A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem
Abstract
:1. Introduction
- Project packaging;
- Invitation;
- Prequalification;
- Shortlisting;
- Bid evaluation.
2. Preliminaries
3. Proposed Uncertain Group Decision Model
3.1. Determine the DMs’ Importance, Criteria’ Weights and Aggregated IFS Decision Matrix
- (1)
- To denote the DMs’ importance from the IF-decision matrix, the method of Entropy weights [50] is given by:
- (2)
- After weights’ values for the DMs are obtained, the evaluating values described by different DMs are aggregated regarding the IFWG operator by:
- (3)
- To provide as weights of evaluation criteria, IF-Entropy is as below [50]:
3.2. Ranking of Alternatives by the Model
3.3. Algorithm
- step 1.
- A group of DMs is established to solve the complicated decision problem by considering conflicting criteria;
- step 2.
- Proper criteria are reported for the selection problem;
- step 3.
- Provide the ratings of each candidate versus each selected criterion for each DM;
- step 4.
- Weight of each DM from the decision matrix is calculated by Equations (15) and (16);
- step 5.
- Construct an aggregated IFS decision matrix by Equations (17) and (18);
- step 6.
- Present the weights of appraisement criteria by Equations (19) and (20);
- step 7.
- Identify the CS and DS. Find,,,, and for pair-wise comparisons of candidates by Equations (21)–(26);
- step 8.
- Form the concordance matrix by Equations (27) and (28);
- step 9.
- Calculate the discordance matrix by Equations (29) and (30);
- step 10.
- Form CD matrix P by Equations (33)–(36);
- step 11.
- Form DD matrix O by Equations (37)–(40);
- step 12.
- Determine the values of ,, and by Equations (41)–(44);
- step 13.
- Compute the values of indices and are by Equations (45) and (46);
- step 14.
- Calculate values of ranking index () using Equation (47). Rank the candidates in decreasing order.
4. Solution of Contractor Assessment Problem
4.1. Implementation and Computational Results
- Firstly, this study takes account of key advantages of IFSs and GRA concurrently to handle the uncertain information via the group decision process and to involve more flexibility to illustrate the imprecise and vague data of the several experience DMs.
- Secondly, a new ranking method based on the compromise solution within a new version of classical ELECTRE approach is developed to distinguish potential candidates of the complex CSP as a reasonable way of the optimal ranking, and to introduce stable decisions in the construction industry with uncertain conditions.
4.2. Sensitivity Analysis
5. Concluding Remarks and Future Research
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Hatush, Z.; Skitmore, M. Criteria for contractor selection. Constr. Manag. Econ. 1997, 15, 19–38. [Google Scholar] [CrossRef] [Green Version]
- Vahdani, B.; Mousavi, S.M.; Hashemi, H.; Mousakhani, M.; Ebrahimnejad, S. A new hybrid model based on least squares support vector machine for project selection problem in construction industry. Arab. J. Sci. Eng. 2014, 39, 4301–4314. [Google Scholar] [CrossRef]
- Liu, P.; Chen, S.M. Multiattribute group decision making based on intuitionistic 2-tuple linguistic information. Inf. Sci. 2018, 430, 599–619. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Vilutienė, T.; Turskis, Z.; Tamosaitiene, J. Contractor selection for construction works by applying SAW-G and TOPSIS grey techniques. J. Bus. Econ. Manag. 2010, 11, 34–55. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Selecting a Contractor by Using a Novel Method for Multiple Attribute Analysis: Weighted Aggregated Sum Product Assessment with Grey Values (WASPAS-G). Stud. Inform. Control 2015, 24, 141–150. [Google Scholar] [CrossRef]
