Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan
<p>Map of the study area showing main disposal sites.</p> "> Figure 2
<p>System boundary of the Bahawalpur waste management system under study.</p> "> Figure 3
<p>Percentage physical composition of solid waste in high income houses (<b>a</b>); middle income houses (<b>b</b>); low income houses (<b>c</b>) and weighted average (<b>d</b>) in residential area of Bahawalpur City.</p> "> Figure 4
<p>Description of existing waste management scenario.</p> "> Figure 5
<p>Environmental impacts of existing and alternate scenario for various impact categories.</p> ">
Abstract
:1. Introduction
Existing Waste Management Scenario in the Study Area
2. Method of Analysis
2.1. Goal and Scope Definition
2.2. Inventory Analysis
2.2.1. Municipal Solid Waste Characterization
- (1)
- Property value of the area
- (2)
- Structure and area of the house
- (3)
- Average income of the households
2.2.2. Laboratory Analysis
2.2.3. Data Regarding Recycling
2.3. Life Cycle Impact Analysis (LCIA)
2.4. Interpretation
3. Results and Discussion
3.1. System Description and Modeling Inputs
3.1.1. Generation and Composition of Household Waste in Bahawalpur City
3.1.2. Description of Recycling Facilities
3.1.3. Modeling using EASETECH
3.2. Quantification of Environmental Impacts
4. Conclusions and Recommendation
Author Contributions
Funding
Conflicts of Interest
References
- Bovea, M.D.; Ibáñez-Forés, V.; Gallardo, A.; Colomer-Mendoza, F.J. Environmental assessment of alternative municipal solid waste management strategies. A Spanish case study. Waste Manag. 2010, 30, 2383–2395. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, S.; Goralczyk, M. Life cycle indicators for monitoring the environmental performance of European waste management. Resour. Conserv. Recycl. 2013, 81, 8–16. [Google Scholar] [CrossRef]
- Parkes, O.; Lettieri, P.; Bogle, I.D.L. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Manag. 2015, 40, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Pires, A.; Martinho, G.; Chang, N.-B. Solid waste management in European countries: A review of systems analysis techniques. J. Environ. Manag. 2011, 92, 1033–1050. [Google Scholar] [CrossRef] [PubMed]
- Clift, R.; Doig, A.; Finnveden, G. The application of life cycle assessment to integrated solid waste management: Part 1—Methodology. Process Saf. Environ. Prot. 2000, 78, 279–287. [Google Scholar] [CrossRef]
- Zurbrügg, C.; Gfrerer, M.; Ashadi, H.; Brenner, W.; Küper, D. Determinants of sustainability in solid waste management—The Gianyar waste recovery project in Indonesia. Waste Manag. 2012, 32, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- Ayres, R.U. Life cycle analysis: A critique. Resour. Conserv. Recycl. 1995, 14, 199–223. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W.; Martinás, K. Exergy, waste accounting, and life-cycle analysis. Energy 1998, 23, 355–363. [Google Scholar] [CrossRef]
- Blengini, G.A.; Busto, M.; Fantoni, M.; Fino, D. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA. Waste Manag. 2012, 32, 1000–1008. [Google Scholar] [CrossRef] [PubMed]
- Hanifzadeh, M.; Nabati, Z.; Longka, P.; Malakul, P.; Apul, D.; Kim, D.-S. Life cycle assessment of superheated steam drying technology as a novel cow manure management method. J. Environ. Manag. 2017, 199, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Hanifzadeh, M.; Kumar, A. Trend of biodiesel feedstock and its impact on biodiesel emission characteristics. Environ. Progress Sustain. Energy 2018, 37, 7–19. [Google Scholar] [CrossRef]
- Henry, R.K.; Yongsheng, Z.; Jun, D. Municipal solid waste management challenges in developing countries—Kenyan case study. Waste Manag. 2006, 26, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.E.; Farahbakhsh, K. Systems approaches to integrated solid waste management in developing countries. Waste Manag. 2013, 33, 988–1003. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C. Waste management and recycling in Romania: A case study of technology transfer in an economy in transition. Technovation 1999, 19, 365–371. [Google Scholar] [CrossRef]
