Residential Energy-Related CO2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi
<p>Location of Jiangxi.</p> "> Figure 2
<p>Trends of residential energy-related CO<sub>2</sub> emissions in Jiangxi urban and rural regions.</p> "> Figure 3
<p>Changes of residential energy-related CO<sub>2</sub> emissions structure in Jiangxi urban and rural regions from 2000–2017. (<b>a</b>) Urban. (<b>b</b>) Rural.</p> "> Figure 4
<p>Changes of residential energy-related CO<sub>2</sub> emissions per capita in Jiangxi urban and rural regions from 2000–2017.</p> "> Figure 5
<p>Factors affecting the residential energy-related CO<sub>2</sub> emissions in Jiangxi urban and rural regions from 2000–2017. (<b>a</b>) Urban. (<b>b</b>) Rural.</p> "> Figure 6
<p>Multiplicative decomposition results of the residential energy-related CO<sub>2</sub> emissions in Jiangxi urban and rural regions in the four stages (<b>a</b>) 2000–2005. (<b>b</b>) 2005–2010. (<b>c</b>) 2010–2015. (<b>d</b>) 2015–2017.</p> "> Figure 7
<p>Trends of consumption expenditure, residence expenditure and energy demand in Jiangxi over the study period; Energy demand denotes the share of residence expenditure to consumption expenditure.</p> "> Figure 8
<p>Trends of urban and rural population in Jiangxi over the study period.</p> "> Figure 9
<p>Energy price in urban and rural Jiangxi.</p> "> Figure 10
<p>Energy types of power generation in Jiangxi.</p> ">
Abstract
:1. Introduction
2. Methods and Data Description
2.1. Estimation of the Residential Energy-Related CO2 Emissions
2.2. Decomposition Method
2.3. Decoupling Model
2.4. Data Description
3. Results and Discussion
3.1. Overview the Situation of Residential Energy-Related CO2 Emissions in Urban and Rural Jiangxi
3.1.1. The Trends of Residential Energy-Related CO2 Emissions
3.1.2. The Changes of Residential Energy-Related CO2 Emissions Per Capita
3.1.3. Analysis on the Residential Energy-Related CO2 Emissions Structure
3.2. Decomposition Analysis of Residential Energy-Related CO2 Emissions at Four Stages
3.2.1. Consumption Expenditure Per Capita (CE)
3.2.2. Energy Demand (ED)
3.2.3. Population (P)
3.2.4. Urbanization (U)
3.2.5. Energy Structure (ES)
3.2.6. Energy Price (EP)
3.2.7. Carbon Emission Coefficient (K)
3.3. Decoupling Analysis of Residential Energy-Related CO2 Emissions at Four Stages
4. Conclusions and Policy Implications
4.1. Main Conclusions
4.2. Policy Implications
5. Limitations and Further Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
IPCC | Intergovernmental Panel on Climate Change |
OECD | Organization for Economic Co-operation and Development |
SDA | Structural decomposition analysis |
IDA | Index decomposition analysis |
LMDI | Log-mean Divisia index |
AWD | Adaptive Weighting Divisia |
IPAT | Impact of Population, Affluence, and Technology |
GDP | Gross domestic product |
FYP | Five-Year Plan |
RMB | RenMinBi |
SCE | Standard coal equivalent |
E | Residential energy consumption |
C | Residential energy-related CO2 emissions |
K | Carbon emission coefficient |
ES | Energy structure |
EP | Energy price |
ED | Energy demand |
CP | Consumption expenditure per capita |
U | Urbanization |
P | Population |
Appendix A
Year | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
Coefficient | 6.493 | 7.385 | 6.886 | 7.117 | 7.880 | 7.992 | 6.958 | 7.037 | 6.909 |
Year | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
Coefficient | 6.640 | 6.621 | 6.623 | 5.561 | 5.525 | 5.265 | 4.898 | 4.590 | 4.844 |