- Zagorskas, J.; Zavadskas, E.K.; Turskis, Z.; Burinskienė, M.; Blumberga, A.; Blumberga, D. Thermal insulation alternatives of historic brick buildings in Baltic Sea Region. Energy Build. 2014, 78, 35–42. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Turskis, Z.; Kalibatas, D. An approach to multi-attribute assessment of indoor environment before and after refurbishment of dwellings. J. Environ. Eng. Landsc. Manag. 2009, 17, 5–11. [Google Scholar] [CrossRef]
- Hashemkhani Zolfani, S.; Zavadskas, E.K.; Turskis, Z. Design of products with both International and Local perspectives based on Yin-Yang balance theory and SWARA method. Econ. Res.-Ekon. Istraž. 2013, 26, 153–166. [Google Scholar]
- Gitinavard, H.; Mousavi, S.M.; Vahdani, B. Soft computing-based new interval-valued hesitant fuzzy multi-criteria group assessment method with last aggregation to industrial decision problems. Soft Comput. 2017, 21, 3247–3265. [Google Scholar] [CrossRef]
- Ebrahimnejad, S.; Hashemi, H.; Mousavi, S.M.; Vahdani, B. A New Interval-valued Intuitionistic Fuzzy Model to Group Decision Making for the Selection of Outsourcing Providers. J. Econ. Comput. Econ. Cybern. Stud. Res. 2015, 49, 269–290. [Google Scholar]
- Khanzadi, M.; Turskis, Z.; Ghodrati Amiri, G.; Chalekaee, A. A model of discrete zero-sum two-person matrix games with grey numbers to solve dispute resolution problems in construction. J. Civ. Eng. Manag. 2017, 23, 824–835. [Google Scholar] [CrossRef]
- Wu, M.C.; Chen, T.Y. The ELECTRE multicriteria analysis approach based on Atanassov’s intuitionistic fuzzy sets. Expert Syst. Appl. 2011, 38, 12318–12327. [Google Scholar] [CrossRef]
- Roy, B. Classement et choix en présence de points de vue multiples. Revue française d’automatique, d’informatique et de recherche opérationnelle. Recherche Opér. 1968, 2, 57–75. [Google Scholar]
- Mousavi, M.; Gitinavard, H.; Mousavi, S.M. A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information. Renew. Sustain. Energy Rev. 2017, 68, 774–787. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, S.; Liao, X.; Qi, X. ELECTRE methods in prioritized MCDM environment. Inf. Sci. 2018, 424, 301–316. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Hajiagha, S.H.R.; Zavadskas, E.K.; Mahdiraji, H.A. Multicriteria group decision making with ELECTRE III method based on interval-valued intuitionistic fuzzy information. Appl. Math. Model. 2016, 40, 1554–1564. [Google Scholar] [CrossRef]
- Azadnia, A.H.; Ghadimi, P.; Saman, M.Z.M.; Wong, K.Y.; Sharif, S. Supplier selection: A hybrid approach using ELECTRE and fuzzy clustering. In International Conference on Informatics Engineering and Information Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 663–676. [Google Scholar]
- Sevkli, M. An application of the fuzzy ELECTRE method for supplier selection. Int. J. Prod. Res. 2010, 48, 3393–3405. [Google Scholar] [CrossRef]
- Teixeira de Almeida, A. Multicriteria decision model for outsourcing contracts selection based on utility function and ELECTRE method. Comput. Oper. Res. 2007, 34, 3569–3574. [Google Scholar] [CrossRef]
- Montazer, G.A.; Saremi, H.Q.; Ramezani, M. Design a new mixed expert decision aiding system using fuzzy ELECTRE III method for vendor selection. Expert Syst. Appl. 2009, 36, 10837–10847. [Google Scholar] [CrossRef]
- Marzouk, M. An application of ELECTRE III to contractor selection. In Construction Research Congress 2010: Innovation for Reshaping Construction Practice; Ruwanpura, J., Mohamed, Y., Lee, S.H., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2010; pp. 1316–1324. [Google Scholar]
- You, X.; Chen, T.; Yang, Q. Approach to multi-criteria group decision-making problems based on the best-worst-method and electre method. Symmetry 2016, 8, 95. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Vilutienė, T.; Turskis, Z.; Šaparauskas, J. Multi-criteria analysis of Projects’ performance in construction. Arch. Civ. Mech. Eng. 2014, 14, 114–121. [Google Scholar] [CrossRef]
