Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico)
<p>Study area. (<b>a</b>) Gulf of Mexico and Caribbean Sea basins. (<b>b</b>) Study area detail, where black dots are selected monitoring points, red dots are areas with historic harmful algal bloom (HAB) reports, and green triangles are points sampled in situ for validation.</p> "> Figure 2
<p>Land use in the Yucatán Peninsula adapted from INEGI (National Institute of Statistic and Geography) 2014 land use cartography. Black dots are selected monitoring points.</p> "> Figure 3
<p>Satellite IOP index in the coastal waters of the Yucatán Peninsula during the dry period. White areas are not covered by satellite due to clouds. (<b>a</b>) 7 to 9 April, (<b>b</b>) 13 to 15 April, (<b>c</b>) 19 to 21 April, (<b>d</b>) 22 to 24 April and (<b>e</b>) 28 to 30 April.</p> "> Figure 3 Cont.
<p>Satellite IOP index in the coastal waters of the Yucatán Peninsula during the dry period. White areas are not covered by satellite due to clouds. (<b>a</b>) 7 to 9 April, (<b>b</b>) 13 to 15 April, (<b>c</b>) 19 to 21 April, (<b>d</b>) 22 to 24 April and (<b>e</b>) 28 to 30 April.</p> "> Figure 4
<p>(<b>a</b>) chlorophyll <span class="html-italic">a</span> values and (<b>b</b>) satellite Inherent Optical Properties (IOP) Index in the selected monitoring points (black dots in <a href="#sustainability-10-01894-f001" class="html-fig">Figure 1</a> and <a href="#sustainability-10-01894-f002" class="html-fig">Figure 2</a>) in April 2011. IOP index values above two indicate active bloom conditions. An absence of bars indicates that no satellite information was available due to clouds.</p> "> Figure 5
<p>Sea surface temperatures in the coastal waters of the Yucatán Peninsula during the dry period. (<b>a</b>) 7 to 9 April, (<b>b</b>) 13 to 15 April, (<b>c</b>) 19 to 21 April, (<b>d</b>) 22 to 24 April and (<b>e</b>) 28 to 30 April.</p> "> Figure 6
<p>Satellite IOP index in the coastal waters of the Yucatán Peninsula during the wet period. White areas are not covered by satellite due to clouds. (<b>a</b>) 7 to 9 June, (<b>b</b>) 16 to 18 June, (<b>c</b>) 22 to 24 June, (<b>d</b>) 16 to 18 July, (<b>e</b>) 19 to 21 July, (<b>f</b>) 25 to 27 July, (<b>g</b>) 4 to 6 August, (<b>h</b>) 19 to 21 August and (<b>i</b>) 25 to 27 August.</p> "> Figure 7
<p>(<b>a</b>) Chlorophyll <span class="html-italic">a</span> values and (<b>b</b>) satellite IOP Index at the selected monitoring points (black dots in <a href="#sustainability-10-01894-f001" class="html-fig">Figure 1</a> and <a href="#sustainability-10-01894-f002" class="html-fig">Figure 2</a>) June 2011. IOP Index values above two indicate active bloom conditions. An absence of bars indicates that no satellite information was available due to clouds.</p> "> Figure 8
<p>(<b>a</b>) Chlorophyll <span class="html-italic">a</span> values and (<b>b</b>) satellite IOP Index at the selected monitoring points (black dots on <a href="#sustainability-10-01894-f001" class="html-fig">Figure 1</a> and <a href="#sustainability-10-01894-f002" class="html-fig">Figure 2</a>) July 2011. IOP Index values above two indicate active bloom conditions. An absence of bars indicates no satellite information was available due to clouds.</p> "> Figure 9
<p>(<b>a</b>) Chlorophyll <span class="html-italic">a</span> values and (<b>b</b>) satellite IOP Index at the selected monitoring points (black dots on <a href="#sustainability-10-01894-f001" class="html-fig">Figure 1</a> and <a href="#sustainability-10-01894-f002" class="html-fig">Figure 2</a>) August 2011. IOP Index values above two indicate active bloom conditions. An absence of bars indicates no satellite information was available due to clouds.</p> "> Figure 10