Fuel Type | Carbon Content | Carbon Oxidation | Net Calorific Value | Emission Coefficient |
---|---|---|---|---|
Unit: (kg/GJ) a | Unit: (%) a | Unit: (TJ/Gg) a | Unit: (t-CO2/t) | |
Raw coal | 25.8 | 100 | 20.9 | 1.977 |
Briquettes | 26.6 | 100 | 17.6 | 1.717 |
Coke oven gas | 12.1 | 100 | 16726 b | 7.421 c |
Other gases | 12.1 | 100 | 16726 b | 7.421 c |
Gasoline | 20.2 | 100 | 43 | 3.185 |
Kerosene | 19.5 | 100 | 44.1 | 3.153 |
Diesel oil | 20.2 | 100 | 43 | 3.185 |
Lubricants | 20.0 | 100 | 40.2 | 2.948 |
Other petroleum products | 20.0 | 100 | 40.2 | 2.948 |
Liquefied petroleum gas | 17.2 | 100 | 47.3 | 2.983 |
Natural gas | 15.3 | 100 | 38931 b | 21.84 c |
Liquefied natural gas | 17.5 | 100 | 44.2 | 2.836 |
Appendix B
Periods | ||||||||
---|---|---|---|---|---|---|---|---|
2000–2001 | −107.69 | 14.76 | 54.10 | −289.23 | 31.01 | 33.70 | 43.79 | 4.17 |
2001–2002 | 137.97 | −9.21 | −21.85 | 221.16 | −160.11 | 75.83 | 27.90 | 4.25 |
2002–2003 | 79.07 | 5.58 | 32.87 | −151.71 | 108.15 | 46.53 | 33.12 | 4.52 |
2003–2004 | −263.66 | 21.64 | 59.71 | −308.42 | −102.68 | 40.65 | 22.06 | 3.38 |
2004–2005 | 162.23 | 3.89 | 46.39 | −21.44 | 50.22 | 61.27 | 18.98 | 2.92 |
2005–2006 | 14.70 | −44.88 | −18.83 | −25.26 | 30.59 | 46.48 | 23.04 | 3.56 |
2006–2007 | 13.93 | 3.77 | 2.03 | −0.89 | −101.78 | 90.94 | 16.07 | 3.79 |
2007–2008 | 4.81 | −6.62 | −10.58 | −90.45 | 25.43 | 61.47 | 21.52 | 4.05 |
2008–2009 | 33.44 | −14.68 | 5.27 | −41.69 | −9.63 | 64.78 | 25.15 | 4.24 |
2009–2010 | 95.26 | −1.10 | −39.05 | 6.03 | 55.29 | 56.48 | 13.19 | 4.42 |
2010–2011 | 61.74 | 0.14 | 3.04 | 24.16 | −71.44 | 74.54 | 26.97 | 4.32 |
2011–2012 | −15.90 | −79.59 | 41.95 | −49.91 | −24.32 | 63.81 | 29.53 | 2.62 |
2012–2013 | 120.53 | 59.95 | −71.47 | −721.79 | 762.32 | 65.28 | 22.96 | 3.28 |
2013–2014 | 30.29 | −24.03 | −20.46 | 12.03 | −44.37 | 79.17 | 24.06 | 3.90 |
2014–2015 | 18.77 | −35.16 | 17.92 | −46.60 | −24.62 | 80.81 | 22.25 | 4.17 |
2015–2016 | 49.32 | −32.32 | 14.89 | −39.66 | 21.32 | 52.90 | 26.70 | 5.49 |
2016–2017 | 137.65 | 30.07 | −1.64 | −88.95 | 76.72 | 86.19 | 28.61 | 6.64 |
2000–2005 | 7.91 | 36.66 | 171.22 | −549.64 | −73.42 | 257.97 | 145.86 | 19.25 |
2005–2010 | 162.15 | −63.51 | −61.16 | −152.25 | −0.11 | 320.15 | 98.97 | 20.06 |
2010–2015 | 215.42 | −78.69 | −29.02 | −782.11 | 597.57 | 363.61 | 125.77 | 18.29 |
2015–2017 | 186.98 | −2.25 | 13.25 | −128.61 | 98.05 | 139.09 | 55.32 | 12.14 |
2000–2017 | 572.46 | −107.79 | 94.29 | −1612.61 | 622.09 | 1080.82 | 425.92 | 69.74 |
Periods | ||||||||
---|---|---|---|---|---|---|---|---|
2000–2001 | 115.71 | 7.00 | −7.15 | 82.19 | 29.35 | 11.99 | −9.99 | 2.33 |
2001–2002 | 40.89 | −4.12 | −18.94 | 68.94 | −11.64 | 12.55 | −8.87 | 2.97 |
2002–2003 | 68.72 | 2.41 | 23.17 | 49.52 | −25.06 | 26.52 | −10.83 | 2.99 |
2003–2004 | 22.88 | 12.32 | 41.35 | 26.57 | −96.27 | 46.15 | −10.15 | 2.92 |
2004–2005 | 112.61 | 2.58 | 1.92 | −31.81 | 78.12 | 69.63 | −10.72 | 2.89 |
2005–2006 | −29.35 | −27.58 | 32.88 | −99.08 | 30.99 | 43.95 | −14.09 | 3.57 |
2006–2007 | 26.62 | 2.46 | 13.72 | −106.71 | 67.78 | 55.39 | −9.48 | 3.46 |
2007–2008 | −4.51 | −4.55 | 15.02 | −97.22 | 36.53 | 56.45 | −14.83 | 4.08 |
2008–2009 | 51.68 | −11.23 | 15.51 | −91.10 | 114.32 | 38.48 | −18.57 | 4.27 |
2009–2010 | 24.69 | −0.93 | 2.51 | −19.22 | −15.93 | 63.78 | −9.77 | 4.23 |
2010–2011 | 15.68 | 0.11 | 5.22 | −55.89 | −30.75 | 112.32 | −19.09 | 3.75 |
