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Abstract: Urbanization has profound impacts on economic development and environmental quality.
Some of the serious consequences of urbanization are the changes in the thermal environment,
which directly affect the greater environment and quality of life. Although many studies have been
performed on urban heat islands, few have specifically examined the thermal evolution of rapidly
expanding ancient cities and the impacts of urbanization on the thermal environments of important
heritage sites. In this study, we analyzed the temporal and spatial patterns of the thermal environment
quantified as the surface urban heat island (SUHI) and land surface temperature (LST) values from
2000 to 2018 in Xi’an, an ancient city with rich cultural heritage in China. Specifically, we analyzed
the temporal evolution of the thermal environments of the functional zones and heritage sites and
explore their coupling relationships with the overall temperature of the study area using a statistical
analysis approach. Furthermore, we revealed time-sensitive changes in temperature regimes using
the newly proposed double temperature curve approach (DTCA). The results showed that the heat
island phenomenon has been intensifying in Xi’an, as evidenced by the summer daytime mean SUHI
values being greater than 7 ◦C continuously since 2010 and the increased frequency of high-intensity
SUHI effects. Extreme heat conditions were more frequent in the old urban area (built-up and in
existence before 2000) than in the new urban area, while SUHI values in the new area deteriorated
more rapidly. The changes in temperature in the functional zones were strongly synchronized with
the overall temperature changes in Xi’an, and the temperature differences increased linearly with the
overall temperature. The LST values in the four major historical heritage sites investigated in this
study were 2–8 ◦C higher than the background temperature and were decoupled from background
temperature changes. From the DTCA, we found the time periods of the thermal environment regime
changes for each functional zone or heritage site, which were largely the result of policy guidance.
Regional synchronization, site decoupling, and regime shifts in LST suggest opportunities for regional
planning and urban landscape optimization to reduce adverse effects of urbanization on the urban
environment, particularly in cities with rich historical heritage sites.

Keywords: urban thermal environment; urban heat island; regional synchronization; site decoupling;
time series
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1. Introduction

Urbanization is accelerating around the world. According to The Trends of World
Urbanization released by the United Nations Department of Economic and social Affairs
(UNDESA) in 2018, the global urbanization rate is expected to reach 68% by 2050, and
nearly 90% of all globalization will happen in Asia and Africa [1]. As a country with one
of the fastest urbanization rates in the world, China’s urbanization rate exceeded 60%
at the end of 2019 [2,3]. The expansion of urban construction land, the population, and
urban space leads to increases in artificial surfaces and decreases in natural surfaces [4,5].
Subsequently, the “urban heat island (UHI) effect” is formed, which introduces higher
temperatures in the urban area than its surroundings [6–8]. The high intensity of the UHI
effect has resulted in many negative impacts, such as impairing air quality, increasing
energy and water consumption, and affecting the physical and mental health of urban
residents [9–11].

In the process of urbanization, natural landscapes are transformed into a series of built-
up areas such as buildings, roads, and parking lots. Changes in land surface temperature are
related to the land use and land cover characteristics, which lead to strong heterogeneity in
the urban area [12,13]. Changes in the spatial patterns of the urban heat island phenomenon
during the process of urbanization have been identified at different spatial scales, including
for individual cities, urban agglomerations, and countries [14–18]. However, the heat
island effect is a phenomenon not only of high spatial heterogeneity but also of high
temporal variability [12]. Most previous studies were based on data acquired at a few
points in time, while few studies have analyzed the changes in time series to examine how
the land use and land cover evolution caused by continuous rapid urbanization affects
temperature trends [19–21]. It is necessary to clarify the temperature and SUHI changes in
continuous time series to identify the periods and reasons for the temperature changes in
different locations, and further to take targeted measures to reduce the adverse effects of
the deterioration of the urban thermal environment [22]. Therefore, more research needs to
focus on the characteristic evolution of heat islands over time [23].

Cities are not homogeneous but instead are highly heterogeneous, which is reflected
in the differences in population and the composition of the urban landscape in different
regions, resulting in uneven spatial distributions of temperature [24]. Therefore, research
on the urban thermal environment should focus on the temperature differences between
different regions, not just between urban and rural areas [24]. The establishment of func-
tional areas is a form of modern urban development. Such areas reflect the characteristics
of the city [25]. Different functional zones play different roles due to the different de-
velopment strategies, meaning the resulting ecological effects are also different [26–30].
Some studies have analyzed the impacts of urbanization on thermal conditions by dividing
the urban areas according to their functions, such as commercial districts, entertainment
areas, and industrial parks [24,30–33], which is certainly valuable for exploring the various
mechanisms operating in these functional areas. On the other hand, government agencies
also formulate urbanization development strategies and guidelines over larger spatial
scales [34,35], and few studies have investigated how the temperatures change in these
larger regions in continuous time series as urbanization progresses. Providing information
about the temporal changes in temperature in different functional zones and the changes
associated with the background climate can help urban planners and managers rationalize
their landscaping and regional planning approaches to improve the efficiency of urban
thermal management [36]. Therefore, more research should analyze the responses of the
thermal environment in urban functional zones to urban development.

The cultural value of preserving ancient sites has been recognized and is cherished
by governments globally, allowing tourists from all over the world to understand the
development of human civilization [37–39]. Under the influence of climate changes, such
as temperature and humidity changes, cultural heritage sites will be potentially exposed
to various unknown risks, posing new challenges to their protection [40]. Studies have
been conducted to understand the potential damage of climate change to cultural heritage
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in different countries [41–44]. The continuously deteriorating thermal environment poses
a challenge to the protection of cultural relics [40]. However, few studies analyze the
temperature changes in the sites area during urbanization, as well as their relationship
with the overall temperature of the city, which is necessary to provide support for the
formulation of site protection strategies.