<p>Sea surface temperatures in the coastal waters of the Yucatán Peninsula during the wet period. (<b>a</b>) 7 to 9 June, (<b>b</b>) 16 to 18 June, (<b>c</b>) 22 to 24 June, (<b>d</b>) 16 to 18 July, (<b>e</b>) 19 to 21 July, (<b>f</b>) 25 to 27 July, (<b>g</b>) 4 to 6 August, (<b>h</b>) 19 to 21 August and (<b>i</b>) 25 to 27 August.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Regions
2.2. Image Processing and Satellite IOP Index Calculations
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bentz, J.; Lopes, F.; Calado, H.; Dearden, P. Sustaining marine wildlife tourism through linking Limits of Acceptable Change and zoning in the Wildlife Tourism Model. Mar. Policy 2016, 68, 100–107. [Google Scholar] [CrossRef]
- Jarvis, D.; Stoeckl, N.; Liu, H. The impact of economic, social and environmental factors on trip satisfaction and the likelihood of visitors returning. Tour. Manag. 2016, 52, 1–18. [Google Scholar] [CrossRef]
- Ziegler, J.; Dearden, P.; Rollins, R. But are tourists satisfied? Importance-performance analysis of the whale shark tourism industry on Isla Holbox, Mexico. Tour. Manag. 2012, 33, 692–701. [Google Scholar] [CrossRef]
- Padilla, N.S. The environmental effects of Tourism in Cancun, Mexico. Int. J. Environ. Sci. 2015, 6, 282–294. [Google Scholar] [CrossRef]
- Duffus, D.A.; Dearden, P. Non-consumptive wildlife-oriented recreation, a conceptual framework. Biol. Conserv. 1990, 53, 213–231. [Google Scholar] [CrossRef]
- Stankey, G.H.; McCool, S.F.; Stokes, G.L. Limits of acceptable change: A new framework for managing the Bob Marshall wilderness complex. West. Wildlands 1984, 10, 33–37. [Google Scholar]
- Aguilar-Trujillo, A.C.; Okolodkov, Y.B.; Herrera-Silveira, J.A.; Merino-Virgilio, F.D.C.; Galicia-García, C. Taxocoenosis of epibenthic dinoflagellates in the coastal waters of the northern Yucatan Peninsula before and after the harmful algal bloom event in 2011–2012. Mar. Pollut. Bull. 2017, 119, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, M.J.; Álvarez-Torres, P.; Horak-Romo, K.P.; Ortega-Izaguirre, R. Harmful algal blooms and eutrophication along the Mexican coast of the Gulf of Mexico large marine ecosystem. Environ. Dev. 2017, 22, 120–128. [Google Scholar] [CrossRef]
- Henrichs, D.W.; Hetland, R.D.; Campbell, L. Identifying bloom origins of the toxic dinoflagellate Karenia brevis in the western Gulf of Mexico using a spatially explicit individual-based model. Ecol. Model. 2015, 313, 251–258. [Google Scholar] [CrossRef]
- Murray, G. Constructing Paradise: The Impacts of Big Tourism in the Mexican Coastal Zone. Coast. Manag. 2007, 35, 339–355. [Google Scholar] [CrossRef]
- Castillo-Pavón, O.; Méndez-Ramírez, J.J. The tourist developments and their environmental effects in the Mayan Riviera, 1980–2015. Quivera 2017, 19, 101–118. [Google Scholar]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smayda, T.J. Complexity in the eutrophication–harmful algal bloom relationship, with comment on the importance of grazing. Harmful Algae 2008, 8, 140–151. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of algal blooms: An overview with case studies. J. Coast. Res. 2012, 28, 34–43. [Google Scholar] [CrossRef]
- COFEPRIS (Comisión Federal para la Protección contra Riesgos Sanitarios/Federal Commission for Protection against Health Risks). Available online: https://www.gob.mx/cofepris/acciones-y-programas/antecedentes-en-mexico-76707 (accessed on 9 March 2018).