- Metin, E.; Eröztürk, A.; Neyim, C. Solid waste management practices and review of recovery and recycling operations in Turkey. Waste Manag. 2003, 23, 425–432. [Google Scholar] [CrossRef]
- Matete, N.; Trois, C. Towards zero waste in emerging countries—A South African experience. Waste Manag. 2008, 28, 1480–1492. [Google Scholar] [CrossRef] [PubMed]
- Acosta, V.; Paul, J.; Lao, C.; Aguinaldo, E.; Valdez, M.D.C. Development of the Philippines national solid waste Management STRATEGY 2012–2016. Procedia Environ. Sci. 2012, 16, 9–16. [Google Scholar] [CrossRef]
- Bolaane, B.; Isaac, E. Privatization of solid waste collection services: Lessons from Gaborone. Waste Manag. 2015, 40, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Bleck, D.; Wettberg, W. Waste collection in developing countries—Tackling occupational safety and health hazards at their source. Waste Manag. 2012, 32, 2009–2017. [Google Scholar] [CrossRef] [PubMed]
- Alamgir, M.; Bidlingmaier, W.; Cossu, R. Successful waste management strategies in developing countries require meaningful involvement of the concerned stakeholders. Waste Manag. 2012, 32, 2007–2008. [Google Scholar] [CrossRef] [PubMed]
- Mohee, R.; Mauthoor, S.; Bundhoo, Z.M.A.; Somaroo, G.; Soobhany, N.; Gunasee, S. Current status of solid waste management in small island developing states: A review. Waste Manag. 2015, 43, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Thi, N.B.D.; Kumar, G.; Lin, C.-Y. An overview of food waste management in developing countries: Current status and future perspective. J. Environ. Manag. 2015, 157, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Asase, M.; Yanful, E.K.; Mensah, M.; Stanford, J.; Amponsah, S. Comparison of municipal solid waste management systems in Canada and Ghana: A case study of the cities of London, Ontario, and Kumasi, Ghana. Waste Manag. 2009, 29, 2779–2786. [Google Scholar] [CrossRef] [PubMed]
- Aphale, O.; Thyberg, K.L.; Tonjes, D.J. Differences in waste generation, waste composition, and source separation across three waste districts in a New York suburb. Resour. Conserv. Recycl. 2015, 99, 19–28. [Google Scholar] [CrossRef]
- Al-Khatib, I.A.; Monou, M.; Abu Zahra, A.S.F.; Shaheen, H.Q.; Kassinos, D. Solid waste characterization, quantification and management practices in developing countries. A case study: Nablus district—Palestine. J. Environ. Manag. 2010, 91, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.A.; Chaudhry, M.N. Municipal solid waste management in Lahore City District, Pakistan. Waste Manag. 2009, 29, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Ripa, M.; Fiorentino, G.; Vacca, V.; Ulgiati, S. The relevance of site-specific data in Life Cycle Assessment (LCA). The case of the municipal solid waste management in the metropolitan city of Naples (Italy). J. Clean. Prod. 2017, 142, 445–460. [Google Scholar] [CrossRef]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Seadon, J.K. Sustainable waste management systems. J. Clean. Prod. 2010, 18, 1639–1651. [Google Scholar] [CrossRef]
- Othman, S.N.; Zainon Noor, Z.; Abba, A.H.; Yusuf, R.O.; Abu Hassan, M.A. Review on life cycle assessment of integrated solid waste management in some Asian countries. J. Clean. Prod. 2013, 41, 251–262. [Google Scholar] [CrossRef]
- Soltani, A.; Hewage, K.; Reza, B.; Sadiq, R. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review. Waste Manag. 2015, 35, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Hoi-Seong, J.; Kwang-Yim, K. KOICA-WorldBank Joint Study on Solid Waste Management in Punjab, Pakistan; Korea International Cooperation Agency: Seongnam, Korea, 2007.