In this study, we analyzed the SUHI effects in Xi’an, a famous ancient city in China,
from 2000 to 2018 using Moderate-Resolution Imaging Spectroradiometer (MODIS) land
surface temperature (LST) products in conjunction with land use and land cover data pro-
vided by the Resource and Environment Science and Data Center (http://www.resdc.cn)
(accessed on 5 March 2020). We analyzed the changes in the thermal environments in
functional zones and relic sites in the time series and studied their coupling relationships
with overall temperature changes in the whole study area. Combined with the existing
techniques and statistical methods, we developed a new approach to examine the synchro-
nization, decoupling, and regime shifts (and timing) of urban thermal conditions. The
purposes of this study were to: (1) explore the temporal evolution of urban heat island
intensity and surface temperature values in functional zones; (2) analyze the temperature
changes in functional zones or relic sites area with changes to the overall temperature of
the city; (3) detect the time periods when the temperature regimes of functional zones or
relic sites changed compared with the overall temperature regime of the city using the new
proposed method.

Specifically, the paper is organized in the following way. We first calculate the urban
heat island intensity and analyze the temporal changes. We then propose a new approach,
along with existing techniques and statistical methods, to examine the synchronization,
decoupling, and regime shifts (timing and magnitude) of thermal conditions of the city
and the areas of interest (main functional zones and relic sites area). Limitations and
opportunities are discussed at the end.

2. Materials and Methods
2.1. Study Area

Xi’an (33◦65′–34◦75′N, 107◦67′–109◦82′E), the capital of Shaanxi Province, is an im-
portant central city in Western China. It is located in the Guanzhong Plain, a broad basin
surrounded by the Qinling Mountains to the south and the Loess Plateau to the north. As
one of the important birthplaces of Chinese civilization and the Chinese nation, more than
a dozen dynasties established their capitals here. There are 72 imperial tombs and the ruins
of four major capitals. The cultural relics here are well preserved. Xi’an is characterized
by a temperate continental climate. The annual average temperature in Xi’an is about
13.0~13.7 ◦C and annual precipitation is approximately 552~719 mm [45]. According to the
administrative division, Xi’an is divided into 7 districts (Chang’An, Xincheng, Gaoling,
Hu, Lantian, Lintong, and Zhouzhi) (Figure 1). According to the urban plan, Xi’an can be
divided into four functional zones: (1) The central development zone (CDZ), dominated by
plains, containing 78% of the total population and 91% of the total GDP, including Xincheng
District. The vegetation coverage rate in this area is 1.8%, artificial surfaces account for
64.1% of the total area, and farmland accounts for 32.6%. (2) The key development zone
(KDZ), which is the area containing the technology industry, universities, and educational
institutions, including Chang’an, Lintong, and Gaoling Districts. The vegetation coverage
rate in this area is 26.6%, artificial surfaces account for 16.2% of the total area, and farmland
accounts for 56.6%. (3) The restricted development zone (RDZ), a transitional functional
zone between the economic development and ecological protection zones, including Hu
and Lantian Districts. The vegetation coverage rate in this area is 57.9%, artificial surfaces
account for 5.3% of the total area, and farmland accounts for 36.7%. (4) The ecological
functional zone (EFZ), which plays a significant role in sustainable development, including
Zhouzhi District. The vegetation coverage rate in this area is 75.3%, artificial surfaces
account for 3.8% of the total area, and farmland accounts for 20.7%.

http://www.resdc.cn
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Figure 1. Location of Xi’an city, China (a). Locations of the urban area and old urban area (b).
Locations of Xi’an’s four functional zones and four relics (c).

Xi’an has undergone rapid urbanization, coupled with its rich historical sites, making
it an ideal city for our study. In this study, we selected four relics or historical heritage
sites (i.e., Army Riffraff, Huaqing Palace, Epang Palace, and Daming Palace) to analyze the
changes in the thermal environment of the relics and their surroundings. The Terracotta
Army and Huaqing Palace are located in Lintong District (belonging to the KDZ), covering
areas of 0.01912 and 0.003 square kilometers, respectively, while Daming Palace and Epang
Palace are located in Xincheng District (belonging to CDZ), covering areas of 3.2 and 2.3
square kilometers, respectively.

2.2. Retrieval and Quantification of Land Surface Temperature Data

The LST data from July 2000 to September 2018 provided by the MODIS Land Surface
Temperature L3 product MOD11A2 Version 6 with a spatial resolution of 1 km (https:
\lpdaac.usgs.gov\products\mod11a2v006\) (accessed on 18 February 2020) were used in
this study. The maximum LST values during the daytime and nighttime for each summer
(July to September) from 2000 to 2018 at the pixel level were calculated in Google Earth
Engine (GEE) to eliminate the influence of cloud cover on image quality [46,47]. They
were categorized as low (less than the first quartile), sub-low (between the first and second
quartiles), sub-high (between the second and third quartiles), and high (between the third
and fourth quartiles) for the entire study period. The Lorenz curve is commonly used
to describe the inequality in the distribution of income among social classes or other
population units [48]. In this study, a spatial Lorenz curve was used to show the spatial
heterogeneity in distribution and the variation in area with daytime temperatures higher
than 35 ◦C in Xi’an.

https:\lpdaac.usgs.gov\products\mod11a2v006\
https:\lpdaac.usgs.gov\products\mod11a2v006\
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2.3. Identification of Urban Area and Calculation of Landscape Pattern Index and SUHI Values

Night light data are indicators of human activity, such as the population density,
economic activity, energy use, and CO2 emissions, and have been widely used in urban
mapping [49–52]. In this study, we used DMSP/OLS (https://www.ngdc.noaa.gov/eog/
dmsp/) (accessed on 18 February 2020) and VIIRS (https://www.ngdc.noaa.gov/eog/
viirs/) (accessed on 18 February 2020) night light data to define the boundaries in 2000 and
2015, respectively.