- Okolodkov, Y.B. A review of Russian plankton research in the Gulf of Mexico and the Caribbean Sea in the 1960–1980s. Hidrobiológica 2003, 13, 207–221. [Google Scholar]
- Signoret, M.; Bulit, C.; Pérez, R. Patrones de distribución de clorofila ay producción primaria en aguas del Golfo de México y del Mar Caribe. Hidrobiológica 1998, 8, 81–88. [Google Scholar]
- Antoine, D.; Morel, A. Oceanic primary production: 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observations. Glob. Biogeochem. Cycles 1996, 10, 43–55. [Google Scholar] [CrossRef]
- Barocio-León, Ó.A.; Millán-Núñez, R.; Santamaría-del-Ángel, E.; González-Silvera, A.; Trees, C.C. Spatial variability of phytoplankton absorption coefficients and pigments off Baja California during November 2002. J. Oceanogr. 2006, 62, 873–885. [Google Scholar] [CrossRef]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Limoges, A.; Londeix, L.; de Vernal, A. Organic-walled dinoflagellate cyst distribution in the Gulf of Mexico. Mar. Micropaleontol. 2013, 102, 51–68. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, M.; Ludsin, S.A.; Rutherford, E.S.; Mason, D.M.; Pangle, K.L.; Marin Jarrin, J.R. Biophysical modeling assessment of the drivers for plankton dynamics at western Lake Erie. Ecol. Model. 2015, 308, 18–33. [Google Scholar] [CrossRef]
- Aguilar-Maldonado, J.A.; Santamaría-del-Ángel, E.; González-Silvera, A.; Cervantes-Rosas, O.; López, L.M.; Gutiérrez-Magness, A.; Cerdeira-Estrada, S.; Sebastiá-Frasquet, M.T. Identification of Phytoplankton Blooms under the Index of Inherent Optical Properties (IOP Index) in Optically Complex Waters. Water 2018, 10, 129. [Google Scholar] [CrossRef]
- Sebastiá Frasquet, M.T.; Estornell Cremades, J.; Rodilla Alamá, M.; Marti Gavila, J.; Falco Giaccaglia, S.L. Estimation of chlorophyll «A» on the Mediterranean coast using a QuickBird image. Revista de Teledetección 2012, 37, 23–33. [Google Scholar]
- Caroppo, C.; Odermatt, D.; Philipson, P.; Bruno, M. Using satellite remote sensing of harmful algal blooms (HABs) in a coastal European site. Phycologia 2017, 56, 28. [Google Scholar]
- Wei, G.; Tang, D.; Wang, S. Distribution of chlorophyll and harmful algal blooms (HABs): A review on space based studies in the coastal environments of Chinese marginal seas. Adv. Space Res. 2008, 41, 12–19. [Google Scholar] [CrossRef]
- Urquhart, E.A.; Schaeffer, B.A.; Stumpf, R.P.; Loftin, K.A.; Werdell, P.J. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae 2017, 67, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar] [CrossRef]
- Malthus, T.J.; Mumby, P.J. Remote sensing of the coastal zone: An overview and priorities for future research. Int. J. Remote Sens. 2003, 24, 2805–2815. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Loisel, H.; Vantrepotte, V.; Norkvist, K.; Mériaux, X.; Kheireddine, M.; Ras, J.; Pujo-Pay, M.; Combet, Y.; Leblanc, K.; Dall’Olmo, G.; et al. Characterization of the Bio-Optical Anomaly and Diurnal Variability of Particulate Matter, as Seen from Scattering and Backscattering Coefficients, in Ultra-Oligotrophic Eddies of the Mediterranean Sea. Biogeosciences 2011, 8, 3295–3317. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z.; et al. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Santamaría-del-Angel, E.; Soto, I.; Millán-Nuñez, R.; González-Silvera, A.; Wolny, J.; Cerdeira-Estrada, S.; Cajal-Medrano, R.; Muller-Karger, F.; Cannizzaro, J.; Padilla-Rosas, Y.; et al. Experiences and Recommendations for Environmental Monitoring Programs. In Environmental Science, Engineering and Technology; Sebastia-Frasquet, M.-T., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2015; p. 32. ISBN 978-1-63482-189-6. [Google Scholar]
- Enriquez, C.; Mariño-Tapia, I.; Jeronimo, G.; Capurro-Filograsso, L. Thermohaline processes in a tropical coastal zone. Cont. Shelf Res. 2013, 69, 101–109. [Google Scholar] [CrossRef]
- García, E. Modificaciones al Sistema Climático de Köppen para la República Mexicana, 5th ed.; Instituto de Geografía: Ciudad de Mexico, Mexico, 2004; ISBN 970-32-1010-4. [Google Scholar]
- CONAGUA (Comisión Nacional del Agua/National Water Comission). Estadísticas del Agua en México. Secretaría de Medio Ambiente y Recursos Naturales. 2016. Available online: http://201.116.60.25/publicaciones/EAM_2016.pdf (accessed on 2 February 2018).
