The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland)
<p>The concept of planetary boundaries [<a href="#B10-sustainability-10-01083" class="html-bibr">10</a>].</p> "> Figure 2
<p>Land uses in Wrocław Larger Urban Zone.</p> "> Figure 3
<p>Land uses in analyzed scenarios.</p> "> Figure 4
<p>Visualization of the exposure of urban areas to the UHI impact in the three scenarios.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cellular Automata Modelling
2.2. Scenario-Based Approach
2.3. Land Use Modelling
2.4. UHI Impact
- The first factor takes into account wind chill, which is connected to the proximity of water bodies. This factor is especially important in the case of Wrocław, as there are five rivers in the city, and the main river (Odra) is divided into parallel branches in the city center, reaching around 50 m in width. Bodies of water may serve as ventilation corridors. Based on this factor, urban areas within a 300 m buffer zone from bodies of water were excluded from the UHI exposure calculations [49,70].
- The second factor, similar to the first one, takes into account the temperature reduction caused by the proximity of green infrastructure. In the case of high density green areas, these may reduce the thermal stress as the green infrastructure does not heat up as much as the built-up area. Shading by vegetation keeps the air cooler by acting as a solar radiation interceptor that reflects and absorbs radiant energy [71]. As the temperature between neighboring areas tends to equalize, urban areas in a close proximity of green infrastructure—300 m from urban green areas and forests [50]—were also excluded from the UHI exposure assessment.
- The third factor reflects the mechanism of warming up the centers of urban clusters. In the case of Wrocław, it is assumed that the temperature of the area is influenced by the surrounding areas within a range of 500 m [70]. Temperature of areas in the transitional zone can be partly reduced by the neighborhood from one side. The temperature in areas at the urban edge is reduced by heat fluxes (so-called city-country breezes) [71]. Therefore, in order to select urban areas exposed to the UHI impact, a core analysis was made in two ranges: 250 m–500 m from the patch edge (m-UHI–moderate exposure to UHI) and more than 500 m from the patch edge (h-UHI—high exposure to UHI). The core analysis was calculated by inner-buffer zones.
3. Results
3.1. Calibration and Verification of the Cellular Automata Model
3.2. Development Scenarios
3.3. Land Use Projections
3.4. UHI Exposure Assessment
4. Discussion
5. Conclusions
Conflicts of Interest
References
- Dąbrowska, J.; Bawiec, A.; Pawęska, K.; Kamińska, J.; Stodolak, R. Assessing the Impact of Wastewater Effluent Diversion on Water Quality. Pol. J. Environ. Stud. 2017, 26, 9–16. [Google Scholar] [CrossRef]
- Jawecki, B.; Lorenc, M.W.; Tokarczyk-Dorociak, K. Quarries in the landscape of the county of Strzelin—Native rock materials in the local architecture. Z. Deutsch. Gesellsch. Geowissensch. 2015, 166, 205–225. [Google Scholar] [CrossRef] [PubMed]
- Żyromski, A.; Biniak-Pieróg, M.; Burszta-Adamiak, E.; Zamiar, Z. Evaluation of relationship between air pollutant concentration and meteorological elements in winter months. J. Water Land Dev. 2014, 22, 25–32. [Google Scholar] [CrossRef]
- Kazak, J.; Szewrański, S. Indicator-based environmental assessment of spatial planning with the use of CommunityViz. In Proceedings of the 10th International Symposium Geoinformatics for City Transformations, GIS Ostrava 2013, Ostrava, Czech Republic, 21–23 January 2013. [Google Scholar]
- Randers, J. 2052: A Global Forecast for the Next Forty Years; Chelsea Green Publishing House: White River Junction, VT, USA, 2012. [Google Scholar]
- Galaz, V.; Biermann, F.; Folke, C.; Nilsson, M.; Olsson, P. Global environmental governance and planetary boundaries: An introduction. Ecol. Econ. 2012, 81, 1–3. [Google Scholar] [CrossRef]
- Biermann, F. Planetary boundaries and earth system governance: Exploring the links. Ecol. Econ. 2012, 81, 4–9. [Google Scholar] [CrossRef]