2011–2012 | −2.01 | −63.95 | 16.55 | −31.14 | 33.69 | 62.72 | −22.14 | 2.25 |
2012–2013 | 77.76 | 35.91 | −46.11 | −231.22 | 217.66 | 116.89 | −18.14 | 2.79 |
2013–2014 | 31.19 | −19.24 | −11.31 | 54.47 | −52.03 | 75.98 | −19.97 | 3.30 |
2014–2015 | 58.97 | −29.65 | −0.58 | 31.21 | −28.11 | 104.32 | −22.26 | 4.02 |
2015–2016 | 42.90 | −28.26 | 7.12 | −40.17 | 52.19 | 73.26 | −26.13 | 4.89 |
2016–2017 | 90.28 | 25.87 | −2.03 | −23.13 | 26.33 | 86.90 | −29.53 | 5.88 |
2000–2005 | 360.81 | 20.19 | 40.35 | 195.41 | −25.50 | 166.83 | −50.56 | 14.09 |
2005–2010 | 69.11 | −41.83 | 79.65 | −413.33 | 233.69 | 258.04 | −66.74 | 19.62 |
2010–2015 | 181.59 | −76.82 | −36.24 | −232.56 | 140.46 | 472.22 | −101.60 | 16.11 |
2015–2017 | 133.18 | −2.39 | 5.09 | −63.31 | 78.52 | 160.16 | −55.66 | 10.77 |
2000–2017 | 744.69 | −100.84 | 88.84 | −513.78 | 427.17 | 1057.26 | −274.55 | 60.59 |
Periods | ||||||||
---|---|---|---|---|---|---|---|---|
2000–2001 | 0.80 | 1.03 | 1.12 | 0.55 | 1.07 | 1.07 | 1.09 | 1.01 |
2001–2002 | 1.32 | 0.98 | 0.96 | 1.56 | 0.73 | 1.16 | 1.06 | 1.01 |
2002–2003 | 1.14 | 1.01 | 1.06 | 0.78 | 1.19 | 1.08 | 1.06 | 1.01 |
2003–2004 | 0.59 | 1.04 | 1.13 | 0.54 | 0.82 | 1.08 | 1.04 | 1.01 |
2004–2005 | 1.42 | 1.01 | 1.11 | 0.95 | 1.11 | 1.14 | 1.04 | 1.01 |
2005–2006 | 1.03 | 0.92 | 0.97 | 0.96 | 1.06 | 1.09 | 1.04 | 1.01 |
2006–2007 | 1.02 | 1.01 | 1.00 | 1.00 | 0.84 | 1.17 | 1.03 | 1.01 |
2007–2008 | 1.01 | 0.99 | 0.98 | 0.86 | 1.04 | 1.11 | 1.04 | 1.01 |
2008–2009 | 1.06 | 0.98 | 1.01 | 0.93 | 0.98 | 1.11 | 1.04 | 1.01 |
2009–2010 | 1.15 | 1.00 | 0.94 | 1.01 | 1.09 | 1.09 | 1.02 | 1.01 |
2010–2011 | 1.09 | 1.00 | 1.00 | 1.03 | 0.91 | 1.11 | 1.04 | 1.01 |
2011–2012 | 0.98 | 0.90 | 1.06 | 0.94 | 0.97 | 1.09 | 1.04 | 1.00 |
2012–2013 | 1.16 | 1.08 | 0.92 | 0.41 | 2.55 | 1.08 | 1.03 | 1.00 |
2013–2014 | 1.03 | 0.97 | 0.98 | 1.01 | 0.95 | 1.09 | 1.03 | 1.00 |
2014–2015 | 1.02 | 0.96 | 1.02 | 0.95 | 0.97 | 1.09 | 1.02 | 1.00 |
2015–2016 | 1.05 | 0.97 | 1.02 | 0.96 | 1.02 | 1.06 | 1.03 | 1.01 |
2016–2017 | 1.14 | 1.03 | 1.00 | 0.92 | 1.08 | 1.09 | 1.03 | 1.01 |
2000–2005 | 1.01 | 1.07 | 1.40 | 0.35 | 0.84 | 1.67 | 1.33 | 1.04 |
2005–2010 | 1.30 | 0.89 | 0.91 | 0.77 | 0.99 | 1.72 | 1.18 | 1.03 |
2010–2015 | 1.30 | 0.91 | 0.97 | 0.38 | 2.08 | 1.55 | 1.17 | 1.02 |
2015–2017 | 1.20 | 0.99 | 1.01 | 0.88 | 1.10 | 1.15 | 1.06 | 1.01 |
2000–2017 | 2.06 | 0.87 | 1.25 | 0.09 | 1.90 | 5.12 | 1.94 | 1.11 |
Periods | ||||||||
---|---|---|---|---|---|---|---|---|
2000–2001 | 1.55 | 1.03 | 0.97 | 1.37 | 1.12 | 1.05 | 0.96 | 1.01 |
2001–2002 | 1.13 | 0.99 | 0.95 | 1.22 | 0.97 | 1.04 | 0.97 | 1.01 |
2002–2003 | 1.19 | 1.01 | 1.06 | 1.13 | 0.94 | 1.07 | 0.97 | 1.01 |
2003–2004 | 1.05 | 1.03 | 1.10 | 1.06 | 0.81 | 1.11 | 0.98 | 1.01 |
2004–2005 | 1.25 | 1.01 | 1.00 | 0.94 | 1.16 | 1.15 | 0.98 | 1.01 |
2005–2006 | 0.95 | 0.95 | 1.06 | 0.84 | 1.06 | 1.08 | 0.97 | 1.01 |
2006–2007 | 1.05 | 1.00 | 1.03 | 0.83 | 1.13 | 1.10 | 0.98 | 1.01 |
2007–2008 | 0.99 | 0.99 | 1.03 | 0.84 | 1.07 | 1.10 | 0.97 | 1.01 |
2008–2009 | 1.09 | 0.98 | 1.03 | 0.86 | 1.21 | 1.07 | 0.97 | 1.01 |
2009–2010 | 1.04 | 1.00 | 1.00 | 0.97 | 0.97 | 1.11 | 0.98 | 1.01 |
2010–2011 | 1.02 | 1.00 | 1.01 | 0.92 | 0.95 | 1.19 | 0.97 | 1.01 |
2011–2012 | 1.00 | 0.91 | 1.03 | 0.95 | 1.05 | 1.10 | 0.97 | 1.00 |
2012–2013 | 1.12 | 1.05 | 0.94 | 0.72 | 1.37 | 1.18 | 0.97 | 1.00 |
2013–2014 | 1.04 | 0.97 | 0.98 | 1.08 | 0.93 | 1.11 | 0.97 | 1.00 |