Combined with nighttime light data, we used land use data with a 1 km resolution
provided by the Resource and Environment Science and Data Center (http://www.resdc.cn)
(accessed on 5 March 2020) to extract urban areas. Specifically, the urban areas in this study
were defined as the impervious surfaces where the night light index values were higher
than 35 and 150, respectively, following [53]. This method can be used to estimate the spatial
extent of urbanization and can be consistently applied over large areas for intercomparison
across different urban settings. It has been widely used in urban area extraction [51,54].
The urban areas extracted in 2000 and 2015 were defined as the old urban area (OUA) and
urban area (UA), respectively. The new urban area (NUA) was derived by removing OUA
from UA. The rest of the study area except the UA was defined as the rural area.

A surface urban heat island, a manifestation of the urban thermal environment, is
defined as the LST difference between urban and rural areas [55–57]. In this study, the
mean LST in the rural area was calculated. SUHI values were calculated as the LST
differences between each pixel in the urban area and the mean value in the rural area. The
SUHI quartiles were categorized as low (less than the first quartile), sub-low (between the
first and second quantiles), sub-high (between the second and third quartiles), and high
(between the third and fourth quartiles). The mean SUHI values during the nighttime
and daytime each year were calculated in this study to analyze the changes in heat island
intensity over the years. In order to show the spatial distribution of SUHI, mean SUHI,
maximum SUHI, and coefficient of variation values over the years, these were calculated at
the pixel level.

Different landscapes have different abilities to reflect and absorb solar energy, while
different landscape patterns also greatly influence the land surface temperature [58]. In
this study, we used the 2000, 2005, 2010, 2015, and 2018 land use data at 1 km resolution
provided by the Resource and Environmental Science and Data Center to calculate the
landscape pattern index values. Pearson’s correlation analysis was used to investigate
the effects of the landscape pattern on the urban thermal environment. In this study, AI
(aggregation index), LPI (largest patch index), LSI (landscape shape index), AREA_MN
(mean patch area), and PLAND (percentage of landscape) values of green space, water, and
impervious surfaces [2,59] were selected as the landscape pattern indexes and calculated for
each 3 km × 3 km grid using Fragstats 3.3 with 8 cell neighborhoods [60]. AI indicates the
degree of aggregation. It equals the number of similar adjacencies divided by the theoretical
maximum possible number of similar adjacencies for that class. LPI is a dominance measure
that represents the proportion of the largest patch in a given land type occupying the entire
landscape area. AREAMN is the average area of specific landscape patches within an
analysis unit. PLAND represents the percentage of the total patch area of a given land type
within a given area.

2.4. Trend Analysis

A trend analysis was used to investigate the temporal SUHI trends. Linear regression
models and the Mann–Kendall method were used at each pixel, with the SUHI as the depen-
dent variable and year as the independent variable [61]. The slopes of the regression lines
and the Mann–Kendall method results were named as SUHI_trend and SUHI_M-K trend,
respectively, and their differences from zero were tested at α = 0.05 to examine whether the
variable changed significantly over time. For example, a positive SUHI_trend_day with
p < 0.05 means that SUHI during the daytime at a specific pixel increased significantly from
2000 to 2018.

https://www.ngdc.noaa.gov/eog/dmsp/
https://www.ngdc.noaa.gov/eog/dmsp/
https://www.ngdc.noaa.gov/eog/viirs/
https://www.ngdc.noaa.gov/eog/viirs/
http://www.resdc.cn
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2.5. Double Temperature Curve Approach (DTCA)

For each function area and heritage site area, we obtained the annual average temper-
ature and then calculated the LST difference using the city-wide average LST for the year.
We first analyzed the relationship between this difference and the average temperature of
the city. Then, a double temperature curve approach (DTCA) was proposed to reveal the
time-sensitive changes in temperature regimes. The horizontal axis of the curve represents
the cumulative mean LST of the whole study area, while the vertical axis represents the
cumulative LST difference for a functional zone or a heritage site area. Then, the breakpoint
and its standard deviation were automatically obtained from the piecewise regression
using the “segmented” package in R, which was used to determine the period when the
temperature of each functional zone deviated from the overall temperature of the city. If
the thermal environments in both the different zones or site areas and the whole study area
are well coupled without regime changes, the double temperature curve should form a
straight line. A non-straight line would indicate a temperature regime shift in the zone or at
the site area relative to the whole area. More graphic details are given in the results section.

3. Results
3.1. Spatiotemporal Changes in Urban Thermal Environments

The thermal environment in urban areas (UA) changed from 2000 to 2018, as shown
by the increases in SUHI values during daytime and nighttime (Figure 2). The SUHI overall
was lower at nighttime compared with the daytime. The mean SUHI values varied more
during the daytime compared with the nighttime across the years, particularly from 2000
to 2014.
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Figure 2. The mean SUHI values in urban area (UA) during the daytime and nighttime from 2000
to 2018.

