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Abstract: Building facades has always been a challenge for feature matching in oblique photogram-
metry due to weak textures, non-Lambertian objects, severe occlusion, and distortion. Plumb lines
are essential building geometry structural feature lines in building facades, which show strong spatial
relevance to these problems. Achieving plumb line matching has great application potential for opti-
mizing the process and products of oblique photogrammetry. Thus, we proposed a novel matching
algorithm for plumb lines based on spatial and color hybrid constraints according to its central pro-
jection imaging characteristics. Firstly, based on vanishing point theory, the plumb lines from photos
were back-calculated to determine the matching target set; secondly, the property of its large elevation
ranges was exploited to calculate the homonymous points as spatial constraints by projecting plumb
lines onto the stratified spatial planes; thirdly, the neighboring primary colors on both sides of the
plumb lines were extracted as feature descriptors and compared by colorimetry; then, the greedy
strategy was employed to successively filter out the locally optimal solutions satisfying the spatial and
color hybrid constraints to complete the initial matching; finally, the intersection-over-union analysis
of the solution plane and the verticalness evaluation of the matching results were implemented to
eliminate errors. The results show that the proposed algorithm can achieve an average accuracy of
97.29% and 78.41% in the forward and lateral overlap experiments from multi-scenes, respectively,
displaying a strong adaptability to poor texture, inconsistency, and distortion. In conclusion, thanks
to the plumb-line-oriented matching strategy, this algorithm owns inherent advantages in theory and
computational complexity. It is suitable for all building-oriented oblique photogrammetry tasks and
is highly worthy of promotion and application.

Keywords: plumb line; line matching; oblique photogrammetry; photographic geometry; colorimetry

1. Introduction

The rapid development of computer vision and drone technology has given oblique
photogrammetry new vitality. UAV oblique photogrammetry has shown great potential in
many surveying and mapping industries due to its advantages, such as flexible mobility,
low cost, and high time and space resolution [1–3]. The 3D real-scene model it produces
has become the main data carrier and acquisitor of geographic information due to its
authenticity, three-dimensionality, and temporalization characteristics.

UAV oblique photogrammetry realizes the production of 3D real-scene models by
carrying cameras on the UAV, comprehensively collecting images of the target area from dif-
ferent angles, and realizing the models’ production through the steps of aerial triangulation,
dense matching, and model construction [4,5].

Feature matching of oblique photos is one of the critical techniques and is the basis
for aerial triangulation and dense matching. Oblique imagery covers a large and rich
ground area and is able to characterize both the vertical and horizontal structure of the
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urban environment. But it also has greater scale variation, illumination differences, and
mutual occlusion, which makes feature matching of tilted image pairs more complex [6,7],
and the higher image resolution afforded by the sensor additionally increases the order of
magnitude of matching. In addition, the large variation in viewing direction and viewpoints
between image pairs demands a higher degree of operator invariance [8].

Weak texture, repetitive texture, non-Lambertian objects, occlusion deformation, etc.,
are challenging regions for feature matching. Building facade is the high incidence region
of these problems in oblique photography. The texture of building walls is generally weak
and repetitive, and there exists a large number of non-Lambertian objects, such as external
windows. In addition, building facade generally has serious occlusion and distortion in
oblique photos. Consequently, aerial triangulation makes it hard to achieve a high accuracy
level, and building 3D real-scene models generally suffers from node redundancy and
structural distortion [5,9,10], especially in building facades, as shown in Figure 1.
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Figure 1. Examples of oblique photos and building 3D real-scene models. (a,b) show two examples
with different styles of photographs and 3D real scene models, respectively. Building facade is
always a weak region for traditional matching methods in oblique photogrammetry due to the many
challenges, such as occlusion, deformation, weak texture, repetitive texture, and non-Lambertian
objects. Therefore, the facade of the real 3D building model based on oblique photogrammetry
generally has too many nodes and distorted structures. As can be seen, the plumb lines in the
image generally appear in pairs, with their middle positions generally building structures such as
exterior windows and terraces (where the glass is typically non-Lambertian object), and the rest of the
neighborhood generally comprises walls (wall textures are mostly weak and repetitive). Therefore, the
plumb lines have a close spatial relationship with these problem regions in both images and models.

It is worth noting that plumb lines have a strong spatial correlation with those weak
regions in feature matching, as shown in Figure 1, Photo. Plumb lines are generally
distributed in textural or structural transition regions and are important architectural and
structural feature lines widely distributed on building facades. Plumb lines often exist
in pairs, with the middle portion often being the exterior windows and the remaining
associated portion often being the exterior walls (corresponding to non-Lambertian objects,
weakly and repetitive texture areas, respectively).

Extracting and matching plumb lines from oblique photos can utilize their spatial
correlation with difficult matching regions as constraints to optimize photogrammetric
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data processing and production processes, e.g., optimizing the selection of connection
points during aerial triangulation to further improve its accuracy; supplying points with
explicit structural features for the dense matching to optimize the building 3D shape (the
key points used to construct 3D model mesh are data feature points rather than building
structure feature points); extracting 3D plumb lines and associated building structures such
as exterior windows to optimize the generated building model.

Thus, plumb line matching shows huge application potential for the optimization of
UAV oblique photogrammetry processes and products.

In recent years, line matching has received significant attention in many fields, such as
image registration [11], 3D reconstruction [12,13], and location estimation [14–16]. Points
in feature-point matching cannot characterize the geometric and structural information of
the scene since their distribution is not restricted to the edges. In comparison, lines possess
more geometric and structural information about the scene and objects [17], which provides
additional constraints to solve the visual geometry problem in computer vision [18].

The point-matching technique is quite mature and is widely used in many fields,
e.g., target detection, image stitching, 3D reconstruction, remote sensing image alignment,
etc. [19–21]. But line matching algorithms still confront various challenges, like inconsis-
tent endpoints resulting from occlusion and line extraction methods, diverse perspective
distortions due to complex distributions and various structures, poor neighborhood tex-
ture features resulting from simple appearances, and changing pixel colors as a result of
illumination transformations, and consistently lack strong pervasive geometric constraints
to eliminate ambiguities [17,22]. Existing line matching algorithms are summarized into
the following two categories.

The classical line-matching algorithm relies on the epipolar geometry or the corre-
sponding distribution of points and lines between photo pairs. Schmid et al. [23] calculated
the epipolar region to reduce the search domain of the corresponding line segment based
on the epipolar geometry and finished the matching by calculating the average correla-
tion between the image neighborhoods, which involved both the intrinsic and extrinsic
parameters of the camera. Fan et al. [17] estimated the similarity between line pairs based
on a straight line and the affine invariance of two points. However, this algorithm has
a rather high demand for good point correspondence, which limits its performance in
poorly textured scenes. Sun et al. [24] and Wei et al. [25] found the local homography
plane through the fundamental matrix or feature point correspondences and later utilized
the invariable of the homography graph’s local projective transformation to achieve line
matching. Hofer et al. [26] determined the set of potential matching candidate targets based
on epipolar lines at two endpoints of 2D lines and adopted mutual support of multiple
images to achieve 3D position estimation of 2D lines and, subsequently, cluster 2D line
segments by the spatiality of 3D positions of the lines. However, each 2D line must be
simultaneously visible in at least three different views. Zheng et al. [27] built segmental
projection transformation based on homonymous points and achieved high-precision line
matching by interactive projection transformation verification. However, this algorithm is
highly complex and relies heavily on high-quality homonymous points.