- International Organisation for Standardization. Environmental management—Life cycle assessment—Principles and framework. In ISO 14040 International Standard; ISO-14040; International Organisation for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Buratti, C.; Barbanera, M.; Testarmata, F.; Fantozzi, F. Life Cycle Assessment of organic waste management strategies: An Italian case study. J. Clean. Prod. 2015, 89, 125–136. [Google Scholar] [CrossRef]
- Blengini, G.A. Using LCA to evaluate impacts and resources conservation potential of composting: A case study of the Asti District in Italy. Resour. Conserv. Recycl. 2008, 52, 1373–1381. [Google Scholar] [CrossRef]
- De Feo, G.; Malvano, C. The use of LCA in selecting the best MSW management system. Waste Manag. 2009, 29, 1901–1915. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Micale, C. A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: The case of an Italian urban area. Waste Manag. 2014, 34, 2382–2392. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Bilitewski, B. Comparative evaluation of life cycle assessment models for solid waste management. Waste Manag. 2007, 27, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Gentil, E.C.; Damgaard, A.; Hauschild, M.; Finnveden, G.; Eriksson, O.; Thorneloe, S.; Kaplan, P.O.; Barlaz, M.; Muller, O.; Matsui, Y.; et al. Models for waste life cycle assessment: Review of technical assumptions. Waste Manag. 2010, 30, 2636–2648. [Google Scholar] [CrossRef] [PubMed]
- Clavreul, J.; Baumeister, H.; Christensen, T.H.; Damgaard, A. An environmental assessment system for environmental technologies. Environ. Model. Softw. 2014, 60, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Batool, S.A.; Chuadhry, M.N. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan. Waste Manag. 2009, 29, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Jadoon, A.Z.; Batool, S.A.; Chuadhry, M.N. Assessment of factors affecting household solid waste generation and its composition in Gulberg Town, Lahore, Pakistan. J. Mater. Cycles Waste Manag. 2014, 16, 73–81. [Google Scholar] [CrossRef]
- Jan, B.; Iqbal, M. Urbanization trend and urban population projections of Pakistan using weighted approach. Sarhad J. Agric. 2008, 24, 173–180. [Google Scholar]
- Majeed, A.; Batool, S.A.; Chaudhry, M.N. Informal waste management in the developing world: Economic contribution through integration with the formal sector. Waste Biomass Valoriz. 2016, 8, 679–694. [Google Scholar] [CrossRef]
- International Organisation for Standardisation. Environmental Management—Life Cycle Assessment—Requirements and Guidelines. In ISO 14044 International Standard; ISO-14044; International Organisation for Standardisation: Geneva, Switzerland, 2006. [Google Scholar]
- Erses Yay, A.S. Application of life cycle assessment (LCA) for municipal solid waste management: A case study of Sakarya. J. Clean. Prod. 2015, 94, 284–293. [Google Scholar] [CrossRef]
- Slagstad, H.; Brattebø, H. Influence of assumptions about household waste composition in waste management LCAs. Waste Manag. 2013, 33, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.; Meneses, M.; Ballinas, L.; Castells, F. Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Manag. 2009, 29, 2018–2024. [Google Scholar] [CrossRef] [PubMed]
- Durr-e-Nayab. Estimating the middle class in Pakistan. Pak. Dev. Rev. 2011, 77, 1–28. [Google Scholar]
- The Urban Unit, P & D Department. Bahawalpur City Profile, The Urban Unit; P & D Department: Punjab, Pakistan, 2010. Available online: http://uu.urbanunit.gov.pk/Documents/Publications/0/109.pdf (accessed on 7 July 2018).