- Hashemi, H.; Mousavi, S.M.; Tavakkoli-Moghaddam, R.; Gholipour, Y. Compromise ranking approach with bootstrap confidence intervals for risk assessment in port management projects. J. Manag. Eng. (ASCE) 2013, 29, 334–344. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, G.; Wu, H. Evaluating investment risks of metallic mines using an extended TOPSIS method with linguistic neutrosophic numbers. Symmetry 2017, 9, 149. [Google Scholar] [CrossRef]
- Hashemi, H.; Bazargan, J.; Mousavi, S.M.; Vahdani, B. An extended compromise ratio model with an application to reservoir flood control operation under an interval-valued intuitionistic fuzzy environment. Appl. Math. Model. 2014, 38, 3495–3511. [Google Scholar] [CrossRef]
- Nie, R.X.; Wang, J.Q.; Zhang, H.Y. Solving solar-wind power station location problem using an extended weighted aggregated sum product assessment (WASPAS) technique with interval neutrosophic sets. Symmetry 2017, 9, 106. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Hajiagha, S.H.R.; Hashemi, S.S. Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). Appl. Soft Comput. 2014, 24, 1013–1021. [Google Scholar] [CrossRef]
- Luo, S.Z.; Cheng, P.F.; Wang, J.Q.; Huang, Y.J. Selecting project delivery systems based on simplified neutrosophic linguistic preference relations. Symmetry 2017, 9, 151. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic preference relations and their application in group decision making. Inf. Sci. 2007, 177, 2363–2379. [Google Scholar] [CrossRef]
- Chen, R.Y. A problem-solving approach to product design using decision tree induction based on intuitionistic fuzzy. Eur. J. Oper. Res. 2009, 196, 266–272. [Google Scholar] [CrossRef]
- Ye, J. Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur. J. Oper. Res. 2010, 205, 202–204. [Google Scholar] [CrossRef]
- Li, D.F.; Chen, G.H.; Huang, Z.G. Linear programming method for multi-attribute group decision making using IF sets. Inf. Sci. 2010, 180, 1591–1609. [Google Scholar] [CrossRef]
- Liu, P. Multiple attribute decision-making methods based on normal intuitionistic fuzzy interaction aggregation operators. Symmetry 2017, 9, 261. [Google Scholar] [CrossRef]
- Fouladgar, M.M.; Yazdani-Chamzini, A.; Zavadskas, E.K.; Yakhchali, S.H.; Ghasempourabadi, M.H. Project portfolio selection using fuzzy AHP and VIKOR techniques. Transform. Bus. Econ. 2012, 11, 213–231. [Google Scholar]
- Hashemi, H.; Bazargan, J.; Mousavi, S.M. A Compromise Ratio Method with an Application to Water Resources Management: An Intuitionistic Fuzzy Set. Water Res. Manag. 2013, 27, 2029–2051. [Google Scholar] [CrossRef]
- Zhao, J.; You, X.Y.; Liu, H.C.; Wu, S.M. An extended VIKOR method using intuitionistic fuzzy sets and combination weights for supplier selection. Symmetry 2017, 9, 169. [Google Scholar] [CrossRef]
- Hosseinzadeh, F.; Sarpoolaki, H.; Hashemi, H. Precursor Selection for Sol-Gel Synthesis of Titanium Carbide Nanopowders by a New Intuitionistic Fuzzy Multi-Attribute Group Decision-Making Model. Int. J. Appl. Ceram. Technol. 2014, 11, 681–698. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Antucheviciene, J.; Razavi Hajiagha, S.H.; Hashemi, S.S. The interval-valued intuitionistic fuzzy MULTIMOORA method for group decision making in engineering. Math. Probl. Eng. 2015, 560690. [Google Scholar] [CrossRef]
- Keshavaraz Ghorabaee, M.K.; Amiri, M.; Sadaghiani, J.S.; Zavadskas, E.K. Multi-Criteria Project Selection Using an Extended VIKOR Method with Interval Type-2 Fuzzy Sets. Int. J. Inf. Technol. Decis. Mak. 2015, 14, 993–1016. [Google Scholar] [CrossRef]
- Shu, M.H.; Cheng, C.H.; Chang, J.R. Using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly. Microelectron. Reliab. 2006, 46, 2139–2148. [Google Scholar] [CrossRef]
- De, S.K.; Biswas, R.; Roy, A.R. Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 477–484. [Google Scholar] [CrossRef]