- Steffen, W.; Smith, M.S. Planetary boundaries, equity and global sustainability: Why wealthy countries could benefit from more equity. Curr. Opin. Environ. Sustain. 2013, 5, 403–408. [Google Scholar] [CrossRef]
- Baum, S.D.; Handoh, I.C. Integrating the planetary boundaries and global catastrophic risk paradigms. Ecol. Econ. 2014, 107, 13–21. [Google Scholar] [CrossRef]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- United Nations. United Nations Framework Convention on Climate Change; United Nations: New York, NY, USA, 1992. [Google Scholar]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- United Nations. Development Programme. Sustainable Urbanization Strategy UN DP’s Support to Sustainable, Inclusive and Resilient Cities in the Developing World; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Świąder, M.; Szewrański, S.; Kazak, J. Spatial-Temporal Diversification of Poverty in Wroclaw. Procedia Eng. 2016, 161, 1596–1600. [Google Scholar] [CrossRef]
- Sinoo, M.M.; van Hoof, J.; Kort, H.S.M. Light conditions for older adults in the nursing home: Assessment of environmental illuminances and colour temperature. Build. Environ. 2011, 46, 1917–1927. [Google Scholar] [CrossRef]
- Świąder, M.; Szewrański, S.; Kazak, J. Poverty Risk Index as A New Methodology for Social Inequality Distribution Assessment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072021. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, H.; Zhang, X. Sustainable urbanization in China: A comprehensive literature review. Cities 2016, 55, 82–93. [Google Scholar] [CrossRef]
- Stacherzak, A.; Hełdak, M.; Raszka, B. Planning documents and sustainable development of a commune in Poland. WIT Trans. Ecol. Environ. 2012, 162, 23–34. [Google Scholar] [CrossRef]
- Lu, X.; Ke, S. Evaluating the effectiveness of sustainable urban land use in China from the perspective of sustainable urbanization. Habitat Int. 2017. [Google Scholar] [CrossRef]
- Zoomers, A.; van Noorloos, F.; Otsuki, K.; Steel, G.; van Westen, G. The Rush for Land in an Urbanizing World: From Land Grabbing Toward Developing Safe, Resilient, and Sustainable Cities and Landscapes. World Dev. 2016, 92, 242–252. [Google Scholar] [CrossRef]
- Kröger, M.; Schäfer, M. Scenario development as a tool for interdisciplinary integration processes in sustainable land use research. Futures 2016, 84, 64–81. [Google Scholar] [CrossRef]
- Hermanns, T.; Helming, K.; König, H.J.; Schmidt, K.; Li, Q.; Faust, H. Sustainability impact assessment of peatland-use scenarios: Confronting land use supply with demand. Ecosyst. Serv. 2017, 26, 365–376. [Google Scholar] [CrossRef]
- Płuciennik, M.; Hełdak, M.; Szczepański, J.; Patrzałek, C. Application of Spatial Models in Making Location Decisions of Wind Power Plant in Poland. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072016. [Google Scholar] [CrossRef]
- Geng, B.; Zheng, X.; Fu, M. Scenario analysis of sustainable intensive land use based on SD model. Sustain. Cities Soc. 2017, 29, 193–202. [Google Scholar] [CrossRef]
- Bua, L.; van Duin, J.H.R.; Wiegmans, B.; Luo, Z.; Yin, C. Selection of city distribution locations in urbanized areas. Procedia Soc. Behav. Sci. 2012, 39, 556–567. [Google Scholar] [CrossRef]
- Kazak, J.; van Hoof, J.; Szewranski, S. Challenges in the wind turbines location process in Central Europe—The use of spatial decision support systems. Renew. Sustain. Energy Rev. 2017, 76, 425–433. [Google Scholar] [CrossRef]
- Forys, I.; Putek-Szelag, E. Methods of linear ordering in estimation of potential of Polish market of agricultural property. Actual Probl. Econ. 2014, 151, 542–550. [Google Scholar]
- Janik, G.; Olszewska, B.; Pływaczyk, L.; Łyczko, W.; Albert, M.; Nowicka, E. Applicability of Geostatistical Tools and Fractal Theory for the Estimation of the Effect of a River on Water Relations in Adjacent Area. River Res. Appl. 2016, 32, 1342–1354. [Google Scholar] [CrossRef]
- Pontius, R.G.; Si, K. Spatial Decision Support Systems. In International Encyclopedia of the Social & Behavioral Sciences, 2nd ed.; Wright, J.D., Ed.; Elsevier: Oxford, UK, 2015; Volume 23, pp. 136–141. [Google Scholar] [CrossRef]