Extracting features of lines as descriptors is another way to achieve line matching.
Initially, manual design features were adopted to construct descriptors. Wang et al. [28] pro-
posed MSLD (Mean-Standard Deviation Line Descriptor), which constructs the descriptor
matrix by counting the gradient vectors within the pixel support region, but the algorithm
is not scale invariant. LBD (Line Band Descriptor) [29] calculated descriptors in the support
region of line segments and adopted a multi-scale linear segment detection strategy. End-
to-end line segment extraction, description, and feature matching based on deep learning
are currently hot research topics. Vakhitov and Lempitsky [30] introduced new efficient
deep convolutional structures and proposed learnable line descriptors LLD. Lange et al.
proposed appearance-based line descriptors DLD [31] and wavelet-enhanced line feature
descriptor WLD [32]. Ma et al. [33] achieved line segments matching via graph convolution
networks. Pautrat et al. [34] introduced self-supervised networks and proposed SOLD2, a
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deep network for joint line segment detection and description. Yoon and Kim [18] designed
line transformers by treating line segments as sentences containing words, and the extracted
descriptors performed well on variable-length line segments. Manual design methods are
usually sparse and have low accuracy limits, whereas deep learning methods generally
target specific application scenarios with insufficient generalization.

In summary, the methods based on epipolar geometry or point-line correspondence
achieve matching by narrowing the scope of the search domain. The descriptor-based meth-
ods enable comparison and matching by constructing high-dimensional unique features of
line segments.

However, as shown in Figure 2, plumb lines are subject to severe occlusion, large distor-
tion, poor texture, background switching, dense distribution, and illumination variation in
the photos acquired by the oblique photography task. These commonly existing problems
often lead to sparsity and error in the matching results of conventional algorithms.
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Figure 2. Examples of plumb lines in the photos from oblique photography tasks (screenshot at
the same scale); (a,c) are from lateral overlap photo pair; (b,d) are from forward overlap photo pair.
Plumb lines are particular line segments widely distributed in human activity scenes, especially on
the facades of structures, e.g., building corners and door or window edges.

Compared to the importance of the plumb line, its related research has not attracted
enough attention. Plumb line matching has significant application value for optimizing
the process and products of oblique photogrammetry. Moreover, the spatial line segments
obtained by traditional matching methods lack clear geometric and semantic features, thus
limiting the application of research findings. In comparison, the spatial plumb lines possess
explicit building structure features, which could provide reference data for applications
such as regularized construction and modular recognition of building models. Therefore,
this paper takes the plumb line as the research target to investigate the extraction and
matching of the plumb line in the oblique photographic photo.

2. Methodology

Narrowing the search domain via geometric constraints and later comparing the
targets via unique descriptors is an efficient way to achieve line matching. Generally,
the range of the target search domain is positively related to the dimensionality of the
descriptor. The descriptors with lower dimensions are generally more resistant to variations.
Accordingly, further compression of the search domain, followed by the adoption of
descriptors with lower dimensions, is a workable solution to improve the efficiency and
accuracy of the line-matching algorithm.

Current algorithms focus on all detected line segments and limit the search domain
or formulate descriptors via their commonality. This sacrifices the individuality of the
different line segments, leading to serious resistance in compressing the search domain and
designing lower-dimensional descriptors.
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Exploiting the personalities of different line segments can further narrow the search
domain and simultaneously reduce the demand for line descriptor dimensions. Classifying
line segments according to their personalities before matching is an effective approach.

Thus, with plumb lines in photos as extraction and matching targets, the plumb-line-
oriented strategy endows the algorithm with the inherent advantages of less computation
and low complexity, which is more conducive to achieving a robust and highly accurate
matching method.

The proposed plumb line matching algorithm was designed using five procedures:
plumb line extraction; spatial constraint; feature description; initial matching; and error
elimination, as shown in Figure 3. First, the plumb lines were extracted based on the theory
that parallel lines in the projection space intersect at the same vanishing point (Section 2.1).
Then, the strong spatial constraint was calculated by the property of the large elevation
ranges of the plumb line (Section 2.2). Moreover, the colors of the neighborhoods on
both sides were picked up separately as the descriptors of the plumb lines (Section 2.3).
Subsequently, initial matching results could be obtained by combining spatial constraints
and color feature descriptors as hybrid constraints (Section 2.4). Finally, the errors were
eliminated by analyzing the verticalness and other characteristics of the matching results
(Section 2.5).

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 27 
 

 

Current algorithms focus on all detected line segments and limit the search domain 

or formulate descriptors via their commonality. This sacrifices the individuality of the 

different line segments, leading to serious resistance in compressing the search domain 

and designing lower-dimensional descriptors. 

Exploiting the personalities of different line segments can further narrow the search 

domain and simultaneously reduce the demand for line descriptor dimensions. 

Classifying line segments according to their personalities before matching is an effective 

approach. 

Thus, with plumb lines in photos as extraction and matching targets, the plumb-line-

oriented strategy endows the algorithm with the inherent advantages of less computation 

and low complexity, which is more conducive to achieving a robust and highly accurate 

matching method. 

The proposed plumb line matching algorithm was designed using five procedures: 

plumb line extraction; spatial constraint; feature description; initial matching; and error 

elimination, as shown in Figure 3. First, the plumb lines were extracted based on the 

theory that parallel lines in the projection space intersect at the same vanishing point 

(Section 2.1). Then, the strong spatial constraint was calculated by the property of the large 

elevation ranges of the plumb line (Section 2.2). Moreover, the colors of the neighborhoods 

on both sides were picked up separately as the descriptors of the plumb lines (Section 2.3). 

Subsequently, initial matching results could be obtained by combining spatial constraints 

and color feature descriptors as hybrid constraints (Section 2.4). Finally, the errors were 

eliminated by analyzing the verticalness and other characteristics of the matching results 

(Section 2.5). 

 
Figure 3. Overall flowchart of the algorithm. 

The algorithm is implemented in C# and C++ language based on the Visual Studio 

2019 platform. OpenCV 3.4.2 implements image-related operations such as image 

filtering, line detection, etc., and partial geometry-related operations such as intersection 

calculations are completed by ArcEngine 10.0. 