- Chen, S.M.; Tan, J.M. Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 1994, 67, 163–172. [Google Scholar] [CrossRef]
- Hong, D.H.; Choi, C.H. Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 2000, 114, 103–113. [Google Scholar] [CrossRef]
- Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication Theory of Secrecy Systems. Bell Syst. Tech. J. 1949, 28, 656–715. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute group decision-making methods with completely unknown weights in intuitionistic fuzzy setting and interval-valued intuitionistic fuzzy setting. Group Decis. Negot. 2013, 22, 173–188. [Google Scholar] [CrossRef]
- Celik, E.; Bilisik, O.N.; Erdogan, M.; Gumus, A.T.; Baracli, H. An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul. Transp. Res. Part E Logist. Transp. Rev. 2013, 58, 28–51. [Google Scholar] [CrossRef]
- Chen, W.H. A grey-based approach for distribution network reconfiguration. J. Chin. Inst. Eng. 2005, 28, 795–802. [Google Scholar] [CrossRef]
- Kuo, M.S.; Liang, G.S. Combining VIKOR with GRA techniques to evaluate service quality of airports under fuzzy environment. Expert Syst. Appl. 2011, 38, 1304–1312. [Google Scholar] [CrossRef]
- Wei, G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38, 11671–11677. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Z.; Volvačiovas, R.; Kildiene, S. Multi-criteria assessment model of technologies. Stud. Inform. Control 2013, 22, 249–258. [Google Scholar] [CrossRef]
- Turskis, Z.; Juodagalvienė, B. A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses. J. Civ. Eng. Manag. 2016, 22, 1078–1087. [Google Scholar] [CrossRef]
- Turskis, Z.; Daniūnas, A.; Zavadskas, E.K.; Medzvieckas, J. Multicriteria evaluation of building foundation alternatives. Comput.-Aided Civ. Infrastruct. Eng. 2016, 31, 717–729. [Google Scholar] [CrossRef]
- Vahdani, B.; Mousavi, S.M.; Hashemi, H.; Mousakhani, M.; Tavakkoli-Moghaddam, R. A new compromise solution method for fuzzy group decision-making problems with an application to the contractor selection. Eng. Appl. Artif. Intell. 2013, 26, 779–788. [Google Scholar] [CrossRef]
Linguistic Variables | Intuitionistic Fuzzy Numbers |
---|---|
Verygood (VG) | |
Good (G) | |
Medium good (MG) | |
Fair (F) | |
Medium poor (MP) | |
Poor (P) | |
Verypoor (VP) |
Criteria | Contractors | Decision Makers | ||
---|---|---|---|---|
DM1 | DM2 | DM3 | ||
CR1 | CO1 | F | MP | MP |
CO2 | G | MG | VG | |
CO3 | MP | F | F | |
CO4 | MG | G | F | |
CO5 | MG | F | F | |
CR2 | CO1 | F | MP | MP |
CO2 | VG | G | G | |
CO3 | MG | G | G | |
CO4 | G | MG | VG | |
CO5 | MG | F | F | |
CR3 | CO1 | VG | VG | G |
CO2 | MG | G | G | |
CO3 | G | VG | MG | |
CO4 | MG | G | G | |
CO5 | F | MP | MG | |
CR4 | CO1 | MP | F | F |
CO2 | G | MG | MG | |
CO3 | F | MP | MG | |
CO4 | G | VG | MG | |
CO5 | MG | G | F | |
CR5 | CO1 | F | MG | MP |
CO2 | VG | G | G | |
CO3 | MG | F | G | |
CO4 | MG | F | G | |
CO5 | MG | G | G | |
CR6 | CO1 | F | MG | MP |
CO2 | VG | VG | G | |
CO3 | MG | F | F | |
CO4 | G | VG | MG | |
CO5 | G | VG | MG | |
CR7 | CO1 | MG | G | G |
CO2 | G | MG | VG | |
CO3 | MG | F | F | |
CO4 | G | MG | VG | |
CO5 | G | MG | MG | |
CR8 | CO1 | F | MG | MP |
CO2 | MG | G | G | |
CO3 | F | MG | MG | |
CO4 | MG | F | F | |
CO5 | MG | F | F | |
CR9 | CO1 | MG | G | F |
CO2 | VG | G | G | |
CO3 | MG | G | F | |
CO4 | G | MG | MG | |
CO5 | MG | G | G | |
CR10 | CO1 | F | MG | MG |
CO2 | G | VG | VG | |
CO3 | F | MG | MG | |
CO4 | G | VG | MG | |
CO5 | MG | F | G | |
CR11 | CO1 | MG | F | F |
CO2 | VG | G | G | |
CO3 | MG | F | G | |
CO4 | G | VG | MG | |
CO5 | MG | F | G | |
CR12 | CO1 | F | MP | MP |
CO2 | MG | F | F | |
CO3 | F | MG | MP | |
CO4 | F | MP | MG | |
CO5 | MG | G | F | |
CR13 | CO1 | MG | G | G |
CO2 | G | VG | VG | |
CO3 | MG | F | G | |
CO4 | G | VG | VG | |
CO5 | G | MG | VG | |
CR14 | CO1 | MP | P | F |
CO2 | F | MG | MP | |
CO3 | MP | F | P | |
CO4 | F | MP | MP | |
CO5 | F | MG | MP | |