2014–2015 | 1.08 | 0.96 | 1.00 | 1.04 | 0.97 | 1.14 | 0.97 | 1.01 |
2015–2016 | 1.05 | 0.97 | 1.01 | 0.95 | 1.06 | 1.09 | 0.97 | 1.01 |
2016–2017 | 1.10 | 1.03 | 1.00 | 0.97 | 1.03 | 1.10 | 0.97 | 1.01 |
2000–2005 | 2.72 | 1.05 | 1.08 | 1.88 | 0.95 | 1.47 | 0.87 | 1.04 |
2005–2010 | 1.12 | 0.93 | 1.15 | 0.48 | 1.51 | 1.56 | 0.89 | 1.03 |
2010–2015 | 1.28 | 0.90 | 0.95 | 0.70 | 1.24 | 1.96 | 0.87 | 1.02 |
2015–2017 | 1.16 | 0.99 | 1.01 | 0.93 | 1.10 | 1.20 | 0.94 | 1.01 |
2000–2017 | 4.54 | 0.87 | 1.19 | 0.59 | 1.95 | 5.40 | 0.63 | 1.11 |
References
- Fan, J.-L.; Yu, H.; Wei, Y.-M. Residential energy-related carbon emissions in urban and rural China during 1996–2012: From the perspective of five end-use activities. Energy Build. 2015, 96, 201–209. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: IPCC Fourth Assessment Report; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Liu, Z.; Wang, Y.; Feng, K.; Wei, Y.-M. Pattern changes in determinants of Chinese emissions. Environ. Res. Lett. 2017, 12, 074003. [Google Scholar] [CrossRef]
- Guan, D.; Meng, J.; Reiner, D.M.; Zhang, N.; Shan, Y.; Mi, Z.; Shao, S.; Liu, Z.; Zhang, Q.; Davis, S.J. Structural decline in China’s CO2 emissions through transitions in industry and energy systems. Nat. Geosci. 2018, 11, 551–555. [Google Scholar] [CrossRef]
- Lin, B.; Liu, K. Using LMDI to analyze the decoupling of carbon dioxide emissions from China’s heavy industry. Sustainability 2017, 9, 1198. [Google Scholar]
- Fan, J.-L.; Liao, H.; Liang, Q.-M.; Tatano, H.; Liu, C.-F.; Wei, Y.-M. Residential carbon emission evolutions in urban–rural divided China: An end-use and behavior analysis. Appl. Energy 2013, 101, 323–332. [Google Scholar] [CrossRef]
- Zhang, X.; Luo, L.; Skitmore, M. Household carbon emission research: An analytical review of measurement, influencing factors and mitigation prospects. J. Clean. Prod. 2015, 103, 873–883. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhang, S.; Liu, C. Comparing urban and rural household CO2 emissions—Case from China’s four megacities: Beijing, Tianjin, Shanghai, and Chongqing. Energies 2018, 11, 1257. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Geng, Y.; Dong, H.; Dong, L.; Fujita, T.; Wang, Y.; Zhao, H.; Wu, R.; Liu, Z.; Sun, L. Regional household carbon footprint in China: A case of Liaoning province. J. Clean. Prod. 2016, 114, 401–411. [Google Scholar] [CrossRef]
- Shi, Y.; Han, B.; Han, L.; Wei, Z. Uncovering the national and regional household carbon emissions in China using temporal and spatial decomposition analysis models. J. Clean. Prod. 2019, 232, 966–979. [Google Scholar] [CrossRef]
- Zhu, Q.; Peng, X.; Wu, K. Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model. Energy Policy 2012, 48, 618–626. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Cao, X.; Wang, C.; Wang, Y.; Zhang, M.; Ferrier, R.C.; Jenkins, A.; Yuan, J.; Bailey, M.J.; et al. Forty years of reform and opening up: China’s progress toward a sustainable path. Sci. Adv. 2019, 5, 9413–9422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Yang, Y.; Zhang, X.; Tang, K. Whether China’s industrial sectors make efforts to reduce CO2 emissions from production?—A decomposed decoupling analysis. Energy 2018, 160, 796–809. [Google Scholar] [CrossRef]
- Zha, D.; Zhou, D.; Zhou, P. Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis. Energy Policy 2010, 38, 3377–3383. [Google Scholar]