The heat island phenomenon was more intense in the OUA (old urban area) than NUA
(new urban area), although the latter intensified more rapidly (Figure 3). From 2000 to 2014,
areas with SUHI values higher than the “sub-low” value accounted for less than 25% of the
new urban area, while these SUHI levels accounted for more than 50% in the old urban area
(Figure A1). Since 2016, SUHI values in the urban area have increased sharply, which was
more pronounced in new urban area, shown by the proportion of new urban areas with
SUHI values higher than “sub-low” increasing more. Compared with the old urban area,
the area with increased heat island intensity accounted for a larger proportion in the new
urban area (Figure 3a–d). The heat island during night showed greater increases in area
than during the day. The heat island intensity in the old urban area was higher than that in
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the new urban area, as shown by the maximum and mean SUHI values (Figure 3e–h). In
addition, the heat island intensity of the old urban area had lower coefficients of variation
(CV) and remained higher than that of the new urban area (Figure 3i,j). In other words,
the temporal trends and maximum, mean, and CV values of the SUHI all showed that the
SUHI in the old urban area was sustained, with no trend changes and a low CV during the
study period, while the SUHI in the new area increased rapidly.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

 

Figure 3. The spatial distribution of SUHI_trend (a,b), SUHI_M-K trend (c,d), max (e,f), mean (g,h), 

and CV (i,j) values of the SUHI during daytime and nighttime in urban areas, including the new 

urban area (NUA) and the old urban area (OUA). The SUHI_trend plots only show the pixels that 

underwent significant changes, while red indicates a positive trend. 

  

Figure 3. The spatial distribution of SUHI_trend (a,b), SUHI_M-K trend (c,d), max (e,f), mean (g,h),
and CV (i,j) values of the SUHI during daytime and nighttime in urban areas, including the new
urban area (NUA) and the old urban area (OUA). The SUHI_trend plots only show the pixels that
underwent significant changes, while red indicates a positive trend.

3.2. LST Variations across Functional Zones

The temperature structures and compositions of LST categories in each functional zone
changed with time (Figure 4). The CDZ had the highest temperature values, followed by
the KDZ and RDZ, while the EFZ had the lowest temperature values. During the daytime,
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the temperatures across almost all of the CDZ were continuously at “sub-high” and “high”
levels, except in 2003, 2007, and 2009, which was mainly caused by abundant and frequent
precipitation (Figure 4b). For example, in the summer of 2007, there were 23 extreme
precipitation events; that is, precipitation events with a daily precipitation volume greater
than 50 mm. This frequency was higher than the average. Almost 75% of the KDZ had
“sub-high” or “high” temperatures, except in 2003, 2007, and 2009, while the temperatures
in RDZ were generally lower (Figure 4c,d). In the EFZ, the area with temperatures higher
than the “sub-high” level accounted for less than 25% of the total area (Figure 4e). In colder
years, such as 2003, 2010, and 2011, the temperatures in the EFC were all lower than the
“sub-high” level. At night, in the CDZ, the proportion of the area with temperatures higher
than the “sub-high” level was greater than 25% (Figure 4g). Since 2012, the proportion of
the area with “high” temperatures has continuously been greater than 75% in the CDZ.
The proportion of the area in the KDZ with “high” temperatures sharply increased in 2012
(Figure 4h). On the whole, the temperature conditions worsened at night, with larger areas
experiencing “high” temperatures, especially in the CDZ and KDZ. The “high” temperature
distributions in the RDZ and EFZ were relatively stable before 2012, then the distribution
ranges became significantly larger (Figure 4i,j). In addition, the extreme high temperatures
in various areas at night in 2017 were due to the heat wave that year.
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Figure 4. The cumulative percentages of areas in different land surface temperature categories (low
(less than the first quartile), sub-low (between the first and second quantiles), sub-high (between the
second and third quartiles), and high (between the third and fourth quartiles)) in the four functional
districts and the whole city during the daytime and nighttime from 2000 to 2018, respectively.

On the whole, the distributions of the area with relatively high temperatures in the
four functional zones became more imbalanced over the years and the areas with relatively
high temperatures were increasingly concentrated in the CDZ and KDZ, as shown by the
Lorenz curves moving farther away from the standard line over time (Figure 5). When the
slope corresponding to the functional zone is greater than 1, this means that the percentage
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of the high-temperature area of the zone out of the total high-temperature area is greater
than the percentage of the zone in the entire area, while the thermal environment of the
functional zone is more severe, such as in the CDZ and KDZ. Figure 6 shows that the
slopes in the CDZ were the largest and much higher than 1, the slope of the standard line,
meaning that the thermal environment in the CDZ is the most serious. The proportion of
high temperature areas in the RDZ are comparatively reasonable, with a slope of nearly
1. For Ethe FZ, the ratio of its high-temperature area to the total high-temperature area
becomes smaller each year, and the slope is always less than 1.
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Figure 5. Spatial Lorenz curves of Xi’an’s four functional zones in 2000, 2005, 2010, 2015, and
2018. The standard line indicates an equal distribution of areas with relatively high temperature
proportions in each district. The closer the spatial Lorenz curve is to the standard line, the more
equally distributed the area is with relatively high temperatures. On the contrary, a departure from
the standard line represents inequality in the area with a relatively large temperature distribution.
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the mean LST for Xi’an (a,b) and double temperature curves in cumulative values of LST differences
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confidence range of the breakpoint.

