely with the variability observed in rainfall CV across
India, as noted by Praveen et al. [77]. The interannual variation in near-surface SWC
reveals notable years, such as 1979, 1982, 1987, 1992, 1993, 2002, 2009, 2012, 2014, and 2015,
marked by consistently lower SWC levels (Figure 5). These years coincide with periods
of significant drought across many regions of India [78–80]. This alignment underscores
the susceptibility of SWC to climatic anomalies and highlights the critical influence of
drought events on soil moisture dynamics. This also highlights the applicability of ESA
CCI near-surface SWC for drought monitoring and forecasting.

The analysis of near-surface SWC trends reveals significant spatial and temporal vari-
ability across different AERs and months in mainland India. Approximately 60% of the
area shows an increasing trend in annual SWC, with varying levels of statistical significance
(Figure 7). This finding closely aligns with Kumar et al. [81], who reported a significant
increasing trend in annual rainfall across approximately half of India’s subdivisions. This
concurrence underscores the critical influence of rainfall patterns on SWC dynamics. Addi-
tionally, the increase in irrigated areas, as noted by Jain et al. [49], may also contribute to
the rising annual SWC trends. The predominance of increasing SWC trends during certain
months, particularly during the monsoon and post-monsoon seasons (Figure 6f–l), suggests
potential changes in rainfall intensity and distribution, consistent with observations by
Guhathakurta and Rajeevan [82] who reported increasing rainfall trends in most subdi-
visions during these seasons. Conversely, the decreasing SWC trends observed in some
regions during the pre-monsoon months (Figure 6c,d) align with the decreasing rainfall
trends reported by Guhathakurta and Rajeevan [82] for the same period.

The trends in near-surface SWC across AERs in mainland India reveal significant
variability influenced by diverse environmental factors and human activities. AER-5 (hot
semi-arid ecoregion with medium and deep black soils) and AER-6 (hot semi-arid ecore-
gion with shallow and medium black soils) displayed the highest percentage of areas with
significant increasing trends throughout the year. These regions are characterized by black
soils with good water-holding capacities, which could potentially contribute to the ob-
served positive trends in SWC. AER-19 (Hot humid per-humid ecoregion with red, lateritic,
and alluvium-derived soils) also showed an increasing trend in SWC. Singh et al. [83], and
Guhathakurta and Rajeevan [82] also exhibited increasing rainfall trends in these areas.
Conversely, AER-16 (warm per-humid ecoregion with brown and red hill soils) and AER-17
(warm per humid ecoregion with red and lateritic soils) showed the highest percentage
of areas with significant decreasing trends, corresponding to reported declines in regional
rainfall documented by Oza and Kishtawal [84], Patle and Libang [85], and Singh et al. [83].
These trends are attributed to climate change impacts affecting regional precipitation pat-
terns, eventually affecting the SWC. Furthermore, AER-15, AER-16, and AER-17 show
declining SWC trends potentially linked to soil degradation from shifting cultivation prac-
tices or land use changes converting forest areas to agricultural lands. These activities
contribute to soil erosion and depletion of SWC, as noted by Jaiswal and Amin [86] and
Marchang [87]. AER-1, classified as a cold arid ecoregion with shallow skeletal soils,
showed a high percentage of increasing trends in annual SWC despite weaker correlations
(ρ = 0.09) with rainfall. The rainfall trend is also decreasing in AER-1, but the increasing
trend in SWC may be due to the melting of glaciers caused by global warming [88]. How-
ever, interpreting trends in this region requires caution due to data scarcity. The variation
in SWC trends in each AER was found between different months (Figure 6). This could be
attributed to regional variations in rainfall patterns, temperature changes, potential shifts
in monsoon intensity, changes in land use practices, irrigation, topography, etc., which
need further detailed investigation.

The analysis of near-surface SWC across AERs in mainland India reveals intricate
relationships with climatic variables, highlighting significant spatial and temporal vari-
ability (Figure 8). Weak or negative correlations between SWC and temperature suggest
that rising temperatures may exacerbate soil moisture depletion, particularly in regions
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already experiencing declining SWC (Figure 8). This phenomenon suggests that high
evapotranspiration rates under intense summer heat could contribute to rapid soil moisture
loss, despite overall positive correlations between SWC and rainfall observed in most
AERs (Figure 8). However, AERs like 15, 16, and 17, which exhibit declining SWC trends,
paradoxically show positive correlations with temperature [89]. This anomaly underscores
the multifaceted nature of climate impacts on SWC where rising temperatures coupled
with declining rainfall may exacerbate moisture deficits.