2.1. Plumb Line Extraction 

Plumb (vertical) lines and vanishing points are often found together and are used in 

many fields, such as 3D reconstruction of buildings [35], image stitching [36], and camera 

orientation [37]. Most studies calculated vanishing points and, based on them, extracted 

vertical lines from images. Tang et al. [38] approximated the center point of vertical images 

as the vanishing point and used the fuzzy Hough transform to extract vertical lines. Tardif 

[39] used the J-linkage method to identify three vanishing points corresponding to 

Manhattan directions without any prior information, using a consistency measure. Zhang 

et al. [40] separated vertical lines from extracted lines using an accumulation method and 

determined the corresponding vanishing point coordinates. Habbecke and Kobbelt [41] 

specified a one-dimensional direction, then randomly selected two line segments to 

calculate their intersection point as a hypothesis for the vanishing point and evaluated the 

Figure 3. Overall flowchart of the algorithm.

The algorithm is implemented in C# and C++ language based on the Visual Studio
2019 platform. OpenCV 3.4.2 implements image-related operations such as image filtering,
line detection, etc., and partial geometry-related operations such as intersection calculations
are completed by ArcEngine 10.0.

2.1. Plumb Line Extraction

Plumb (vertical) lines and vanishing points are often found together and are used in
many fields, such as 3D reconstruction of buildings [35], image stitching [36], and camera
orientation [37]. Most studies calculated vanishing points and, based on them, extracted
vertical lines from images. Tang et al. [38] approximated the center point of vertical im-
ages as the vanishing point and used the fuzzy Hough transform to extract vertical lines.
Tardif [39] used the J-linkage method to identify three vanishing points corresponding to
Manhattan directions without any prior information, using a consistency measure. Zhang
et al. [40] separated vertical lines from extracted lines using an accumulation method and
determined the corresponding vanishing point coordinates. Habbecke and Kobbelt [41]
specified a one-dimensional direction, then randomly selected two line segments to cal-
culate their intersection point as a hypothesis for the vanishing point and evaluated the
remaining line segments supported by it, achieving vanishing point and vertical edge
detection. This paper also calculates plumb lines from oblique images based on vanishing
point theory.
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As shown in Figure 4, the spatial straight lines that are not parallel to the imaging
plane converge to the vanishing point in the projection space. The vanishing points depend
only on the orientation of lines. Thus, parallel spatial lines intersect at the same vanishing
point. Plumb lines are a set of spatially parallel lines pointing to the earth’s gravity, and
their extension lines intersect at the same vanishing point in the photo.
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Figure 4. Schematic of the vanishing points of parallel spatial lines in the photos. Extensions of
parallel structural lines of the building intersect at the same vanishing point.

Oblique photography tasks capture photos from vertical and oblique views. The
photography point is usually higher than the photographed subject. Accordingly, the
spatial plumb line is not parallel to the photo plane, which ensures the existence of its
corresponding vanishing point [42].

The photo nadir point is the vanishing point corresponding to the spatial plumb
line [43]; i.e., the extensions of the spatial plumb lines represented by the building structural
plumb features line pass through the photo nadir point in the photo space. In the world
coordinate system, the line connecting the position of the camera center and the vanishing
point is parallel to the original line. Therefore, the photo nadir point ppnp can be calculated
by mapping the position of the camera center Pccp onto the photo space through the
perspective camera model C, using Equation (1).

ppnp = C(Pccp) (1)

The back-calculation of the plumb lines can be achieved by screening the lines whose
extensions pass through the photo nadir point. LSD [44] was adopted to detect the line
segments in photos. Before that, bilateral filtering [45] was employed for image pre-
processing to enhance the boundary contrast and reject the internal noise. Equation (2)
calculates the deviation angle ∆θ of the line segment from the photo nadir point.

∆θ = ∠
(

pnear, p f ar, ppnp
)

(2)

where pnear and p f ar denote the points near and far from ppnp in the two endpoints of
the line segment, respectively, and ∆θ is equal to the angle of two rays

(
p f ar, pnear

)
and(

p f ar, ppnp
)

. The line segments with ∆θ less than the specified threshold (3◦ in this paper)
are considered plumb lines. Figure 5 shows examples of the plumb line extraction results
in the oblique photos.
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Figure 5. Examples of plumb line back-calculation results in the photos. The red lines are the plumb
line that back-calculates through the photo nadir point; (a,c) show two perfect back-calculation results
where the plumb lines are extracted correctly. In comparison, some lines are incorrectly identified as
plumb lines in (b), which are coincidentally oriented to the camera center.

2.2. Spatial Constraint

Photos with position and pose can be mapped to any spatial plane by constructing
affine transformation parameters through the perspective camera model C. The pixel
coordinates of the photo’s four corner points are set as {pn}. Through C, the inverse
calculation is conducted to obtain four spatial lines {Ln}, which intersect with the spatial
plane of elevation Z to obtain four points {Pn}. The correspondence between {pn} and
{Pn} could calculate the affine transformation matrix H = [[a11 a12 b1][a21 a22 b2][0 0 1]].

Any point pk =
[

xk, yk
]T

in the photo can be mapped to the elevation Zk spatial plane SPk

via Equation (3), and then, the corresponding point Pk =
[

Xk, Yk, Zk
]T

can be obtained.

Xk

Yk

Zk

 =

a11 a12 b1

a21 a22 b2

0 0 Zk


xk

yk

1

 (3)

The closer the Zk is to the pk corresponding object point elevation, the closer Pk is to
the corresponding object point. The positions of the homologous points overlap after being
projected onto the space plane where the corresponding object is located.

As for the line segments, as shown in Figure 6, photo line segments li
l and l j

r are taken

as a set of homonymous lines of spatial line segment Lg, and Lhi
l and Lhj

r as their projected
line segments in the spatial plane SPh with elevation h. If h is within the elevation range
of Lg, Lhi

l and Lhj
r exist at least at one point. SPPhi

l and SPPhj
r can be restored to the real

position respectively, which represents the same object and overlaps with each other. SPPhi
l

and SPPhj
r are homonymous points constrained by the same position and, accordingly, are

named SPPs (Same Position Homonymous Points).
The probability of obtaining SPPs after homonymous line projection is proportional

to the elevation range of its corresponding spatial line segment under uniform spatial
stratification. Plumb lines possess a more extensive elevation range than others. Thanks to
this property, the projection of their homonymous lines can ensure the existence of true
SPPs in a certain density of stratified spatial planes.
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Figure 6. Schematic diagram of SPPs calculation. The yellow and green lines are the projections of the
two photo line segments in different spatial planes using Equation (3); the “+” red circle represents
the true SPPs, and the “x” red circle represents the false SPPs.

Ground elevation range was obtained from the connection points previously to con-
struct the spatial plane set {SPh}with equal elevation difference (0.1 m in this paper). Then,
the set of plumb lines

{
li
l
}

and
{

l j
r

}
was projected to {SPh} via Equation (3) to obtain

the set of spatial line segments
{

Lhi
l

}
and

{
Lhj

r

}
. Finally, the SPPs set

{
SPPhij

}
could

be obtained by calculating their intersections. Figure 7 shows an instance of the SPPs
calculation process.