- Gong, J.; Li, J.; Yang, J.; Li, S.; Tang, W. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosyst Serv. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Noszczyk, T.; Rutkowska, A.; Hernik, J. Determining Changes in Land Use Structure in Małopolska Using Statistical Methods. Pol. J. Environ. Stud. 2017, 26, 211–220. [Google Scholar] [CrossRef]
- Chai, J.; Wang, Z.; Zhang, H. Integrated Evaluation of Coupling Coordination for Land Use Change and Ecological Security: A Case Study in Wuhan City of Hubei Province, China. Int. J. Environ. Res. Public Health 2017, 14, 1435. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Zhang, H.; Pan, W. Detecting Urban Growth Patterns and Wetland Conversion Processes in a Natural Wetlands Distribution Area. Pol. J. Environ. Stud. 2015, 24, 1919–1929. [Google Scholar] [CrossRef]
- Ghodousi, M.; Atabi, F.; Nouri, J.; Gharagozlou, A. Air Quality Management in Tehran Using a Multi-Dimensional Decision Support System. Pol. J. Environ. Stud. 2017, 26, 593–603. [Google Scholar] [CrossRef]
- Nyerges, T.; Ballal, H.; Steinitz, C.; Canfield, T.; Roderick, M.; Ritzman, J.; Thanatemaneerat, W. Geodesign dynamics for sustainable urban watershed development. Sustain. Cities Soc. 2016, 25, 13–24. [Google Scholar] [CrossRef]
- Rukundo, E.; Doğan, A. Assessment of Climate and Land Use Change Projections and their Impacts on Flooding. Pol. J. Environ. Stud. 2016, 25, 2541–2551. [Google Scholar] [CrossRef]
- Akbari, H.; Kolokotsa, D. Three decades of urban heat islands and mitigation technologies research. Energy Build. 2016, 133, 834–842. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, P.A. Recent challenges in modeling of urban heat island. Sustain. Cities Soc. 2015, 19, 200–206. [Google Scholar] [CrossRef]
- Dos Santos, A.R.; De Oliveira, F.S.; Da Silva, A.G.; Gleriani, J.M.; Gonçalves, W.; Moreira, G.L.; Silva, F.G.; Branco, E.R.F.; Moura, M.M.; Da Silva, R.G.; et al. Spatial and temporal distribution of urban heat islands. Sci. Total Environ. 2017, 605–606, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Van Hoof, J.; Schellen, L.; Soebarto, V.; Wong, J.K.W.; Kazak, J.K. Ten questions concerning thermal comfort and ageing. Build. Environ. 2017, 120, 123–133. [Google Scholar] [CrossRef]
- Heaviside, C.; Vardoulakis, S.; Cai, X.-M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Bazan-Krzywoszańska, A.; Mrówczyńska, M.; Skiba, M.; Łączak, A. Economic conditions for the development of energy efficient civil engineering using RES in the policy of cohesion of the European Union (2014–2020). Case study: The town of Zielona Gora. Energy Build. 2016, 118, 170–180. [Google Scholar] [CrossRef]
- Skiba, M.; Mrówczyńska, M.; Bazan-Krzywoszańska, A. Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra. Appl. Energy 2017, 188, 256–266. [Google Scholar] [CrossRef]
- Boerenfijn, P.; Kazak, J.K.; Schellen, L.; van Hoof, J. A multi-case study of innovations in energy performance of social housing for older adults in the Netherlands. Energy Build. 2018, 158, 1762. [Google Scholar] [CrossRef]
- Takebayashi, H.; Senoo, M. Analysis of the relationship between urban size and heat island intensity using WRF model. Urban Clim. 2017. [Google Scholar] [CrossRef]
- Nakata-Osaki, C.M.; Souza, L.C.L.; Rodrigues, D.S. THIS—Tool for Heat Island Simulation: A GIS extension model to calculate urban heat island intensity based on urban geometry. Comput. Environ. Urban Syst. 2018, 67, 157–168. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Cao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Clim. 2017. [Google Scholar] [CrossRef]
- Yang, L.; Qian, F.; Song, D.-X.; Zheng, K.-J. Research on Urban Heat-island Effect. Procedia Eng. 2016, 169, 11–18. [Google Scholar] [CrossRef]
- Green Infrastructure and the Urban Heat Island. Forestry Research. Available online: https://www.forestry.gov.uk/pdf/urgp_evidence_note_004_Heat_amelioration.pdf/$FILE/urgp_evidence_note_004_Heat_amelioration.pdf (accessed on 5 February 2018).