The temperature differences between the functional zones increased as the overall
temperature of the city rose, while the temperature difference during the daytime was
greater than that at night (Figure 6a,b). The temperature difference between CDZ and
the whole city was about 5 ◦C; with the increase in overall temperature, the temperature
difference increased as well. In the KDZ, for every 1 ◦C increase in the overall temperature,
the temperature differences between the KDZ and the overall temperatures during the
day and night increased by 0.31 ◦C and 0.12 ◦C, respectively, as shown by the slopes of
their relationships (Table A1). The mean temperature in the RDZ (restricted development
zone) was the closest to the mean temperature of the whole city, the temperature difference
was close to zero. The temperature in the EFZ (ecological functional zone) was lower than
that of the whole city. For every 1 ◦C increase in overall temperature, the temperature
differences between the EFZ and the whole city decreased significantly by 0.36 ◦C and
0.21 ◦C during the day and night, respectively.

The double temperature curves clearly showed that the relationships between the
cumulative average temperature in the study area and the cumulative temperature differ-
ences between the CDZ, EFZ and study area changed during the study period (Figure 6c,d).
Specifically, the change periods of the CDZ and RDZ were 2010–2012 and 2006–2010, respec-
tively; that is, after the period, the trend for warming in the CDZ and RDZ was stronger
than before. For the EFZ, the period of change was 2007–2009, and the trend of EFZ cooling
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has been stronger since then. At night, the average temperature for the cumulative study
area and the temperature difference between the CDZ and study area increased during
2004 to 2005. The warming trend of the RDZ occurred between 2011 and 2013, and the
cooling trend of the EFZ occurred between 2012 and 2013. Temperatures in the KDZ were
well synchronized with the average temperature during the study period, without any
indication of temporal shifts.

3.3. Changes in Thermal Environment of Relics in the Process of Urban Development

The temperature in Epang Palace was the highest, followed by Daming Palace, the
Army Riffraff, and Huaqing Palace (Figure 7a). The temperature differences between the
Daming Palace, Epang Palace, and the whole city were the largest at about 8 ◦C, followed
by the Army Riffraff at about 3 ◦C, while the temperature difference between Huaqing
Palace and the whole city was the smallest at about 2 ◦C (Figure 7b). The temperatures
at these sites area were decoupled from the changes in citywide average temperatures
as the regression slopes between the temperature differences and the average were not
significantly different from zero (Table A1). In other words, the temperature differences
were not sensitive to the background temperature.
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Figure 7. The mean LST values of different relics (a). The relationships between LST differences
between different sites and the whole city with the mean LST for Xi’an (b). Double temperature curves
for cumulative values of LST differences and the mean LST of Xi’an (c). The grey area represents the
95% confidence range of the breakpoint.

The double temperature curves showed that temperatures at the four heritage sites
increased gradually over time compared with the citywide average temperature (Figure 7c).
For the Army Riffraff and Huaqing Palace, the systematic deviations from the citywide
average temperature started in 2006 and 2012, respectively. In Daming Palace, the deviation
process started in 2003, while that at Epang Palace appeared in 2007; that is, after these
periods, the temperature differences between these sites and the study area increased. The
annual average temperature difference at each site changed significantly before and after
the given site-specific years. For Daming Palace, the average annual temperature difference
was about 7.65 ◦C before 2003. Since 2006, the average annual temperature difference
increased by 0.33 ◦C to about 7.98 ◦C. For Epang Palace, the average annual temperature
difference before 2007 was about 6.92 ◦C, which increased to 9.55 ◦C during the subsequent
period. For the Terracotta Warriors, the average annual temperature difference before 2006
was about 4.25 ◦C, then after 2010 it decreased to 3.5 ◦C. For Huaqing Palace, the average
annual temperature difference before 2012 was about 3.56 ◦C, which then increased by
about 1.68 ◦C.

3.4. Correlation of Landscape with Thermal Environment

The results of the correlation analysis show that both during day and night, green
space has the greatest impact on temperature, followed by impervious surfaces, shown
by the higher absolute values of the correlation coefficients of green space compared
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with the other two (Table 1). In addition, the green space is always negatively correlated
with temperature, while the impervious surfaces are always positively correlated with
temperature. For green space, its effect on temperature at night is less than that during the
day, which is the opposite of the impervious surfaces. For the same land type, PLAND has
the greatest impact, followed by LPI and AREA_MN. It can be concluded that the more
concentrated the green space, the larger the patch area, the simpler the shape, and the better
the cooling effect. The more dispersed the impervious surfaces and the smaller the patch
area, the less the effect on the temperature.

Table 1. Coefficients from the correlation analysis, with the AI, LPI, LSI, AREA_MN, and PLAND
values of different land types as the predictors and LST_day/LST_night ratio as the response variable.
Note: * represents p < 0.05.

2000 2005 2010 2015 2018

Day

AI_green space −0.521 * −0.548 * −0.564 * −0.566 * −0.561 *
AI_water 0.05 0.084 * −0.083 * 0.053 0.089 *
AI_impervious surface 0.039 * −0.018 0.023 0.128 * 0.208 *
AREA_MN_green
space −0.703 * −0.73 * −0.724 * −0.736 * −0.723 *

AREA_MN_water 0.025 −0.039 −0.123 * −0.037 −0.044
AREA_MN_impervious
surface 0.318 * 0.137 * 0.075 * 0.368 * 0.549 *

LPI_green space −0.732 * −0.79 * −0.767 * −0.786 * −0.776 *
LPI_water 0.011 −0.045 −0.148 * −0.043 −0.055
LPI_impervious surface 0.319 * 0.162 * 0.084 * 0.402 * 0.573 *
LSI_green space 0.457 * 0.411 * 0.467 * 0.443 * 0.436 *
LSI_water −0.148 * −0.154 * 0.006 −0.04 −0.119 *
LSI_impervious surface 0.033 * 0.175 * 0.057 * 0.034 * −0.074 *
PLAND_green space −0.745 * −0.821 * −0.786 * −0.811 * −0.804 *
PLAND_water −0.001 −0.046 −0.15 * −0.041 −0.057
PLAND_impervious
surface 0.324 * 0.188 * 0.093 * 0.421 * 0.588 *