- Fan, J.; Ran, A.; Li, X. A study on the factors affecting China’s direct household carbon emission and comparison of regional differences. Sustainability 2019, 11, 4919. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.-H.; Zou, L.-L.; Wei, Y.-M. The impact of household consumption on energy use and CO2 emissions in China. Energy 2011, 36, 656–670. [Google Scholar] [CrossRef]
- Liu, L.-C.; Wu, G.; Wang, J.-N.; Wei, Y.-M. China’s carbon emissions from urban and rural households during 1992–2007. J. Clean. Prod. 2011, 19, 1754–1762. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [Google Scholar] [CrossRef]
- Fan, J.-L.; Zhang, Y.-J.; Wang, B. The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis. Renew. Sust. Energ. Rev. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Ye, Y.; Shi, X.-Q.; Zou, L.-L. Decoupling economic growth from CO2 emissions: A decomposition analysis of China’s household energy consumption. Adv. Clim. Chang. Res. 2016, 7, 192–200. [Google Scholar]
- Wang, W.; Zhao, D.; Kuang, Y. Decomposition analysis on influence factors of direct household energy-related carbon emission in Guangdong province-Based on extended Kaya identity. Environ. Prog. Sustain. Energy 2016, 35, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Yuan, R.; Rodrigues, J.F.D.; Behrens, P. Driving forces of household carbon emissions in China: A spatial decomposition analysis. J. Clean. Prod. 2019, 233, 932–945. [Google Scholar] [CrossRef]
- Zhang, M.; Bai, C. Exploring the influencing factors and decoupling state of residential energy consumption in Shandong. J. Clean. Prod. 2018, 194, 253–262. [Google Scholar] [CrossRef]
- Nie, H.; Kemp, R. Index decomposition analysis of residential energy consumption in China: 2002–2010. Appl. Energy 2014, 121, 10–19. [Google Scholar] [CrossRef]
- Zhang, M.; Song, Y.; Li, P.; Li, H. Study on affecting factors of residential energy consumption in urban and rural Jiangsu. Renew. Sust. Energ. Rev. 2016, 53, 330–337. [Google Scholar] [CrossRef]
- Ye, H.; Ren, Q.; Hu, X.; Lin, T.; Xu, L.; Li, X.; Zhang, G.; Shi, L.; Pan, B. Low-carbon behavior approaches for reducing direct carbon emissions: Household energy use in a coastal city. J. Clean. Prod. 2017, 141, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, N.; Ma, C. Residential energy consumption in urban China: A decomposition analysis. Energy Policy 2012, 41, 644–653. [Google Scholar] [CrossRef]
- OECD. Indicators to Measure Decoupling of Environmental Pressure from Economic Growth; Organization for Economic Cooperation and Development (OECD): Paris, France, 2002. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, R.; Jiang, R. Decoupling and decomposition analysis of carbon emissions from industry: A case study from China. Sustainability 2016, 8, 1059. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Kou, C.; Zheng, J.; Li, Y. Decoupling analysis of CO2 emissions in transportation sector from economic growth during 1995–2015 for six cities in Hebei, China. Sustainability 2018, 10, 4149. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xie, T.; Yang, S. Carbon emission and its decoupling research of transportation in Jiangsu Province. J. Clean. Prod. 2017, 142, 907–914. [Google Scholar] [CrossRef]