SPPs compress the search domain of homonymous plumb lines as the spatial constraint.
However, it is merely a necessary and insufficient condition for homonymous plumb-line
determination. As shown in Figures 6 and 7d, the false SPPs are generated between the
adjacent plumb lines. Therefore, neighborhood color is selected as the feature descriptor to
determine further whether plumb lines are homonymous.

2.3. Feature Description

MSLD and LBD are classic line segment descriptors. MSLD counts the gradient vectors
in 4 directions in each sub-region of the pixel support region to construct the descriptor
matrix, while LBD divides the support domain of the line segments into multiple strips,
counts the pixel gradient, and calculates the mean vector and standard deviation of the
statistics as the descriptor matrix. They construct the support domain based on pixels and
count multiple features with higher dimensionality and more uniqueness, but they are
more sensitive to consistency and compression distortion on homonymous lines.

In comparison, color is more resistant to inconsistency, shape and scale change, etc.,
than higher dimensional descriptors, e.g., MSLD and LBD. As shown in Figures 2 and 8,
color can encompass all features in the plumb line’s neighborhood. Thus, the both-side
neighborhood primary colors of the plumb line were extracted as descriptors for the
homonymy determination.
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Figure 7. Examples of the SPPs calculation process. The purple points are SPPs, and the spatial
line segment elevation increases continuously from green to red. When the elevation of the spatial
plane is within the elevation range of the plumb line, the homologous plumb lines will intersect,
producing true SPPs. Therefore, SPPs can be used as positional constraints to determine the possible
set of homologous plumb line pairs. But adjacent plumb lines may also intersect in the spatial plane,
producing false SPPs.
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Figure 8. Examples of both-side neighborhood pixels of the plumb lines. Color is an essential feature
of line-segment neighborhoods. Plumb lines mostly appear in the structural and color transition
regions, with poor texture neighborhoods; (a,b) are from the forward and lateral overlap photos.
Complex variations in the neighborhoods of the homonymous plumb lines lead to worse one-to-one
correspondences between pixels. Thus, classical approaches, e.g., MSLD and LBD, are not applicable.

As shown in Figure 8, two problems arise in the process of comparing the homony-
mous plumb-line neighborhood colors: the variability of brightness caused by the capture
angle and illumination direction; and the instability of mixed colors caused by the change
in pixel-corresponding spatial domain.

To reduce the impact of color variation on consistent determination, the colorimetry
method was adopted to calculate values of the chromatic aberration instead of the Euclidean
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distance of RGB. Furthermore, the whole one-side neighborhood is regarded as a basic unit,
thus expanding the spatial domain and weakening the mixed color instability problem.

2.3.1. Calculation of Chromatic Aberration

Colorimetry relates human subjective color perception to objective physical measure-
ments, which uses the Lab (luminance, red/green difference, yellow/blue difference) color
space. The CIEDE2000 is regarded as the best mutual matching chromatic aberration
formula with human vision in theory currently [46–49]. Lab and CIEDE2000 are employed
in this paper to extract and compare the plumb-line neighborhood primary colors.

2.3.2. Partitioning and Extraction of Neighborhood Pixels

Polar coordinate systems centered on each photo nadir point were constructed to
partition and extract the plumb-line neighborhood pixels, as shown in Figure 9.
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Figure 9. Schematic diagram of plumb-line neighborhood pixels partitioning and extraction based on
the photo polar coordinate system. The black line is the target plumb line, and the purple line is the
other plumb line. The target is the plumb line li

l with yellow fluorescence, and Ri
l is the observation

vector from the photo nadir point to the target. The li
l neighborhood pixels are partitioned by locating

on the Ri
l clockwise or anti-clockwise region and are extracted by rotating li

l around ppnp
l . The green

and blue are the partitioning and extraction results of li
l clockwise and anti-clockwise neighborhood

pixels, respectively.

The neighborhoods of the homonymous plumb lines correspond one-to-one in the
clockwise and anti-clockwise regions divided by the observation vector. The image of
photol can be taken as an example. As shown in Figure 9, Ri

l , which is the vector from photo
nadir points ppnp

l to the 2D plumb lines li
l , is the mapping of the observation vector from

the photography center to the 3D plumb line Lij in the photos. When Lij is observed in both
photol and photor, their same-side neighborhoods are on the same side of the observation
vector Ri

l and Rj
r. Therefore, polar coordinates were established, and the neighbors of the

plumb line were partitioned according to the clockwise and anti-clockwise regions in polar
coordinates to achieve the correspondence of the homonymous plumb line’s same-side
neighborhoods.
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The distortion of the plumb-line neighborhoods varies among different photos. Thus,
pixels cannot be acquired accurately by panning plumb lines. The plumb-line clockwise
and anti-clockwise neighboring pixel sets

{
Pixi

l
}

were extracted, respectively, based on the
polar coordinate system of each image, as shown in Figure 9, using Equation (4).

{
Pixi

l

}
=

∑2
d=1 T

(
Rotate

(
li
l , ∃ ×

(d+τ)
r

))
T
(

Rotate
(

li
l , ∃ ×

∆θ
2

) )
i f epl

(4)

where the T(l) function extracts the pixels which through the line segment l, Rotate
(
li
l , θ
)

rotates the plumb line li
l by arcdegree θ around the photo nadir point ppnp

l ; ∃ denotes the
rotation direction parameter (−1 for clockwise; 1 for anti-clockwise); d is the pixel distance
of li

l rotation (1 and 2 are chosen in this paper); τ represents the distance increment to avoid
the mixed pixels generated by the drastic color change near the plumb line (0.5 is chosen in
this paper); r = Max

(
Distance

(
ppnp

l , li
l

))
calculates the greater of the distances from the

two endpoints of li
l to ppnp

l ; i f epl represents the situation that another plumb line li2
l exists

in the neighborhood region formed by li
l rotated by 3 pixels, and ∆θ is the absolute value of

the azimuthal difference between li
l and li2

l .
After extracting the plumb line, the set of pixels in each line’s clockwise and anti-

clockwise neighborhoods was recorded separately. The pixels were converted from RGB to
Lab color space before proceeding to the next step of color feature description.

2.3.3. Description of Pixel Color Feature

The primary color was extracted as the descriptor of the neighborhood color. After
extracting the plumb line li

l clockwise or anti-clockwise neighborhood pixel set
{

Pixi
l
}

via Equation (4), the pixels with the largest chromatic aberration from the average value
were eliminated until the chromatic aberration of each pixel was within 6.0 from the
average value or the number of remaining pixels was less than 70%. Lab mean values of
the remaining pixels in

{
Pixi

l
}

were employed as the primary color. Finally, the plumb

line neighborhood clockwise and anti-clockwise primary colors
{

li
l .labc

}
and

{
li
l .labac

}
were collected.