Night

AI_green space −0.462 * −0.46 * −0.484 * −0.45 * −0.481 *
AI_water 0.188 * 0.17 * 0.159 * 0.064 * 0.191 *
AI_impervious surface 0.076 * 0.116 * 0.123 * 0.15 * 0.222 *
AREA_MN_green
space −0.641 * −0.631 * −0.648 * −0.611 * −0.63 *

AREA_MN_water 0.188 * 0.147 * 0.159 * 0.091 * 0.162 *
AREA_MN_impervious
surface 0.418 * 0.518 * 0.456 * 0.341 * 0.605 *

LPI_green space −0.673 * −0.669 * −0.687 * −0.637 * −0.669 *
LPI_water 0.191 * 0.148 * 0.165 * 0.076 * 0.182 *
LPI_impervious surface 0.443 * 0.537 * 0.477 * 0.354 * 0.627 *
LSI_green space 0.376 * 0.363 * 0.376 * 0.381 * 0.376 *
LSI_water −0.184 * −0.176 * −0.154 * −0.045 −0.14 *
LSI_impervious surface 0.069 * −0.001 0.017 −0.071 * −0.084 *
PLAND_green space −0.688 * −0.688 * −0.707 * −0.65 * −0.689 *
PLAND_water 0.198 * 0.156 * 0.173 * 0.075 * 0.19 *
PLAND_impervious
surface 0.46 * 0.55 * 0.492 * 0.358 * 0.643 *

4. Discussion
4.1. Statistical vs. Double Temperature Curve Analysis

In this study, we proposed the double temperature curve approach (DTCA) to analyze
the timing and magnitude of relative changes in temperature in an area in reference to
another area. Differing from the conventional statistical analysis on temporal changes of in-
dividual trends (Figure 6a,b and Figure 7b), the DTCA compares two paired trends together
(Figure 6c,d and Figure 7c). Consequently, the DTCA, an addition to the conventional trend
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analysis, is able to reveal whether the relationship between the two concurrent temporal
trends remains stable or not. A changed relationship suggests that the temporal trend for
one entity has deviated from the other and usually indicates systematic changes in one or
both of the individual trends. The DTCA is similar to the double mass curve approach that
has been frequently used in hydrology to detect systematic shifts in relationships between
hydrologic processes, such as precipitation and water yield [62–64]. Together with the
statistical analysis, the DTCA is capable of identifying systematic shifts in the temperature
relationship between two entities.

The statistical analysis in this study shows strong synchronization of the temperature
changes in the functional zones with those in Xi’an (Figure 6a,b) and decoupled temper-
ature changes at the four heritage sites from those in Xi’an (Figure 7b). The statistical
relationship between the temperatures in functional zones and Xi’an reveals a spectrum
of LST synchronization between functional zones and Xi’an, ranging from subdued (i.e.,
lower temperature increase rate than the average for Xi’an, such as the EFZ) to enhanced
zonal warming (i.e., higher temperature increase rate than the average for Xi’an, such as
the CDZ). Similar temperature synchronization trends have also been observed in a few
studies [22,65]. Surprisingly, contrary to the regional temperature synchronization, the
temperature differences between the relics and the whole city had no significant relation-
ship with the changes in overall temperature, meaning they were decoupled. Although
the temperatures in the historical sites were consistently higher than the overall or back-
ground temperature of the study area, their LST differences with the overall background
temperature did not vary but rather remained relatively stable for site-specific values.

On top of these statistical results, the DTCA further reveals that some systematic
shifts have taken place in the temperature relationships between these functional zones
and the entirety of Xi’an (Figure 6c,d). In fact, it has been getting hotter since 2010 (i.e.,
CDZ), although the temperature increases have been more subdued since 2007 (i.e., EFZ).
The DTCA results from the heritage sites were even more surprising, as the thermal
environments at all four sites area have actually been deteriorating starting from site-
specific years (Figure 7c). This time-sensitive information is critical for the formulation of
proper management plans for the heritage sites, but could not be revealed by the traditional
regression analysis. The DTCA and associated findings strongly highlight the importance of
and need for continuous long-term studies on the changes in urban thermal environments.

4.2. Importance of Studying Temporal Changes

Several studies have indicated that long-term series studies can explain features that
short-term studies cannot reveal [12,66,67]. First, the pronounced interannual variability
rates in the SUHI, which varied from 5 to 9 ◦C and 4 to 6.5 ◦C during the daytime and
nighttime, respectively (Figure 2), could not be adequately manifested in the short term.
A sudden rise or drop in temperature in a single year is likely to be the result of heat
waves or extreme weather, which greatly interfere when studying the impacts of urban
developments on the urban thermal environment [12,19]. Therefore, the overall increasing
trends for the SUHI can be very different if only a few years are analyzed, given the large
interannual variability. Furthermore, some important but time-specific characteristics of
SUHI/LST phenomena during the study period (e.g., the sudden low SUHI in 2003 and
sudden high SUHI in 2005) cannot be found (Figure A1). In this study, the research on
the continuous time series from 2000 to 2018 avoided contingency results for selected time
periods or data. Other studies also reported that the study of continuous time series can
intuitively discover which years are hotter than others and analyze whether such thermal
phenomena are caused by anthropogenic or natural climate influences [19,21,68].