- Soltani, A.; Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front. Archit. Res. 2017, 6, 529–538. [Google Scholar] [CrossRef]
- Przybyła, K.; Kulczyk-Dynowska, A.; Kachniarz, M. Quality of life in the regional capitals of Poland. J. Econ. Issues 2014, 48, 181–196. [Google Scholar] [CrossRef]
- European Commission. Building a Green Infrastructure for Europe; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar] [CrossRef]
- Schneider, P.; Gottschalk, N.; Löser, R.; Scharbrodt, T. Integrated Climate Protection Program for the City of Chemnitz—Climate Diagnosis, Climate Change Prognosis and Conception of Adaptation Measures in the Urban Area. In Resilient Cities: Cities and Adaptation to Climate Change—Proceedings of the Global Forum 2010; Local Sustainability; Springer: Bonn, Germany, 2011; Volume 1, pp. 299–310. [Google Scholar] [CrossRef]
- Ambrey, C.; Byrne, J.; Matthews, T.; Davison, A.; Portanger, C.; Lo, A. Cultivating climate justice: Green infrastructure and suburban disadvantage in Australia. Appl. Geogr. 2017, 89, 52–60. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Saaroni, H.; Amorim, J.H.; Hiemstra, J.A.; Pearlmutter, D. Urban Green Infrastructure as a tool for urban heat mitigation: Survey of research methodologies and findings across different climatic regions. Urban Clim. 2018, 24, 94–110. [Google Scholar] [CrossRef]
- Nastran, M.; Kobal, M.; Eler, K. Urban heat islands in relation to green land use in European cities. Urban For. Urban Green. 2018. [Google Scholar] [CrossRef]
- Szewrański, S.; Kazak, J.; Żmuda, R.; Wawer, R. Indicator-Based Assessment for Soil Resource Management in the Wrocław Larger Urban Zone of Poland. Pol. J. Environ. Stud. 2017, 26, 2239–2248. [Google Scholar] [CrossRef]
- Van Delden, H.; Stuczynski, T.; Ciaian, P.; Paracchini, M.L.; Hurkens, J.; Lopatka, A.; Shi, Y.; Prieto, O.G.; Calvo, S.; van Vliet, J.; et al. Integrated assessment of agricultural policies with dynamic land use change modelling. Ecol. Model. 2010, 221, 2153–2166. [Google Scholar] [CrossRef]
- Wang, T.; Han, Q.; de Vries, B. A semi-automatic neighborhood rule discovery approach. Appl. Geogr. 2017, 88, 73–83. [Google Scholar] [CrossRef]
- Solecka, I.; Sylla, M.; Świąder, M. Urban Sprawl Impact on Farmland Conversion in Suburban Area of Wroclaw, Poland. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 072002. [Google Scholar] [CrossRef]
- Mancosu, E.; Gago-Silva, A.; Barbosa, A.; De Bono, A.; Ivanov, E.; Lehmann, A.; Fons, J. Future land-use change scenarios for the Black Sea catchment. Environ. Sci. Policy 2015, 46, 26–36. [Google Scholar] [CrossRef]
- Hewitt, R.; van Delden, H.; Escobar, F. Participatory land use modelling, pathways to an integrated approach. Environ. Model. Softw. 2014, 52, 149–165. [Google Scholar] [CrossRef]
- CORINE Land Cover—CLC. Available online: http://clc.gios.gov.pl/index.php/26-clc-2012 (accessed on 22 March 2018).