2.3.4. Consistent Determination of the Primary Color

Plumb lines are mainly located on the structure’s facade, and their visible angles are
distributed within the facade orientation. As shown in Figure 10, with the gradual change
in the observation view, the plumb-line neighborhood observations keep the single-side
consistency in the edge structure plumb line (blue and cyan) and the both-side consistency
in the middle structure plumb line (red).
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Figure 10. Schematic diagram of the consistency of the plumb-line neighborhoods under multi-view
observation. When the observation view changes, the blue, red, and cyan plumb lines maintain at
least single-side neighborhood consistency.
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As shown in Figure 11, neighborhood inconsistency on both sides appears when
the observation vectors are located in the second and fourth quadrants (Q2 and Q4),
respectively, where they form a pair of views (red observation vectors).
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Figure 11. Schematic diagram of the visible neighborhood of the plumb line under different observa-
tions. Colored arrows represent observation vectors. When the two observation vectors are located in
the Q2 and Q4 quadrants (red arrows), respectively, the observations of the plumb-line neighborhood
on both sides are inconsistent.

However, the observations of plumb-line both-side neighborhoods are rarely incon-
sistent, especially in the photos obtained from oblique photogrammetry tasks. In terms
of the observation angle, the photography center is far higher than the captured building.
Regarding realistic scenes, building structures almost always have right or obtuse angles.

Hence, the consistency of at least a single neighborhood observation could be an
important basis for the match. SPCC (Single-Side Primary Color Consistency) was regarded
as the basic requirement for determining the plumb-line homonyms and was calculated via
Equation (5).

SPCC = ToF
[
∆E00

(
li
l .labc, l j

r.labc

) ∣∣∣∣∣∣ ∆E00

(
li
l .labac − l j

r.labac

)
< 6.0

]
(5)

where ToF denotes the True or False determination function; ∆E00 is the CIEDE2000
color aberration calculation formula; l j

r.labc and l j
r.labac represent the clockwise and

anti-clockwise neighborhood primary colors of plumb line l j
r of another image photor,

respectively.

2.4. Initial Matching

The initial matching of plumb lines was implemented based on the SPPs and primary
color descriptors extracted in the previous sections.

The number of SPPs positively correlates with the probability of a plumb-line pair
correct match. Accordingly, the greedy strategy was adopted regarding the plumb-line
pair with the largest SPP number and the SPCC as the local optimal solution. The plumb-
line pair li

l and l j
r was traversed and recorded in

{
SPPhij

}
from the highest to the lowest

according to the count of SPPs. If neither was recorded and SPCC was equal to true, then

it should have been recorded to the initial set of matching results
{〈

li
l , l j

r

〉}1
. The greedy

strategy significantly reduced the computation and completed the initial matching with
only once

{
SPPhij

}
traversal.

2.5. Error Rejection

The motion vector field of the initial matching results is too smooth to be purified by
classical algorithms such as RANSAC [50] and VFC [51]. The trifocal tensor constraint is a
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commonly validated method in the line-matching algorithm under the positional constraint.
However, this paper still expects to exploit the potential of line matching under two photos
to reduce the computational complexity and improve the generalization.

The credibility of the matching results was gauged by the IoU (Intersection over Union)
and verticalness of Lij

lr. As shown in Figure 12, it was calculated by plumb-line spatial
solution triangle intersection.
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Figure 12. Schematic diagram of plumb-line pairs forward intersection. KPi
l and KPj

r are the spatial

solution triangles of plumb lines li
l and l j

r, respectively. Lij
lr, Lji

rl are their intersection lines with each
other, which display certain overlapping and deviate from the standard spatial plumb line Lij with
angular ∀.

2.5.1. IoU Filtering

The IoU represents the inconsistency of the plumb-line pair, which is positively related
to the correctness of the matching result, calculated via Equation (6).

IoUij=Min

Abs
(

Lij
lr .Zmin−Lji

rl .Zmax

Lij
lr .Zmax−Lji

rl .Zmin

)
, Min

 len
(

Lij
lr

)
len
(

Lji
rl

) ,
len
(

Lji
rl

)
len
(

Lij
lr

)
 (6)

As shown in Figure 12, Lij
lr and Lji

rl are the spatial plumb lines corresponding to the

plumb lines li
l and l j

r, which are derived from the intersection of the spatially solved

triangles KPi
l and KPj

r obtained by the inverse-perspective functions C−1
l and C−1

r . They
can be calculated via Equation (7).

KPi
l = C−1

l
(
li
l
)

KPj
r = C−1

r

(
l j
r

)
Lij

lr = Intersect
(

KPi
l , Panel(KPj

r )
)

Lji
rl = Intersect

(
Panel

(
KPi

l
)
, KPj

r

) (7)

The function Panel() solves for the plane where the spatial triangle is located, and
the function Intersect() solves for the intersection line of two spatial planes. The solution
with IoU less than 0.3 was regarded as poor confidence and then eliminated from the initial

matching
{〈

li
l , l j

r

〉}1
, and the IoU filtering result

{〈
li
l , l j

r

〉}2
was obtained subsequently.
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2.5.2. Verticalness Filtering

The angular deviation ∀ij of the spatial plumb line Lij
lr from the ideal spatial plumb

line Lij (as shown in Figure 12) was calculated as an evaluation indicator of verticalness via
Equation (8).

∀ij = ∀ji = acos
((

Lij
lr.Zmax− Lij

lr.Zmin
)

/
(

len
(

Lij
lr

)))
(8)

The matching results of the incorrectly homonymous plumb lines are always featured
with larger ∀ij. However, the verticalness of spatial lines cannot be determined by fixed
thresholds. Firstly, the plumb structural feature lines are not exactly parallel to the plumb
lines; secondly, deviations exist between the matched and original spatial line due to the
influence of positional accuracy, photographic baseline, camera distortion, etc. This results
in different photo combinations corresponding to different verticalness thresholds.

However, after eliminating the gross errors, the overall deviations should satisfy the
normal distribution. The angular deviation set

{
∀ij
}

was obtained after iterating through{〈
li
l , l j

r

〉}2
, and the errors were finally eliminated via Equation (9).


{
∀o

ij

}
=

OTSU
({
∀ij
})

i f gross errors exist{
∀ij
}

else{
∀s

ij

}
=
{
∀o

ij

}
<
(

µ
({
∀o

ij

})
+ 2σ

({
∀o

ij

})) (9)

where
{
∀o

ij

}
denotes the set after the gross errors being removed from

{
∀ij
}

. The number is

counted from
{
∀ij
}

which is over 30◦; If it is more than 5%, then gross errors are conjectured

to exist. In this case, OTSU is firstly applied to obtain
{
∀o

ij

}
(select the smaller of the two

sets). Otherwise,
{
∀o

ij

}
can be directly set equal to

{
∀ij
}

.
{
∀s

ij

}
is the fraction of

{
∀o

ij

}
that is less than the mean (µ) plus the twice standard deviation (2σ), and its corresponding

plumb-line pairs are identified as the final matching result
{〈

li
l , l j

r

〉}3
.