The importance of time series research is not only reflected in correctly revealing
the trends or interannual variability, but also in portraying the SUHI/LST structure (e.g.,
area fractions of high, medium, and low SUHI/LST values). The temperature structure
of the entire study area is constantly changing over time [32,69]. Using SUHI/LST values
collected during the whole study period and classifying the LST/SUHI data into thermal
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environment levels or quantiles can vividly depict the structural evolution of tempera-
ture regimes over time (Figures 4 and A1), which calls for long-term data. The quantile
classification using data from the entire study period provides a unified framework for
comparative analyses of multi-year data to correctly reflect the inter-annual differences and
trends and to avoid the interference of climatic extremes. According to the Lorenz curves,
it can be seen that the equilibrium degrees of the high temperature distributions in each
functional zone show obvious differences over time as well (Figure 5). This phenomenon
cannot be reflected in short-term research [70]. The results of research over a year or a
several years will inevitably be accidental and cannot reflect the overall trends for surface
temperature changes over time, making continuous time series research necessary [12,28].

4.3. Urban Development Zoning and Thermal Environment Changes

By studying how the temperature differences between each functional zone and the
study area change with the overall temperature, this study found that as the overall tem-
perature rises, the temperature difference gradually increases. This is consistent with
many studies showing that urbanization enhances the urban heat island effect [65,68,71],
which means that changes in the urban thermal environment are closely related to urban
development. Urban functional zones are the basic units of urban planning, which are
defined as areas with similar social and economic functions [36]. Urban thermal environ-
ments are strongly affected by the division of urban functional zones, the expansion of
impervious surfaces, and the landscape composition [24,32,33,72]. Different functional
zones have different development directions [25]. The CDZ, the key area for the city’s
economic development, is dominated by plains, containing 78% of the total population. It
contains the most developed transportation network and the most abundant development
resources in the city and accounts for 91% of the total GDP. As a functional transition area
between the ecological functional zone and the economic development zone, the restricted
development zone (RDZ) is relatively fragile ecologically and worthy of protection. The
mountainous EFZ is the mostly sparsely populated area, accounting for only 4% of the total
population, with a focus on water conservation and urban ecological protection, providing
ecological support for the sustainable development of the city; consequently, this area is
cooler than the rest of the city [73,74].

Under the functional zoning approach, the temperatures in the CDZ and KDZ were
the highest, followed by the RDZ and EFZ (Figure 4). As the overall temperatures increased,
the temperature differences between the hot zones (such as the CDZ and KDZ) and the cold
zones (such as the EFZ) expanded. Therefore, improving the thermal environment in Xi’an
can be achieved by transforming the landscape patterns of the hotter zones such as the
CDZ and KDZ, as shown by the strong impacts on landscape features, and strengthening
the protection of the colder zones such as the EFZ, supporting previous findings [24,31,32].
In the case of heatwaves similar to those in 2011 and 2017, the vulnerable populations in
the hot zones, such as the elderly and children, may be moved temporarily to the colder
zones [75], because the temperature difference between the hot and cold zones can be at
least 10 ◦C.

From the DTCA, we found periods of change in the thermal environments of each
functional zone, which we believe were the result of the policy guidance in each zone.
The policy approaches in these zones differ, which makes the development strategies
for the functional zones different and further leads to different changes in their thermal
environments [24,76]. In the same functional zone, the results of the DTCA during the night
and day are different, which may be due to the different effects of various influencing factors
and urban characteristics on LST values during the day and night [77–80]. Specifically,
since 2010, reconstruction of the CDZ’s old city has accelerated; large-scale urban villages
have been demolished; and a road network around the new administrative center, railway
passenger stations, university towns, and industrial parks has been constructed. Changes
in industrial locations have a significant impact on the spatial distribution of the urban
thermal environment [81]. Since 2006, the RDZ has been vigorously developing in industrial
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areas, with large-scale road network and industrial park construction projects being carried
out, which are considered to be the main driving forces of urban high temperature [81]. The
priority of the ecological policy was changed from “sustain economic growth and poverty
reduction” to “sustainable development and a green economy” [82]. Since 2007, the EFZ
has focused on ecological and environmental protection, promoting tourism development.
Effective ecological protection has enhanced the regional forest coverage rate and tree
quality, playing a key role in the regional thermal environment [83,84].

4.4. Temperature Decoupling and the Management of Relics

Cultural relics are important for human cultural exchange and inheritance [37,38].
Although the exact consequences of SUHI differences in the order of those observed relevant
to relic preservation is currently unknown, more research and precautious measurements
for protection should be considered. Many studies have shown that climate change is
a major threat to the protection of cultural relics [40,43,85]. Understanding the thermal
environmental changes of the relics is critical in order to find adequate protection measures
to avoid drastic thermal changes, as elevated temperatures pose challenges to the protection
of the relics and the comfort of tourists [40,42]. Therefore, future research should investigate
the temperature changes for all relics in the city, which could provide a basis for site-specific
protection and management.

This study found that the temperatures at the relic sites were decoupled from the
average temperature in Xi’an. In other words, there was no correlation between the
temperatures at relic sites and the overall temperature, and the temperatures at the different
relic sites were consistently higher than the mean temperature for the entire study area
(Figure 7). Traditional ancient building materials have large thermal inertia, strong heat
absorption and heat storage capabilities [86,87]. In addition, the old site area is generally
characterized by low building heights and relatively open spaces, leading to the absorption
of more solar radiation [88]. At the same time, with the rapid development of modern
urbanization, the sites have been slowly surrounded by built-up areas that block the
near-surface air advection and reduce wind speeds. These factors together mean the sites
are isolated from the city as a whole [87,89], leading to the decoupling of their thermal
environment from the overall thermal environment of the city.