- Kazak, J.; Wang, T.; Szewrański, S. Analysis of Land Use Transformation Potential in Spatial Management. Real Estate Manag. Valuat. 2015, 23, 5–14. [Google Scholar] [CrossRef]
- Bański, J. Polish Village in the Perspective of 2050; Studies in Rural Areas, XXXIII; Polish Geographical Society, Institute of Geography and Spatial Organization, Polish Academy of Sciences: Warsaw, Poland, 2013. [Google Scholar]
- Stewart, T.J.; French, S.; Rios, J. Integrating multicriteria decision analysis and scenario planning—Review and extension. Omega 2013, 41, 679–688. [Google Scholar] [CrossRef]
- Menck, N.; Weidig, C.; Aurich, J.C. Approach for predicting production scenarios focused on cross impact analysis. Procedia CIRP 2014, 17, 493–498. [Google Scholar] [CrossRef]
- Szymanowski, M.; Kryza, M. GIS-based techniques for urban heat island spatialization. Clim. Res. 2009, 38, 171–187. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584–585, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, J.; Hagen-Zanker, A.; Hurkens, J.; van Delden, H. A fuzzy set approach to assess the predictive accuracy of land use simulations. Ecol. Model. 2013, 261–262, 32–42. [Google Scholar] [CrossRef]
- Kajdanek, K. Newcomers vs. old-timers? Community, cooperation and conflict in the post-socialist suburbs of Wroclaw, Poland. In Mobilities and Neighbourhood Belonging in Cities and Suburbs; Watt, P., Smets, P., Eds.; Palgrave Macmillan: London, UK, 2014. [Google Scholar]
- Yiannakou, A.; Salata, K.-D. Adaptation to Climate Change through Spatial Planning in Compact Urban Areas: A Case Study in the City of Thessaloniki. Sustainability 2017, 9, 271. [Google Scholar] [CrossRef]
- Van Hoof, J.; Kazak, J.K. Urban ageing. Indoor Built Environ. 2018, 27. [Google Scholar] [CrossRef]
- Frediani, J.; Giacobbe, N.; Ravella, O.; Pistola, J. Compact City—Sprawl City: Two interacting urban forms. In Proceedings of the Conference Materials of the 44th ISOCARP Congress, Dalian, China, 19–23 September 2008. [Google Scholar]
- Tokarczyk-Dorociak, K.; Kazak, J.; Szewrański, S. The Impact of a Big City on Land Use in Suburban Area—The Case of Wrocław (Poland). J. Ecol. Eng. 2018, 19, 89–98. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A.; Poulou, D.; Zoumides, C.; Eliades, M. Linear Parks along Urban Rivers: Perceptions of Thermal Comfort and Climate Change Adaptation in Cyprus. Sustainability 2016, 8, 1023. [Google Scholar] [CrossRef]
- Plötz, P.; Jakobsson, N.; Sprei, F. On the distribution of individual daily driving distances. Transp. Res. B-Meth. 2017, 101, 213–227. [Google Scholar] [CrossRef]
- Elldér, E. Residential location and daily travel distances: The influence of trip purpose. J. Transp. Geogr. 2014, 34, 121–130. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Sulaiman, N.M.N. Urban heat island experience, control measures and health impact: A survey among working community in the city of Kuala Lumpur. Sustain. Cities Soc. 2017, 35, 660–668. [Google Scholar] [CrossRef]
- Lauwaet, D.; De Ridder, K.; Saeed, S.; Brisson, E.; Chatterjee, F.; van Lipzig, N.P.M.; Maiheu, B.; Hooyberghs, H. Assessing the current and future urban heat island of Brussels. Urban Clim. 2016, 15, 1–15. [Google Scholar] [CrossRef]
- Świąder, M.; Szewrański, S.; Kazak, J. Foodshed as an Example of Preliminary Research for Conducting Environmental Carrying Capacity Analysis. Sustainability 2018, 10, 882. [Google Scholar] [CrossRef]
Scenario | m-UHI [ha] | h-UHI [ha] |
---|---|---|
S1 | 4302 | 1083 |
S2 | 4479 | 1202 |
S3 | 4742 | 1243 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazak, J.K. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland). Sustainability 2018, 10, 1083. https://doi.org/10.3390/su10041083
Kazak JK. The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland). Sustainability. 2018; 10(4):1083. https://doi.org/10.3390/su10041083
Chicago/Turabian StyleKazak, Jan K. 2018. "The Use of a Decision Support System for Sustainable Urbanization and Thermal Comfort in Adaptation to Climate Change Actions—The Case of the Wrocław Larger Urban Zone (Poland)" Sustainability 10, no. 4: 1083. https://doi.org/10.3390/su10041083