CR15 | CO1 | MP | F | P |
CO2 | F | MG | MP | |
CO3 | F | MP | MP | |
CO4 | F | MP | MP | |
CO5 | F | MG | MG | |
CR16 | CO1 | F | MP | MP |
CO2 | MG | F | G | |
CO3 | F | MP | MG | |
CO4 | MG | F | F | |
CO5 | F | MP | MP | |
CR17 | CO1 | F | MG | MG |
CO2 | MG | F | F | |
CO3 | MG | G | F | |
CO4 | MG | G | G | |
CO5 | F | MG | MG | |
CR18 | CO1 | MG | G | G |
CO2 | VG | VG | G | |
CO3 | G | MG | VG | |
CO4 | G | VG | MG | |
CO5 | MG | G | F | |
CR19 | CO1 | F | MP | MP |
CO2 | G | VG | VG | |
CO3 | MG | F | G | |
CO4 | G | MG | VG | |
CO5 | MG | F | F | |
CR20 | CO1 | MG | F | G |
CO2 | G | VG | MG | |
CO3 | MG | G | F | |
CO4 | G | VG | MG | |
CO5 | G | VG | MG |
Criteria | CR1 | CR2 | CR3 | CR4 | |
Contractors | |||||
CO1 | |||||
CO2 | |||||
CO3 | |||||
CO4 | |||||
CO5 | |||||
Criteria | CR5 | CR6 | CR7 | CR8 | |
Contractors | |||||
CO2 | |||||
CO3 | |||||
CO4 | |||||
CO5 | |||||
Criteria | CR9 | CR10 | CR11 | CR12 | |
Contractors | |||||
CO2 | |||||
CO3 | |||||
CO4 | |||||
CO5 | |||||
Criteria | CR13 | CR14 | CR15 | CR16 | |
Contractors | |||||
CO2 | |||||
CO3 | |||||
CO4 | |||||
CO5 | |||||
Criteria | CR17 | CR18 | CR19 | CR20 | |
Contractors | |||||
CO2 | |||||
CO3 | |||||
CO4 | |||||
CO5 |
Criteria | CR1 | CR2 | CR3 | CR4 | CR5 |
Weights | 0.038 | 0.055 | 0.063 | 0.041 | 0.058 |
Criteria | CR6 | CR7 | CR8 | CR9 | CR10 |
Weights | 0.059 | 0.061 | 0.028 | 0.064 | 0.059 |
Criteria | CR11 | CR12 | CR13 | CR14 | CR15 |
Weights | 0.062 | 0.020 | 0.082 | 0.021 | 0.020 |
Criteria | CR16 | CR17 | CR18 | CR19 | CR20 |
Weights | 0.022 | 0.040 | 0.078 | 0.056 | 0.073 |
Contractors | Final Ranking (Proposed Model) | Final Ranking (Fuzzy VIKOR by [58]) | |
---|---|---|---|
CO1 | 0.000 | 5 | 5 |
CO2 | 1.000 | 1 | 1 |
CO3 | 0.369 | 4 | 4 |
CO4 | 0.599 | 2 | 2 |
CO5 | 0.443 | 3 | 3 |
ρ Value | Contractors | |||||
---|---|---|---|---|---|---|
CO1 | CO2 | CO3 | CO4 | CO5 | ||
ρ = 0.1 | 0.000 | 1.000 | 0.377 | 0.618 | 0.441 | |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.2 | Qi | 0.000 | 1.000 | 0.374 | 0.611 | 0.442 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.3 | Qi | 0.000 | 1.000 | 0.372 | 0.606 | 0.442 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.4 | Qi | 0.000 | 1.000 | 0.370 | 0.602 | 0.443 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.5 | Qi | 0.000 | 1.000 | 0.369 | 0.599 | 0.443 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.6 | Qi | 0.000 | 1.000 | 0.368 | 0.597 | 0.444 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.7 | Qi | 0.000 | 1.000 | 0.368 | 0.595 | 0.444 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.8 | Qi | 0.000 | 1.000 | 0.367 | 0.594 | 0.444 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 0.9 | Qi | 0.000 | 1.000 | 0.366 | 0.592 | 0.444 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 | |
ρ = 1 | Qi | 0.000 | 1.000 | 0.366 | 0.591 | 0.445 |
Preference order ranking | 5 | 1 | 4 | 2 | 3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, H.; Mousavi, S.M.; Zavadskas, E.K.; Chalekaee, A.; Turskis, Z. A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem. Sustainability 2018, 10, 1635. https://doi.org/10.3390/su10051635
Hashemi H, Mousavi SM, Zavadskas EK, Chalekaee A, Turskis Z. A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem. Sustainability. 2018; 10(5):1635. https://doi.org/10.3390/su10051635
Chicago/Turabian StyleHashemi, Hassan, Seyed Meysam Mousavi, Edmundas Kazimieras Zavadskas, Alireza Chalekaee, and Zenonas Turskis. 2018. "A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem" Sustainability 10, no. 5: 1635. https://doi.org/10.3390/su10051635
APA StyleHashemi, H., Mousavi, S. M., Zavadskas, E. K., Chalekaee, A., & Turskis, Z. (2018). A New Group Decision Model Based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for Contractor Assessment Problem. Sustainability, 10(5), 1635. https://doi.org/10.3390/su10051635