- Arcega-Cabrera, F.; Garza-Pérez, R.; Noreña-Barroso, E.; Oceguera-Vargas, I. Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico. Bull. Environ. Contam. Toxicol. 2015, 94, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Maldonado, Y.; Batllori-Sampedro, E.; Binder, C.R.; Fath, B.D. Local groundwater balance model: Stakeholders’ efforts to address groundwater monitoring and literacy. Hydrol. Sci. J. 2017, 62, 2297–2312. [Google Scholar] [CrossRef]
- Derrien, M.; Arcega-Cabrera, F.; Velazquez Tavera, N.L.; Kantún Manzano, C.A.; Capella Vizcaino, S. Sources and distribution of organic matter along the Ring of Cenotes, Yucatan, Mexico: Sterol markers and statistical approaches. Sci. Total Environ. 2015, 511, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Marin, L.E.; Steinich, B.; Pacheo, J.; Escolero, O.A. Hydrogeology of a contaminated sole-source karst aquifer, Merida, Yucatan, Mexico. Geofís. Int. 2000, 39, 359–365. [Google Scholar]
- INEGI. Available online: http://www.beta.inegi.org.mx/temas/agua/ (accessed on 9 March 2018).
- Ramírez, R.R.; Seeliger, L.; Di Pietro, F. Price, Virtues, Principles: How to Discern What Inspires Best Practices in Water Management? A Case Study about Small Farmers in the Yucatan Peninsula of Mexico. Sustainability 2016, 8, 385. [Google Scholar] [CrossRef]
- Null, K.A.; Knee, K.L.; Crook, E.D.; de Sieyes, N.R.; Rebolledo-Vieyra, M.; Hernández-Terrones, L.; Paytan, A. Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula, Cont. Shelf Res. 2014, 77, 38–50. [Google Scholar] [CrossRef]
- Alvarez-Gongora, C.; Herrera-Silveira, J.A. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone. Mar. Pollut. Bull. 2006, 52, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, T.J.B.; Van Tussenbroek, B.I.; Dennison, W.C. Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows. Estuar. Coast. Shelf Sci. 2005, 64, 191–199. [Google Scholar] [CrossRef]
- Monterrubio, J.; Sosa, P.; Josiam, B. Spring Break and social impact in Cancun, Mexico: A study for tourism management. Turismo y Sociedad 2014, 15, 149–166. [Google Scholar] [CrossRef]
- Lee, Z.P.; Du, K.P.; Arnone, R. A model for the diffuse attenuation coefficient of downwelling irradiance. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Roesler Collin, S.; Perry, M.J.; Carder Kendall, L. Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr. 1989, 34, 1510–1523. [Google Scholar] [CrossRef] [Green Version]
- SMN (Servicio Meteorológico Nacional/National Metereological Service). 2018. Available online: http://smn.cna.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias (accessed on 9 March 2018).