A strong positive correlation (average ρ = 0.74) between SWC and actual evapo-
transpiration across AERs indicates that vegetation water use closely influences soil
moisture dynamics (Figure 8). Regions with high evapotranspiration rates, such as
AER-6 (ρ = 0.88), likely experience significant SWC depletion due to intense water tran-
spiration by vegetation [90]. In contrast, AER-1 shows a weaker correlation (ρ = 0.36),
attributed to sparse vegetation cover and limited evapotranspiration potential, highlighting
how vegetation dynamics mediate SWC variations. The correlation between SWC and
NDVI, a proxy for vegetation health, reinforces these findings (Figure 8). Higher NDVI
indicates stronger links between vegetation water use and SWC, with denser vegetation
in AERs exhibiting more pronounced correlations between SWC and NDVI. Conversely,
regions with sparse vegetation, like AER-1, show negligible influence of vegetation on SWC.

Overall, these findings underscore the complex interplay of climate factors, vegetation
dynamics, and local management practices in shaping SWC variability across AERs in
India. Effective water management strategies must consider these dynamics to enhance soil
moisture retention, optimize irrigation efficiency, and sustainably manage water resources
amidst changing climatic conditions. Acknowledging data limitations and the influence of
local factors beyond AER classifications is crucial for accurately interpreting SWC trends
and implementing targeted water conservation measures.

5. Conclusions

This study investigated the spatiotemporal variations and trends in near-surface SWC
across diverse AERs of mainland India over a 44-year period (1979–2022) using ESA CCI
data surface soil moisture data. Rainfall emerged as the primary driver of SWC variations
across AERs, with a strong positive correlation (ρ = 0.70). Spatial patterns of SWC variation
closely matched the seasonality of monsoonal rainfall, highlighting their critical role in
replenishing soil moisture. The spatial variability in SWC across various AERs is significant,
with distinct differences observed between regions. Interannual variation in SWC reveals
notable years with consistently lower SWC levels, such as 1979, 1982, 1987, 1992, 1993, 2002,
2009, 2012, 2014, and 2015, coinciding with significant drought periods across many regions
of India exhibiting the potential of ESA CCI near-surface SWC data for drought monitoring
and early warning systems.

Approximately 60% of mainland India exhibited an increasing trend in annual SWC,
with varying levels of statistical significance. Notably, 17.96% of the area showed a sig-
nificantly increasing trend (p < 0.1), while 7.6% demonstrated a significantly decreasing
trend with an average annual Sen’s slope of 0.9 × 10−4 m3 m−3 year−1. The areas with
the highest significant decreases were AER-16 (39%), AER-15 (25%), and AER-17 (22.5%),
highlighting the need for targeted water conservation measures in these areas. In contrast,
AER-5, AER-6, and AER-19 had the largest significant increases, suggesting the importance
of enhanced drainage facilities in these regions.

December showed the highest percentage of area with significantly increasing trends
(35%), followed by September (30%), October (23%), July (23%), and November (21%).
March and April exhibited the largest areas with significantly decreasing trends (11% each).
August displayed both significantly increasing (19%) and decreasing (11%) trends, high-
lighting the spatial variability in SWC trends, even within a single month. These monthly
trends have important implications for targeted water resource management.

SWC trends correlated closely with rainfall trends, indicating climate change impacts.
Human factors like irrigation and land use change also contribute to SWC trends. The cor-
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relation analysis highlights the complexity of factors influencing SWC variability. Weak or
negative correlations between SWC and temperature suggest that rising temperatures may
adversely affect soil moisture. AER-15 (ρ = 0.63), AER-16 (ρ = 0.73), and AER-17 (ρ = 0.80)
showed highly positive correlations with temperature, indicating complex climate impacts
on SWC. A strong positive correlation between SWC and actual evapotranspiration (aver-
age ρ = 0.74) and NDVI (average ρ = 0.65) highlighted the close association between plant
water use and available soil moisture. Regions with higher vegetation density displayed a
stronger link between SWC and vegetation water use.

This study underscores the intricate relationships between climatic factors and SWC
in mainland India, providing valuable insights for sustainable water resource management
and agricultural planning. Further research is needed to explore specific mechanisms
driving the observed trends in SWC, involving climatic teleconnections, land use/land
cover change data, and hydrological modeling approaches. This deeper understanding is
crucial for sustainable water resource management in the context of a changing climate.
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