- ASTM International. Standards Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste; ASTM-5231-92; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- ASTM International. Test Method for Total Moisture in a Reused Derived Fuel Laboratory Sample; ASTM-E949-88; ASTM International: West Conshohocken, PA, USA, 2004; pp. 839–842. [Google Scholar]
- ASTM International. Test Method for Volatile Matter in Analysis Sample of Refuse Derived Fuel; ASTM-E897-88; ASTM International: West Conshohocken, PA, USA, 2004; pp. 836–842. [Google Scholar]
- ASTM International. Test Method for Ash in the Analysis Sample of Refuse Derived Fuel; ASTM-E830-87; ASTM International: West Conshohocken, PA, USA, 2004; pp. 778–783. [Google Scholar]
- ASTM International. Test Method for Gross Calorific value of Reuse-Derived fuel by the Bomb Calorimeter; ASTM-E711-87; ASTM International: West Conshohocken, PA, USA, 2007; pp. 734–741. [Google Scholar]
- Majeed, A.; Batool, S.; Nawaz Chaudhry, M.; Aatif Siddique, R. Scavenging demeanor in Bahawalpur, Pakistan: Social and health perspective. J. Mater. Cycles Waste Manag. 2017, 19, 815–826. [Google Scholar] [CrossRef]
- Jadoon, A.Z.; Batool, S.A.; Chaudhry, M.N. Life Cycle Assessment of Municipal Solid Waste Management System of Gulberg Town. Ph.D. Thesis, University of the Punjab, Lahore, Pakistan, 2015. [Google Scholar]
- Dangi, M.B.; Pretz, C.R.; Urynowicz, M.A.; Gerow, K.G.; Reddy, J.M. Municipal solid waste generation in Kathmandu, Nepal. J. Environ. Manag. 2011, 92, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sujauddin, M.; Huda, S.M.S.; Rafiqul Hoque, A.T.M. Household solid waste characteristics and management in Chittagong, Bangladesh. Waste Manag. 2008, 28, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Aye, L.; Widjaya, E.R. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag. 2006, 26, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Wang, Z.; Li, J. Environmental performance of municipal solid waste strategies based on LCA method: A case study of Macau. J. Clean. Prod. 2013, 57, 92–100. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Fourth Assessment Report Climate Change 2007; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges. Bioresour. Technol. 2011, 102, 437–451. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Hischier, R.; Doka, G.; Bauer, C.; Dones, R.; Nemecek, T.; Hellweg, S.; Humbert, S.; et al. Implementation of Life Cycle Impact Assessment Methods. Data v2. 0 Ecoinvent Report No. 3 (No. IS-CH--10091); Ecoinvent Centre: Zurich, Switzerland, 2007. [Google Scholar]
- Foster, B. IPCC Third Assessment Report; The Scientific Basis: Geneva, Switzerland, 2001. [Google Scholar]
- Hertwich, E.G.; Mateles, S.F.; Pease, W.S.; McKone, T.E. Human toxicity potentials for life-cycle assessment and toxics release inventory risk screening. Environ Toxicol Chem. 2001, 20, 928–939. [Google Scholar] [CrossRef] [PubMed]
- EC-JRC. ILCD Handbook, Recommendations for Life Cycle Impact Assessment in the European Context—Based on Existing Environmental Impact Assessment Models and Factors; Publications Office of the European Union: Luxembourg, 2011; p. 181. [Google Scholar]