- Jiang, R.; Li, R. Decomposition and decoupling analysis of life-cycle carbon emission in China’s building Sector. Sustainability 2017, 9, 886. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhao, M.; Li, R. Decoupling sectoral economic output from carbon emissions on city level: A comparative study of Beijing and Shanghai, China. J. Clean. Prod. 2019, 209, 126–133. [Google Scholar] [CrossRef]
- Luo, Y.; Long, X.; Wu, C.; Zhang, J. Decoupling CO2 emissions from economic growth in agricultural sector across 30 Chinese provinces from 1997 to 2014. J. Clean. Prod. 2017, 159, 220–228. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Li, N.; Shao, S.; Geng, Y. Decoupling economic growth from carbon dioxide emissions in China: A sectoral factor decomposition analysis. J. Clean. Prod. 2017, 142, 3500–3516. [Google Scholar] [CrossRef]
- Statistic Bureau of Jiangxi. Jiangxi Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2018. (In Chinese)
- Jia, J.; Gong, Z.; Xie, D.; Chen, J.; Chen, C. Analysis of drivers and policy implications of carbon dioxide emissions of industrial energy consumption in an underdeveloped city: The case of Nanchang, China. J. Clean. Prod. 2018, 183, 843–857. [Google Scholar] [CrossRef]
- IPCC. Gudielines for National Greenhouse Gas Inventories; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- National Bureau of Statistics of China. China Energy Statistical Yearbook; China Statistics Press: Beijing, China, 2001–2018. (In Chinese)
- Kennedy, C.; Steinberger, J.; Gasson, B.; Hansen, Y.; Hillman, T.; Havránek, M.; Pataki, D.; Phdungsilp, A.; Ramaswami, A.; Mendez, G.V. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 2009, 43, 7297–7302. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, N. Handling zero values in the logarithmic mean Divisia index decomposition approach. Energy Policy 2007, 35, 238–246. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy. Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 2003, 31, 1561–1566. [Google Scholar] [CrossRef]
- Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; IPCC Energy and Industry Subgroup, Response Strategies Working Group: Paris, France, 1990. [Google Scholar]
- Shao, S.; Yang, L.; Gan, C.; Cao, J.; Geng, Y.; Guan, D. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China). Renew. Sust. Energ. Rev. 2016, 55, 516–536. [Google Scholar] [CrossRef] [Green Version]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sust. Energ. Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Tian, X.; Chang, M.; Lin, C.; Tanikawa, H. China’s carbon footprint: A regional perspective on the effect of transitions in consumption and production patterns. Appl. Energy 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Pachauri, S. Household electricity access a trivial contributor to CO2 emissions growth in India. Nat. Clim. Chang. 2014, 4, 1073–1076. [Google Scholar] [CrossRef]
- Shao, S.; Yang, L.; Yu, M.; Yu, M. Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994–2009. Energy Policy 2011, 39, 6476–6494. [Google Scholar] [CrossRef]
- Wei, Y.-M.; Liu, L.-C.; Fan, Y.; Wu, G. China Energy Report (2008): CO2 Emission Research; Science Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Ren, S.; Fu, X.; Chen, X. Regional variation of energy-related industrial CO2 emissions mitigation in China. China Econ. Rev. 2012, 23, 1134–1145. [Google Scholar] [CrossRef]
- Grubb, M.; Sha, F.; Spencer, T.; Hughes, N.; Zhang, Z.; Agnolucci, P. A review of Chinese CO2 emission projections to 2030: The role of economic structure and policy. Clim. Policy 2015, 15, S7–S39. [Google Scholar] [CrossRef] [Green Version]