- Carstensen, J.; Klais, R.; Cloern, J.E. Phytoplankton blooms in estuarine and coastal waters: Seasonal patterns and key species. Estuar. Coast. Shelf Sci. 2015, 162, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Winder, M.; Cloern, J.E. The annual cycles of phytoplankton biomass. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3215–3226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloern, J.E.; Jassby, A. Complex seasonal patterns of primary producers at the land-sea interface. Ecol. Lett. 2008, 11, 1294–1303. [Google Scholar] [CrossRef] [PubMed]
- Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1978, 1, 493–509. [Google Scholar]
- Athié, G.; Candela, J.; Sheinbaum, J.; Badanf, A.; Ochoa, J. Yucatán Current variability through the Cozumel and Yucatán channels. Cienc. Mar. 2011, 37, 471–492. [Google Scholar] [CrossRef]
- Pérez, R.; Muller-Karger, F.E.; Victoria, I.; Melo, N.; Cerdeira, S. Cuban, Mexican, US researchers probing mysteries of Yucatan current. EOS Trans. Am. Geophys. Union 1999, 80, 153–158. [Google Scholar] [CrossRef]
- Merino, M. Upwelling on the Yucatán Shelf: Hydrographic evidence. J. Mar. Syst. 1997, 13, 101–121. [Google Scholar] [CrossRef]
- Beusen, A.H.W.; Slomp, C.P.; Bouwman, A.F. Global land–ocean linkage: Direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ. Res. Lett. 2013, 8, 34–35. [Google Scholar] [CrossRef]
- Pacheco-Castro, R.; Pacheco Avila, J.; Ye, M.; Cabrera Sansores, A. Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer. Groundwater 2018, 56, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.; Freile-Pelegrín, Y.; Robledo, D. Mariculture of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) color strains in tropical waters of Yucatán, México. Aquaculture 2004, 239, 161–177. [Google Scholar] [CrossRef]
- Sebastiá- Frasquet, M.T.; Rodilla, M.; Sanchis, J.A.; Altur, V.; Gadea, I.; Falco, S. Influence of nutrient inputs from a wetland dominated by agriculture on the phytoplankton community in a shallow harbour at the Spanish Mediterranean coast. Agric. Ecosyst. Environ. 2012, 152, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, C.; Mariño-Tapia, I.J.; Herrera-Silveira, J.A. Dispersion in the Yucatan coastal zone: Implications for red tide events. Cont. Shelf Res. 2010, 30, 127–137. [Google Scholar] [CrossRef]
ID | Coordinate X | Coordinate Y | Location | 1990 | 2000 | 2010 |
---|---|---|---|---|---|---|
1 | −87.000 | 20.551 | Cozumel | 33,884 | 58,673 | 77,236 |
2 | −86.705 | 21.224 | Cancun | 159,723 | 392,643 | 628,306 |
3 | −87.408 | 21.614 | Holbox | 927 | 1193 | 1486 |
4 | −89.663 | 21.367 | Progreso | 35,280 | 43,850 | 37,369 |
−89.630 | 20.980 | Mérida | 522,849 | 658,698 | 777,615 | |
5 | −90.613 | 19.914 | Campeche | 148,211 | 189,817 | 220,389 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Maldonado, J.A.; Santamaría-Del-Ángel, E.; González-Silvera, A.; Cervantes-Rosas, O.D.; Sebastiá-Frasquet, M.-T. Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico). Sustainability 2018, 10, 1894. https://doi.org/10.3390/su10061894
Aguilar-Maldonado JA, Santamaría-Del-Ángel E, González-Silvera A, Cervantes-Rosas OD, Sebastiá-Frasquet M-T. Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico). Sustainability. 2018; 10(6):1894. https://doi.org/10.3390/su10061894
Chicago/Turabian StyleAguilar-Maldonado, Jesús A., Eduardo Santamaría-Del-Ángel, Adriana González-Silvera, Omar D. Cervantes-Rosas, and María-Teresa Sebastiá-Frasquet. 2018. "Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico)" Sustainability 10, no. 6: 1894. https://doi.org/10.3390/su10061894
APA StyleAguilar-Maldonado, J. A., Santamaría-Del-Ángel, E., González-Silvera, A., Cervantes-Rosas, O. D., & Sebastiá-Frasquet, M.-T. (2018). Mapping Satellite Inherent Optical Properties Index in Coastal Waters of the Yucatán Peninsula (Mexico). Sustainability, 10(6), 1894. https://doi.org/10.3390/su10061894