From the DTCA results, we found that the thermal environment of each site de-
teriorated during site-specific periods. These changes might be related to site-specific
management and innovation activities. For example, in 2006, a large cemetery was dis-
covered in the Army Riffraff area of Xi’an, which is the “second largest tomb in China”
that has been unearthed so far. From 2002 to 2007, the archaeological team started the
archaeological work on the Epang Palace site. Subsequent renovations, the construction
of the archaeological museum, and the use of temperature control equipment inside the
museum have had adverse effects on the thermal environment [38,90,91]. Around 2012,
the scenic spots in the Huaqing Palace were successively reconstructed, and the area was
continuously expanded. The Daming Palace area is located at the junction of the north
and south of Xi’an. In 2003, the urban development center of the city began to move
north, which accelerated the erosion and destruction of the area. In order to protect the
cultural heritage, a masonry restoration and protection project was carried out, which was
completed in 2005. The deterioration of the thermal environments in the four relic sites
area detected in our study suggest that it is necessary to investigate whether the thermal
conditions of all important relics have changed not only in Xi’an, but also in other places,
in addition to understanding their driving forces and the consequences of these changes
in the management and protection of this cultural heritage. Amelioration strategies and
procedures should be put in place accordingly by local management authorities to avoid or
reverse the deterioration of the thermal environments.

The decoupling of the temperature differences between relics and the city has im-
portant guiding significance for the control of the temperatures of the relic sites. Many
studies have found that the thermal environment can be improved by changing the internal
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landscape pattern [2,72,92,93]. This study shows that green space has a significant negative
correlation with temperature. Xi’an has a dry climate and few water bodies, which makes
green space a key component of the regional cooling [94,95]. We found that a higher per-
centage of green space, a larger green patch area, and a more concentrated green patch can
lead to a better cooling effect, consistent with previous studies [2,96]. Therefore, the internal
high temperature can be alleviated by increasing the concentration and proportion of green
space in the heritage park and reducing the LSI (landscape shape index) of the internal
landscape. It should be noted that in terms of mitigating the temperature by changing the
landscape configuration, there is a city-dependent optimal efficiency threshold [53,97,98].
To achieve the cooling effect most efficiently, further research is needed in Xi’an.

4.5. Limitations and Opportunities

MODIS data have been widely used in studying urban thermal environments, espe-
cially in terms of the temporal changes, due to the high temporal resolution (day) and large
coverage area [45,99]. In contrast, remote sensing data at higher spatial resolutions usually
have a low coverage area over time, presenting challenges in detecting temporal changes
in temperature because of the limited number of valid data points [100–102]. Neverthe-
less, MODIS data might be too coarse (pixel size 1 km2) to accurately reflect the temporal
changes at the historical sites smaller than 1 km2 (e.g., the Terracotta Army and Huaqing
Palace). Temperature changes detected in the small relic sites in our study should represent
temperature changes in the 1 km2 areas surrounding the relics, meaning they should only
be regarded as a warning sign of likely temperature changes at the relic sites. More detailed
investigations should be conducted using high-resolution remote sensing data or ground-
based measurements to verify the presence of temperature changes at the warning sites.
In essence, the approach presented in this study provides an effective tool for screening
out the relics that might have experienced temperature changes among the many historical
sites in large cities, providing essential information to relevant management agencies for
further investigation and adaptive management. In this study, the thermal environments
of different regions were analyzed based on the administrative division of the city. Future
research can consider more factors for regional divisions, such as building height, building
density, and landscape distribution [103]. In addition, changes in land cover, including
changes in cover types and landscape patterns, affect temperature [58,92]. Further research
can analyze the impacts of land cover changes on the urban thermal environment, which
would require more comprehensive and higher resolution land use data.

5. Conclusions

In this study, we proposed the double temperature curve approach (DTCA) to detect
the timing and magnitude of thermal environment changes in one region or site in reference
to another. The DTCA is capable of revealing whether systematic changes in one or both of
the individual temperature trends have occurred. After applying the DTCA to four relics
in Xi’an, we found systematic shifts in temperature trends at these sites compared with
the overall temperature trend in Xi’an, which raised alarms to the relevant management
agencies in the city. The DTCA approach can readily be applied in multi-city and cross-
year studies to detect changes in the spatial and temporal dynamics of the urban thermal
environment. In additional to proposing a new approach, this study also analyzed the rela-
tionships between the thermal environments of different regions and sites (e.g., functional
zones and relic sites) and the overall thermal environment of the city. We found that the
temperature differences between the functional zones and the city gradually increased with
the increase in the overall temperature of the city. In addition, the temperatures at the relic
sites were decoupled from the background temperature changes.
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Appendix A

Table A1. Slope and intercept values of the fitting lines of LST differences and mean LST values of
the whole study area. Note: * represents p < 0.05.

Slope Intercept

Daytime

CDZ 0.23 −1.31
KDZ 0.31 * −7.20 *
RDZ −0.02 0.11
EFZ −0.36 * 7.74 *

Nighttime

CDZ 0.36 * −3.51
KDZ 0.12 * −0.97
RDZ −0.01 −0.16
EFZ −0.21 * 2.19 *

Relics

Army Riffraff 0.11 −0.42
Huaqing Palace −0.09 5.32

Epang Palace 0.38 −4.05
Daming Palace 0.12 4.79
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