3. Experiment and Discussion
3.1. Data

The initial motivation was to extract and match plumb lines to optimize the process and
products of UAV oblique photogrammetry, especially for the surface mesh’s optimization of
3D real-scene models of buildings. Hence, the UAV oblique photos and aero triangulation
results from different production tasks (as shown in Figure 13) are selected as experimental
data. As shown in the building examples in Figures 13 and 14, there is a wide variety
of buildings in the experimental area, and each building has a significantly different
architectural style.

The photo acquisition device was DJI PHANTOM 4 RTK (DJI, Shenzhen, China) with a
resolution of 5472× 3648 pixels (the main parameters of the aircraft and camera are shown
in Table 1, and the flight task parameters for data collection are shown in Table 2). The
GET3D Cluster 5.0 was used to perform aerial triangulation of the UAV image set and
obtain the position and posture information and connection points of the images.
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Figure 13. Diagram of the experimental scenes. Photo (a) shows a township scene, in which the
closely distributed buildings are of a single type, with an elevation range of 33.1–45.3 m; Photo
(b) is a rural scene, in which the buildings are sparsely distributed and diverse in types, with an
elevation range of 31.3–40.8 m; Photo (c) shows a factory scene, in which the buildings are distributed
independently and are of complex types, with an elevation range of 30.6–51.5 m.
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the camera to cover the target region and obtain photos that satisfy the requirements for 

the 3D reconstruction. In wide-scale oblique aerial photography missions, multi-oriented 

Figure 14. Sample diagrams of buildings in different scenarios. The factory scene (c) contains taller
factory dormitory buildings, medium-height office buildings, and lower factory buildings, all of
which are distinctly different in terms of architectural appearance and building height; the township
scene (a) and rural scene (b) do not vary much in height, but each has its own unique style in
terms of building structure. Building facades in all scenes have weak textures, repeated textures,
non-Lambertian objects (external windows), and occluded deformed regions.
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Table 1. Main parameter table of DJI PHANTOM 4 RTK.

Aircraft Camera Platform

Type Four-axis aircraft Image sensor 1-inch CMOS; 20 million
effective pixels

Controlled
rotation range

Pitch: −90◦ to
+30◦

Hovering
accuracy ±0.1 m Camera Lens FOV 84◦; 8.8 mm/24 mm;

Aperture f/2.8–f/11
Stabilization

system
Three-axis (pitch,

roll, yaw)

Horizontal flight
speed ≤ 50 km/h Photo resolution 5472 × 3648 (3:2) Maximum

control speed Pitch: 90◦/s

Single flight time Approx. 30 min Photo format JPEG Angular jitter ±0.02◦

Table 2. UAV Flight task parameters for data collection.

Parameter Region a Region b Region c

Flight height 120 m 100 m 110 m
Photography angle −45 degrees −45 degrees −50 degrees
Lateral overlap rate 70% 70% 70%

Forward overlap rate 80% 80% 80%

3.2. Matching Photo Pair Selection

UAV oblique aerial photogrammetry requires a well-designed flight path that allows
the camera to cover the target region and obtain photos that satisfy the requirements for
the 3D reconstruction. In wide-scale oblique aerial photography missions, multi-oriented
flying is one of the most common methods. As shown in Figure 15, UAVs normally fly
along parallel flight strips at a fixed height and speed.
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Figure 15. Schematic diagram of the UAV oblique-photography flight strips and the selection of
experimental photo pairs. The green image pairs are forward-overlapping photo pairs (from the
same flight strip, one in front and one behind), and the blue image pairs are lateral overlapping photo
pairs (from neighboring flight strips, a combination of offsets perpendicular to and along the flight
strip is generally present, but the former is generally much larger than the latter).

The overlap of consecutive photos within the same flight strip, known as forward
overlap, satisfies the requirement of stereoscopic vision and requires a high degree of
overlap; the overlap of photos between two adjacent flight strips, known as lateral overlap,
satisfies the requirement of connecting adjacent flight strips and requires a low degree
of overlap. The degree of photo overlap is a basic flight parameter, where the degree of
forward overlap determines the interval for taking photos, while the degree of lateral
overlap determines the spacing of the adjacent flight strips. In the experiment, the forward
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and lateral overlap of the photographic missions are set to 80% and 70%, respectively,
which are commonly used empirical settings for UAV oblique photography used for 3D
real-scene models of buildings.

Forward and lateral overlap are the two basic types of overlap of photo pairs in UAV
oblique photogrammetry. Since the target area is not necessarily regular, the UAV takes
photographs at fixed intervals along the flight strip during the mission. As a result, adjacent
photos in one flight strip (forward overlap) basically move only forward–backward, and
adjacent photos in neighboring flight strips (lateral overlap) move both left–right and
forward–backward.

For the purpose of extracting and matching plumb lines, photos with forward over-
lapping are sufficient. However, to verify the performance and generalization of the
algorithm, we simultaneously selected photos with forward and lateral overlapping in
three representative scenes: township; rural; and factory.

3.3. Result

Similar oblique image line-matching algorithms that are also oriented toward the
plumb line have not yet been found, so the performance of the algorithm could not be veri-
fied in the form of directly comparing the experimental results. Therefore, this paper firstly
realizes all line matching by two types of matching algorithms based on BinaryDescriptor
(traditional method based on line descriptor, encapsulated in OpenCV, hereinafter referred
to as “BD”) and line transformers (deep learning method, hereinafter referred to as “LT”),
and then extracts the correctly matched plumb-line pairs and displays the detailed images
of the same region and statistically counts the correctly detected plumb lines to indirectly
demonstrate the advantages of the proposed algorithm (hereinafter referred to as “Our”) in
plumb-line matching.

Figures 16–18 show the matching results. The experimental result graph is divided into
three regions: the top is the experimental result of Our; the bottom left is the experimental
result of BD; and the bottom right is the experimental result of LT. In the experimental
results graph of Our, the upper half of “DOM Vision” and “Photo Vision” matching results
correspond to the SPPs in DOM and the homonymous plumb lines in photos, respectively,
where greens are the correct and reds are the wrong matching results; the bottom half
“Detail” is the screenshot of matching details with the same scale; the homonymous plumb
lines are marked with the same color. In the experimental result graphs of BD and LT,
correctly matched plumb lines are connected with green connecting lines.

Most walls in the township scene a (Figure 16) are white, with gray edges. The
advantage of the primary color of the line neighborhood as a descriptor is demonstrated,
and the poor texture turns into a strong descriptor. The proposed algorithm accurately
confronts the combined distortion of plumb-line rotation and compression. In addition, a1
shows a good detection rate of the plumb lines on the building facade, where extremely
tight plumb lines are also correctly matched. Most of the line segments matched by BD
and LT were parallel to the ground, and very few plumb lines perpendicular to the ground
were successfully matched (as shown in Table 3).

Table 3. Statistical table of the quantity of correctly matched plumb lines of different algorithms.