- Prechthai, T.; Parkpian, P.; Visvanathan, C. Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. J. Hazard. Mater. 2008, 156, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.Y.; Shen, D.S.; Wang, H.T.; Lu, W.J.; Zhao, Y. Heavy metal source analysis in municipal solid waste (MSW): Case study on Cu and Zn. J. Hazard. Mater. 2011, 186, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Greco, S.L.; Wilson, A.M.; Spengler, J.D.; Levy, J.I. Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos. Environ. 2007, 41, 1011–1025. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Van Zelm, R.; Huijbregts, M.A.J.; den Hollander, H.A.; van Jaarsveld, H.A.; Sauter, F.J.; Struijs, J.; van Wijnen, H.J.; van de Meent, D. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmos. Environ. 2008, 42, 441–453. [Google Scholar] [CrossRef]
Income Groups | Generation Rate Kg/Capita/Day | Collection Rate Kg/Capita/Day | Difference between Collection and Generation Rates KG/Capita/Day |
---|---|---|---|
High income group | 0.635 | 0.470 | 0.164 |
Middle income group | 0.384 | 0.291 | 0.094 |
Low income group | 0.310 | 0.145 | 0.164 |
Weighted Average | 0.425 | 0.292 | 0.133 |
Component | Moisture (%) | VS (%) | FC | Ash | C | H | N | S | 0 | GCV * (Kcal/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Vegetable food waste | 60.8 | 30.19 | 4.72 | 5.32 | 41.8 | 6.1 | 3.3 | 0.19 | 36.5 | 3694 |
Yard waste | 44.2 | 41.4 | 7.3 | 7.12 | 35.1 | 4.5 | 1.5 | 0.12 | 47.5 | 4075 |
Newspaper | 5.8 | 79.8 | 9.5 | 5.7 | 35.6 | 6.1 | 1.2 | 0.40 | 51.0 | 4301 |
Paper and paper products | 10.6 | 72.7 | 8.1 | 9.1 | 32.5 | 4.6 | 0.71 | 0.18 | 52.9 | 4016 |
Milk and juice cartons | 6.3 | 78.3 | 5.7 | 9.7 | 44.0 | 5.9 | 0.30 | 0.20 | 37.6 | 4907 |
Dirty Cardboard | 8.4 | 71.5 | 10.4 | 10.1 | 41.7 | 6.2 | 0.68 | 0.02 | 43.2 | 3825 |
Hard Plastics | 0.43 | 97 | 0.2 | 2.8 | 60.4 | 10.0 | 0.69 | .015 | 25.9 | 6175 |
Processes Used in Recycling | Numerical Info | Type of Use |
---|---|---|
Paper Recycling Process | ||
Paper transportation for recycling | 0.0000206 L/km/kg | |
Electricity production | 0.35 kWh/kg input | Consumption |
Natural gas consumption | 3.19 Mj/kg input | Consumption |
Heavy fuel oil | 0.058 kg/kg input | Consumption |
Water from waterworks | 11.10 kg/kg input | Consumption |
Virgin newspaper | −0.75 kg/kg input | Avoidance/Substitution |
Cardboard Recycling Process | ||
Cardboard transportation for recycling | 0.0000206 L/km/kg | |
Electricity production | 0. 106 kWh/kg input | Consumption |
Water from waterworks | 11.35 kg/kg input | Consumption |
Virgin cardboard | −0.70 kg/kg input | Avoidance/Substitution |
Metal Recycling Process | ||
Metal transportation for recycling | 0.00006 L/km/kg | |
Metal Collection for recycling | 0.00204 L/kg input | Consumption |
Electricity production | 0.11 kWh/kg input | Consumption |
Hard coal | 0.04 kg /kg input | Consumption |
Water from waterworks | 0.00053 kg/kg input | Consumption |
Oxygen | 0.014 kg/kg input | Consumption |
Natural gas | 1.95 Mj/kg input | Consumption |
Furnace oil | 0.025 kg/kg input | Consumption |
Steel sheets (97.75% primary) | 0.87 kg/kg input | Avoidance/Substitution |
Plastic Recycling Process | ||
Plastic transportation for recycling | 0.00010 L/km/kg | |
Electricity production | 0.17 kWh/kg input | Consumption |
Natural gas consumption * | 0.88 Mj/kg input | Consumption |
Water from waterworks | 0.250 kg/kg input | Consumption |
Polyethylene high density granulate | −0.8 kg/kg input | Avoidance/Substitution |
Glass Recycling Process | ||
Glass transportation for recycling | 0.0000206 L/km/kg | |
Marginal electricity consumption | 0.45 kWh/kg input | Consumption |
Production and combustion of diesel oil | 0.0016 L/kg input | Consumption |