Literature | Region | Scale | Urban–Rural Disparity | Methods |
---|---|---|---|---|
Zha, et al. [14] | China | Nationwide | √ | LMDI |
Liu, et al. [17] | China | Nationwide | √ | Sato–Vartia index |
Zhu, et al. [11] | China | Nationwide | × | SDA |
Fan, et al. [6] | China | Nationwide | √ | AWD |
Wang, et al. [21] | Guangdong | Provincial | √ | LMDI |
Tian, et al. [9] | Liaoning | Provincial | √ | LMDI |
Bai, et al. [18] | 64 cities of Chinese urban agglomerations | City | × | IPAT |
Shi, et al. [10] | China and its 30 provinces | Nationwide and Provincial | × | Temporal and spatial LMDI |
Yuan, et al. [22] | China’s 30 provinces | Nationwide and Provincial | √ | Spatial LMDI |
Variables | Definition |
---|---|
C | Total residential energy-related CO2 emissions |
Cij | Residential energy-related CO2 emissions of energy j by resident i |
Eij | Residential energy consumption of energy j by resident i |
Ei | Residential energy consumption of resident i |
Yie | Residence expenditure of resident i |
Yi | Consumption expenditure of resident i |
Pi | Population of resident i |
P | Total population of Jiangxi province |
Kij | Carbon emission coefficient of energy j by resident i |
ESij | Share of energy j in residential energy consumption by resident i |
EPi | Residential energy consumption per unit of residence expenditure for resident i |
EDi | Share of residence expenditure to consumption expenditure of resident |
CPi | Consumption expenditure per capita of resident i |
Ui | Share of population of resident i to total population |
Decoupling State | Abbreviation | |||
---|---|---|---|---|
Strong decoupling | SD | <0 | >0 | (−∞, 0) |
Weak decoupling | WD | >0 | >0 | (0, 0.8) |
Recessive decoupling | RD | <0 | <0 | (1.2, +∞) |
Strong negative decoupling | SND | >0 | <0 | (−∞, 0) |
Weak negative decoupling | WND | <0 | <0 | (0, 0.8) |
Expansive negative decoupling | END | >0 | >0 | (1.2, +∞) |
Expansive coupling | EC | >0 | >0 | (0.8, 1.2) |
Recessive coupling | RC | <0 | <0 | (0.8, 1.2) |
Item (Unit) | 2000 | 2005 | 2010 | 2015 | 2017 |
---|---|---|---|---|---|
Motorcycle | 12.96 | 24.38 | 20.77 | 30.67 | 29.04 |
Family car | 0.39 | 0.73 | 5.31 | 20.02 | 29.21 |
Washing machine | 80.15 | 95.29 | 93.84 | 90.68 | 94.21 |
Refrigerator | 75.82 | 90.66 | 96.57 | 96.64 | 98.6 |
Color TV set | 106.01 | 139.31 | 148 | 139.13 | 136.29 |
Computer | 4.56 | 32.03 | 59.91 | 73.98 | 74.33 |
Air conditioner | 17.07 | 72.41 | 107.67 | 124.31 | 137.65 |
Mobile telephone | 14.37 | 136.26 | 181.18 | 226.16 | 235.73 |
Shower heater | 58.02 | 81.77 | 92.28 | 91.99 | 95.9 |
Item (Unit) | 2000 | 2005 | 2010 | 2015 | 2017 |
---|---|---|---|---|---|
Motorcycle | 17.47 | 43.39 | 60.49 | 77.41 | 75.6 |
Family car | − | − | − | 10.59 | 16.54 |
Washing machine | 3.55 | 7.02 | 14.08 | 43.05 | 55.25 |
Refrigerator | 3.63 | 10.53 | 45.84 | 84.68 | 91.42 |
Color TV set | 30.16 | 82.33 | 106.86 | 127.13 | 132.12 |
Computer | − | 2 | 5.22 | 24.19 | 24.59 |
Air conditioner | 0.04 | 2 | 10.24 | 42.41 | 56.48 |
Mobile telephone | 1.43 | 64.82 | 140.98 | 233.19 | 249.52 |
Shower heater | 1.14 | 4.12 | 16.33 | 56.25 | 68.01 |
Effects | Average Annual Contribution Rate (%) | Trend | ||||
---|---|---|---|---|---|---|
Stage1 a | Stage2 a | Stage 3 a | Stage 4 a | Whole | ||
Total | 0.29 b | 5.92 b | 6.06 b | 10.10 b | 6.23 b | +++++ |
Carbon emissions coefficient | 1.36 | −2.32 | −2.22 | −0.12 | −1.17 | +−−−− |