Forward Overlap Lateral Overlap

Scene Our BD LT Scene Our BD LT

a1 884 (913) 83 (1908) 0 (345) a2 374 (470) 1 (4437) 0 (191)

b1 309 (316) 25 (1380) 0 (133) b2 131 (168) 0 (1039) 0 (75)

c1 530 (542) 91 (1268) 7 (168) c2 203 (265) 2 (1087) 0 (59)

Total 1723 (1771) 198 (4556) 7 (646) Total 708 (903) 3 (6563) 0 (325)
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Figure 16. Matching results of township scene a. In the DOM vision, the green circles and red
crosses correspond to the SPPs (which are also the projection results of the spatial plumb lines
generated by the forward intersection of the homologous plumb-line pairs) corresponding to the
correct and erroneous plumb-line pair matching results, respectively. In the Photo and Detail visions,
the homologous plumb-line pairs are shown in the same color. In the Photo vision, the green
and red connecting lines correspond to the correct and erroneous matching results, respectively.
Figures 17 and 18 are similarly represented as such.
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Figure 18. Matching results of factory scene c.

The proposed algorithm is well-adapted to the rural scene b (Figure 17) in which the
plumb-line neighborhood has complex and variable colors and serious endpoint inconsis-
tencies. Some of the plumb lines in the BD algorithm are involved in matching, but a large
number of mismatches are generated because of the similarity of building structures and
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textures. In the LT algorithm, almost no plumb lines are involved in the match and are
successfully matched.

Factory scene c (Figure 18) includes various buildings, e.g., office buildings, factories,
dormitories, etc. In c1, the correct matching of lines with similar geometry and texture on
the left side verifies the strength of the SPPs’ spatial constraints; the accurate matching
of the edge plumb lines existing in house corners and utility pole edges on the right side
illustrates the applicability of the SPCC determination criterion in the case of complex
changes in the background.

The statistics of the number of plumb lines correctly matched by the three algorithms
are shown in Table 3, with the total number of matched line segments in parentheses.

Algorithms BD and LT show poor performance in plumb-line matching. The similar
architectural structure of the building facades caused a large number of false matches for
the BD algorithm, and only some plumb lines were successfully matched in the forward
overlap experiments. The LT algorithm shows a poor adaptation to the experimental data,
with a low number of detections in which essentially no plumb lines were successfully
matched. The two line matching algorithms, BD and LT, were unable to extract high-quality
homonymous plumb-line pairs. In comparison, the proposed algorithm shows a high
level in both quantity and correct rate in plumb-line matching. Our plumb-line matching
algorithm can be applied as a complement to other all-line matching algorithms. Table 4
shows the detailed statistics of the quantity and correct rate of the proposed algorithm in
plumb-line matches.

Table 4. Statistical table of the quantity and accuracy of the proposed algorithm.

Forward Overlap Lateral Overlap

Scene Correct Sum Accuracy Scene Correct Sum Accuracy

a1 884 913 96.82% a2 374 470 79.57%

b1 309 316 97.78% b2 131 168 77.98%

c1 530 542 97.79% c2 203 265 76.60%

Total 1723 1771 97.29% Total 708 903 78.41%

From the point of view of accuracy, the average values in the forward and lateral
overlap photos reach 97.29% and 78.41%, respectively. The former is higher than the latter,
and both keep stability. From the view of quantity, the total numbers in the forward and
lateral overlap photos are 1723 and 708, respectively. The former is higher than the latter,
varying significantly between different scenes.

Overall, the proposed algorithm still performs well under the two broad criteria of
30% IoU threshold and SPCC, especially in heading overlap, which is trustworthy.

Matching results with high IoU or BPCC (both-side primary color consistency) possess
higher accuracy, especially for lateral overlap experiments. Table 5 and Figure 19 show the
accuracy and quantity variation statistics of filtered experimental results under different
IoU and primary color consistency determination criteria.

As the IoU rises, the accuracy displays an upward trend. As shown in Figure 19a,
the forward overlap photo accuracy is consistently high, with the SPCC results ranging
from 97% to 99%, BPCC results above 99.5%, and BPCC results reaching 100% at the IoU
of 0.9. The lateral overlap photo accuracy improves significantly with the rise in IoU,
showing a linear increase with a high speed, with the SPCC results rising from 78.41% to
98.31% and BPCC results from 93.56% to 100%. With the IoU rising, the quantity decreases
at different rates. As shown in Figure 19b, the forward overlap photo correct matching
quantity displays an exponential decreasing trend, and the final reduction quantity declines
to 70.6% (SPCC) and 69.5% (BPCC). While lateral overlap photo correct matching quantity
shows a smooth decreasing trend, the final reduction quantity reaches 75.3% (SPCC) and
73.4%(BPCC), respectively.
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Table 5. Statistical table of quantity and accuracy changes in the proposed algorithm.

IoU

Forward Overlap Lateral Overlap

SPCC BPCC SPCC BPCC

Correct Sum Accuracy Correct Sum Accuracy Correct Sum Accuracy Correct Sum Accuracy

0.3 1723 1771 97.29% 1435 1441 99.58% 708 903 78.41% 305 326 93.56%

0.4 1688 1728 97.69% 1414 1419 99.65% 672 829 81.06% 293 311 94.21%

0.5 1600 1633 97.98% 1347 1351 99.70% 614 734 83.65% 274 288 95.14%

0.6 1473 1495 98.53% 1256 1259 99.76% 543 620 87.58% 237 248 95.56%

0.7 1289 1305 98.77% 1103 1105 99.82% 450 493 91.28% 193 201 96.02%

0.8 983 996 98.69% 843 844 99.88% 332 358 92.74% 150 155 96.77%

0.9 506 513 98.64% 437 437 100.00% 175 178 98.31% 81 81 100.00%
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The BPCC results are included in the SPCC. The accuracy of BPCC results is signifi-
cantly higher than that of SPCC, especially for lateral overlap photos. In forward overlap
photos, BPCC result accuracy increases by 2.36–1.38%, compared with that of SPCC. In
lateral overlap photos, the BPCC result accuracy increases by about 10%; especially at the
start IoU of 0.3, it rises from 78.41% to 93.56% (an increase of 15.15%). The growth rate
decreases gradually with the rise in IoU. The quantity of BPCC results accounts for about
85% (forward overlap) and 45% (lateral overlap), respectively.

The BPCC reduces the quantity but improves the accuracy significantly, especially
for the lateral overlap photos. The proposed algorithm exhibits advanced performance
in forward overlap photo matching experiments. As for the lateral overlap photos, the
accuracy could be improved by screening high IoU (around 0.5) or BPCC results.

Overall, the proposed plumb-line matching algorithm performed well in different
experimental scenes and could produce trustworthy building 3D plumb lines. An average
accuracy of over 97% was achieved in the forward overlap photo experiments, and the
BPCC results in the lateral overlap photo experiments reached an accuracy of over 93%.
Moreover, the algorithm performed stable and high accuracy on the building facade despite
the occlusion, structural distortion, and simple appearance, showing strong adaptability to
inconsistency, rotation, scale, and poor texture.
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3.4. Discussion

Verticality is the most important characteristic of a building and is the basis for
ensuring its stability and safety. Therefore, even how irregular the shape of a building
is, the plumb line in it is necessarily very regular. As a result, the proposed algorithm
shows high accuracy stability in different matching scenes. The unique status of plumb
lines in buildings ensures the algorithm’s generalization even in terms of complex building
scenarios that are regular in height or shape. The experimental results demonstrate that
SPPs and SPCC are reliable techniques for homonymous plumb-line determination. The
proposed algorithm could solve the matching problem of building facades with high
distortion and poor texture in oblique aerial photography.