Natural gas consumption | 2.2 Mj/kg input | Consumption |
Glass products | −1 kg/kg input | Avoidance/Substitution |
Waste Component | Total Input % | Reuse % | Recycle R1% | Residue RW% | Scavenging Activities R2 (% of RW) | To Landfill (% of RW) |
---|---|---|---|---|---|---|
Vegetable Food waste | 100 | 10.45 | 0 | 89.55 | 25.09 | 74.91 |
Yard waste | 100 | 7.060 | 0 | 92.94 | 37.15 | 62.85 |
Animal excreta | 100 | --- | --- | 100 | --- | 100 |
Paper and paper products | 100 | 13.82 | 55.30 | 30.88 | 86.0 | 14 |
Cardboard | 100 | 9.14 | 51.70 | 39.16 | 92.4 | 7.6 |
Glass | 100 | 13.46 | 16.44 | 70.1 | 79.0 | 21 |
Plastic | 100 | 36.81 | 30.11 | 33.08 | 97.4 | 2.6 |
Metals | 100 | 6.90 | 62.91 | 30.19 | 98.5 | 1.5 |
Residuals | 100 | --- | --- | 100 | --- | 100 |
Impact Categories | Climate Change (CC) | Human Toxicity, Carcinogenic (HT-C) | Human Toxicity, non-Carcinogenic (HT-NC) | Eco–Toxicity (Ec-T) | Depletion of Abiotic Resources, Fossil (DAR-F) | Depletion of Abiotic Resources (DAR-R) | Particulate Matter (PM) |
---|---|---|---|---|---|---|---|
Units | kg CO2-Eq | CTU | CTU | CTU | MJ | kg antimony-eq | KgPM2.5-eq |
Characterized impacts | 3.16 × 107 | 1.91 × 10−3 | 9.72 × 10−2 | 3.12 × 106 | −9.60 × 107 | 23.53 | −2.35 × 103 |
Junkshop | 3.94 × 103 | 2.87 × 10−7 | 3.47 × 10−5 | 8.292 | 4.36 × 104 | 4.0 × 10−4 | 0.3912 |
Metal transportation | 6.95 × 104 | 1.09 × 10−6 | 4.92 × 10−4 | 2.3 × 103 | 9.1 × 105 | 1.72 × 10−1 | 18.27 |
Glass transportation | 1.23 × 105 | 1.93 × 10−6 | 8.70 × 10−4 | 4.2 × 103 | 1.60 × 106 | 3.04 × 10−1 | 32.3 |
Cardboard transportation | 1.14 × 105 | 1.79 × 10−6 | 8.10 × 10−4 | 3.9 × 103 | 1.49 × 106 | 2.83 × 10−1 | 30.06 |
Plastic transportation | 6.13 × 105 | 9.61 × 10−6 | 4.34 × 10−3 | 2.1 × 104 | 8.0 × 106 | 1.517 | 161.1 |
Paper transportation | 1.14 × 105 | 1.79 × 10−6 | 8 × 10−4 | 3.8 × 103 | 1.5 × 106 | 2.82 × 10−1 | 29.97 |
Glass recycling | −1.21 × 104 | 1.6 × 10−6 | −0.001 | −2.5 × 104 | 1.3 × 107 | 2.24 | −430.7 |
Steel recycling | −4.37 × 106 | −1.1 × 10−4 | 0.02 | 7.2 × 10−4 | −3 × 107 | −2.81 | −449.4 |
Plastic recycling | −4.31 × 106 | 1.76 × 10−6 | −2 × 10−4 | 1.1 × 103 | −1 × 108 | −1.01 × 10−1 | −1060 |
Paper recycling | −7.94 × 106 | −2.84 × 10−3 | −0.084 | 1.29 × 105 | 1.4 × 107 | 24.02 | −537.8 |
Cardboard recycling | 1.51 × 105 | −9.45 × 10−5 | −0.02 | −6 × 105 | −8 × 106 | −2.628 | −169.4 |
Residual waste transport | 8.35 × 104 | 1.31 × 10−6 | 6 × 10−4 | 2.8 × 103 | 1.1 × 106 | 2.07 × 10−1 | 21.97 |
Landfill | 4.7 × 107 | 4.94 × 103 | 1.74 × 10−1 | 3 × 106 | 2.2 × 105 | 4.28 × 10−2 | 4.393 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, A.; Batool, S.A.; Chaudhry, M.N. Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability 2018, 10, 2424. https://doi.org/10.3390/su10072424
Majeed A, Batool SA, Chaudhry MN. Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability. 2018; 10(7):2424. https://doi.org/10.3390/su10072424
Chicago/Turabian StyleMajeed, Asma, Syeda Adila Batool, and Muhammad Nawaz Chaudhry. 2018. "Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan" Sustainability 10, no. 7: 2424. https://doi.org/10.3390/su10072424
APA StyleMajeed, A., Batool, S. A., & Chaudhry, M. N. (2018). Environmental Quantification of the Existing Waste Management System in a Developing World Municipality Using EaseTech: The Case of Bahawalpur, Pakistan. Sustainability, 10(7), 2424. https://doi.org/10.3390/su10072424