Energy structure | 6.34 | −2.23 | −0.82 | 0.72 | 1.03 | +−−++ |
Energy price | −20.34 | −5.55 | −22.02 | −6.95 | −17.55 | −−−−− |
Energy demand | −2.72 | 0.00 | 16.82 | 5.29 | 6.77 | −−+++ |
Consumption expenditure per capita | 9.55 | 11.68 | 10.24 | 7.51 | 11.77 | +++++ |
Urbanization | 5.40 | 3.61 | 3.54 | 2.99 | 4.64 | +++++ |
Population | 0.71 | 0.73 | 0.51 | 0.66 | 0.76 | +++++ |
Effects | Average Annual Contribution Rate (%) | Trend | ||||
---|---|---|---|---|---|---|
Stage1 a | Stage2 a | Stage 3 a | Stage 4 a | Whole | ||
Total | 34.34 c | 2.42 c | 5.67 c | 8.10 c | 20.85 c | +++++ |
Carbon emissions coefficient | 1.92 | −1.47 | −2.40 | −0.15 | −2.82 | +−−−− |
Energy structure | 3.84 | 2.79 | −1.13 | 0.31 | 2.49 | ++−++ |
Energy price | 18.60 | −14.48 | −7.27 | −3.85 | −14.38 | +−−−− |
Energy demand | −2.43 | 8.19 | 4.39 | 4.78 | 11.96 | −++++ |
Consumption expenditure per capita | 15.88 | 9.04 | 14.76 | 9.75 | 29.60 | +++++ |
Urbanization | −4.81 | −2.34 | −3.17 | −3.39 | −7.69 | −−−−− |
Population | 1.34 | 0.69 | 0.50 | 0.66 | 1.70 | +++++ |
Time Period | Urban | Rural | ||||||
---|---|---|---|---|---|---|---|---|
C% | Y% | D | State | C% | Y% | D | State | |
2000–2001 | −0.20 | 0.19 | −1.04 | SD | 0.55 | 0.02 | 32.89 | END |
2001–2002 | 0.32 | 0.25 | 1.29 | END | 0.13 | 0.02 | 6.36 | END |
2002–2003 | 0.14 | 0.15 | 0.92 | EC | 0.19 | 0.05 | 3.90 | END |
2003–2004 | −0.41 | 0.14 | −2.82 | SD | 0.05 | 0.10 | 0.55 | WD |
2004–2005 | 0.42 | 0.20 | 2.09 | END | 0.25 | 0.15 | 1.66 | END |
2005–2006 | 0.03 | 0.14 | 0.19 | WD | −0.05 | 0.06 | −0.83 | SD |
2006–2007 | 0.02 | 0.22 | 0.11 | WD | 0.05 | 0.10 | 0.49 | WD |
2007–2008 | 0.01 | 0.17 | 0.05 | WD | −0.01 | 0.08 | −0.09 | SD |
2008–2009 | 0.06 | 0.17 | 0.33 | WD | 0.09 | 0.04 | 2.19 | END |
2009–2010 | 0.15 | 0.12 | 1.29 | END | 0.04 | 0.10 | 0.41 | WD |
2010–2011 | 0.09 | 0.15 | 0.56 | WD | 0.02 | 0.16 | 0.15 | WD |
2011–2012 | −0.02 | 0.13 | −0.15 | SD | 0.00 | 0.07 | −0.05 | SD |
2012–2013 | 0.16 | 0.12 | 1.34 | END | 0.12 | 0.16 | 0.75 | WD |
2013–2014 | 0.03 | 0.13 | 0.27 | WD | 0.04 | 0.08 | 0.52 | WD |
2014–2015 | 0.02 | 0.14 | 0.15 | WD | 0.08 | 0.12 | 0.66 | WD |
2015–2016 | 0.05 | 0.09 | 0.57 | WD | 0.05 | 0.06 | 0.82 | EC |
2016–2017 | 0.14 | 0.13 | 1.12 | EC | 0.10 | 0.07 | 1.45 | END |
2000–2005 | 0.01 | 1.35 | 0.01 | WD | 1.72 | 0.37 | 4.68 | END |
2005–2010 | 0.30 | 1.14 | 0.26 | WD | 0.12 | 0.45 | 0.27 | WD |
2010–2015 | 0.30 | 0.89 | 0.34 | WD | 0.28 | 0.74 | 0.38 | WD |
2015–2017 | 0.20 | 0.23 | 0.87 | EC | 0.16 | 0.14 | 1.15 | EC |
2000–2017 | 1.06 | 10.67 | 0.10 | WD | 3.54 | 2.93 | 1.21 | END |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Jia, J.; Chen, C. Residential Energy-Related CO2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi. Sustainability 2020, 12, 2000. https://doi.org/10.3390/su12052000
Yang Y, Jia J, Chen C. Residential Energy-Related CO2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi. Sustainability. 2020; 12(5):2000. https://doi.org/10.3390/su12052000
Chicago/Turabian StyleYang, Yong, Junsong Jia, and Chundi Chen. 2020. "Residential Energy-Related CO2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi" Sustainability 12, no. 5: 2000. https://doi.org/10.3390/su12052000
APA StyleYang, Y., Jia, J., & Chen, C. (2020). Residential Energy-Related CO2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi. Sustainability, 12(5), 2000. https://doi.org/10.3390/su12052000