When identifying plumb lines, it should be noted that the plumb lines calculated via
Equation (2) are not always correct, as shown in Figure 5b. Generally, the longer the line
segment and the smaller the deviation angle ∆θ, the higher the probability of obtaining
the correct result. However, line segments of all lengths were still chosen, and a higher
tolerance was adopted on the determination threshold of ∆θ, because the correspondence of
the homologous plumb lines possesses the highest priority among the factors affecting the
matching accuracy. To be specific, more lines were allowed to be involved in the matching
at the beginning to ensure good correspondence of the homologous lines. But at the same
time, the strict screening was executed at the end to improve the normality of the matching
results. This improved the matching accuracy and ensured the geometric properties of
matching results, positively affecting the subsequent applications.

When calculating SPPs by spatial layered projection, we chose 0.1 m as the layer
interval. This means that there will be the same position homonymous point when the
building structure represented by the plumb-line pair is above 0.1 m. However, theoretically,
the finer the spatial layering, the more accurate the judgment of the spatial constraint
strength by the number of SPPs. But this also means higher computation. Balancing
the density of layering, computation, and matching accuracy and studying other SPP
calculation methods, such as partition projection and classification projection, are important
future research directions.

When describing the features of the plumb lines, we use the primary color as the
descriptor. The following strategy was adopted to make the color description more accurate.
First, we rotate the plumb line around the photo nadir point to ensure the accuracy of
extracted pixels. Second, we use 1.5 and 2.5 pixels as the rotation values to avoid the
mixed pixels from the plumb line itself and adjacent structures and make the pixels from
the same structure. Finally, we eliminate the noise through iteration and then extract the
primary color. This ensures the consistency of the extraction objects and the generality of
the extraction method.

Taking plumb lines as targets actually simplifies the line-matching problem. The
complexity of the matching problem is transformed from Nl × Nr to Nl × rl × Nr × rr
(where Nl and Nr are the number of line segments in the image pair, and rl and rr are
the proportion of plumb lines in it). Definitely, rl and rr are both less than 1 (in the
experimental data, the plumb-line ratio is generally less than 0.1). Therefore, the algorithm
has inherent advantages in theory and complexity compared to the algorithm that matches
all lines, which also makes the algorithm achieve high accuracy, especially in heading
overlap matching.

However, the matching results in the forward overlap photos are significantly superior
to those in the lateral overlap photos. Differences in spatial constraint ability and color
consistency result in this outcome. The plumb line behaves as a line segment pointing to
the photo nadir point. In terms of the spatial constraints of SPPs, the deformation of the
homonymous plumb line in the forward overlap photos is mainly vertical compression (as
shown in Figure 2b,d), and the homonymous plumb line intersects in the spatial plane of the
SPPs with a small-angle “X” shape (as shown in Figure 20a), the probability of intersecting
with neighboring plumb lines to produce erroneous SPPs is low. Whereas the deformation
of the plumb lines in the lateral overlap photos contains both vertical compression and left-
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right distortion (as shown in Figure 2a,c), and the homonymous plumb lines are intersected
in the spatial plane of the SPPs with a large-angle “X” shape (as shown in Figure 20b), and
neighboring plumb lines are more likely to produce erroneous SPPs. In terms of the degree
of color consistency, the observation angle of the neighbors of the homonymous plumb line
in the forward overlap image is less variable, and the color consistency is higher (as shown
in Figure 2b,d). While the observation angle of the neighbors of the homonymous plumb
line in the lateral overlap photo is more variable, the color is prone to lightness-dominated
color changes, and the consistency is relatively lower (as shown in Figure 2a,c). Those lead
to the resulting forward overlap experiments possessing a fairly high accuracy, while the
lateral overlap performance is mediocre. Future research needs to focus on optimizing the
SPPs constraint and SPCC calculation method, which can be applied to the lateral overlap
photos to improve the matching quantity and accuracy.
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Finally, the current version of the algorithm extracts and matches homonymous
plumb lines from combinations of the same shoot direction photos taken during UAV
mapping production missions. The future research direction is to improve and enhance the
performance of the plumb-line matching algorithm in a wider range of application scenarios.
Designing more reasonable and diversified combinations of images and optimizing the
matching process by considering the geometric distribution and matching cost between
plumb-line pairs are the next research contents.

4. Summary

Building facade is always a weak region for traditional matching methods in oblique
photogrammetry. The plumb line and the weak texture, non-Lambertian objects, defor-
mation, and occlusion regions in the building facade have a strong spatial correlation.
Extracting and matching plumb lines can provide suggestions for selecting key points used
for aerial triangulation and dense matching, thereby optimizing the process and products
of oblique photogrammetry. Thus, we proposed a novel matching algorithm oriented
to plumb lines based on the hybrid constraints of spatial and color elements. The main
contributions of this study are summarized below.

First, we proposed the spatial constraints unique to plumb lines—SPPs (Same Position
Homonymous Points). Exploited the property of the high elevation range of plumb lines,
calculated the SPPs between plumb-line pairs by their intersections in the projection plane,
and quantitatively described their spatial constraints by the number of SPPs.

Second, we designed the criterion for plumb-line feature similarity judgment—SPCC
(Single-side Primary Color Consistency). Designed a polar coordinate system with the
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photo nadir point as center, endowed plumb line’s both neighborhoods with direction
parameter, extracted and compared the primary color of the neighbors on both sides by the
colorimetric method, and relied on the property with at least a single side of the plumb-line
neighbors from the aerial perspective visible at the same time to realize the similarity
determination of plumb line’s features.

Third, we eliminated the matching errors based on IoU and verticalness filtering. To
address the problem that the plumb line’s matching vector field is excessively smooth and
the classical purification algorithm cannot be applied, rejected errors by the overall analysis
of IoU and verticalness of matching results.

The proposed algorithm performed robustly in the different scene and view com-
binations, demonstrating advanced accuracy, especially in the forward overlap photos.
Benefiting from the strategy of plumb-line oriented partial line matching, the proposed
algorithm owns inherent advantages in theory and computational complexity, applicable
to all building-oriented oblique photogrammetry tasks. It can solve the problems of the
sparse and high-error traditional algorithms in matching building facades with occlusion,
distortion, and poor texture in oblique photogrammetry tasks. The plumb lines convey
explicit geometric information possessing high application value and potential. The al-
gorithm boasts of great potential for further improvement. More efforts will be made
to reduce the computational effort, improve the matching quantity and accuracy of the
lateral overlap photos, and enhance the confidence evaluation method to explore broader
application scenarios.
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