Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture
"> Figure 1
<p>Trends in the publications in the Biotic Stress research field from 1979–2016.</p> "> Figure 2
<p>Time evolution of the distribution of publications on Biotic Stress by subject area.</p> "> Figure 3
<p>Distribution (%) of worldwide research on Biotic Stress by subject area, as classified by Scopus.</p> "> Figure 4
<p>Worldwide research on Biotic Stresses in the period 1979–2016.</p> "> Figure 5
<p>Distribution by country of biotic stress reports categorized by plant species. Countries followed by the same letter did not show statistically significant differences in distribution by plant species (<span class="html-italic">p</span> < 0.05).</p> "> Figure 6
<p>Cloud word based on the main keywords related to Biotic Stress worldwide research.</p> "> Figure 7
<p>Time evolution of keyword groups related to Biotic Stress worldwide research. (<b>a</b>) Biotic and abiotic stresses; (<b>b</b>) plant species; (<b>c</b>) phytohormones; (<b>d</b>) stressors. Keyword-group evolution followed by the same letter did not show statistically significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 7 Cont.
<p>Time evolution of keyword groups related to Biotic Stress worldwide research. (<b>a</b>) Biotic and abiotic stresses; (<b>b</b>) plant species; (<b>c</b>) phytohormones; (<b>d</b>) stressors. Keyword-group evolution followed by the same letter did not show statistically significant differences (<span class="html-italic">p</span> < 0.05).</p> "> Figure 8
<p>Time evolution of the most studied stressors in the Biotic Stress field. Stressors followed by the same letter did not show statistically significant differences (<span class="html-italic">p</span> < 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Evolution of Scientific Output and Distribution in Subject Categories
3.2. Types of Publications and Distribution of Output in Journals
3.3. Publication Distribution by Countries and Institutions
3.4. Analysis of Keywords
4. Conclusions
Author Contributions
Conflicts of Interest
References
- González de Molina, M.; Soto Fernández, D.; Infante-Amate, J.; Aguilera, E.; Vila Traver, J.; Guzmán, G.I. Decoupling Food from Land: The Evolution of Spanish Agriculture from 1960 to 2010. Sustainability 2017, 9, 2348. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.J.; Barroso, F.G.; Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 2014, 65, 16–27. [Google Scholar] [CrossRef]
- Márquez, A.L.; Baños, R.; Gil, C.; Montoya, M.G.; Manzano-Agugliaro, F.; Montoya, F.G. Multi-objective crop planning using pareto-based evolutionary algorithms. Agric. Econ. 2011, 42, 649–656. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef]
- ONU. Our Common Future, Chapter 2: Towards Sustainable Development. United Nations Conference on Environment and Development at the Earth Summit, Rio de Janeiro, in 1992. Available online: http://un-documents.net/ocf-02.htm (accessed on 15 December 2017).
- Manzano-Agugliaro, F.; Cañero, R. Economics and environmental analysis of Mediterranean greenhouse crops. Afr. J. Agric. Res. 2010, 5, 3009–3016. [Google Scholar]
- Nuijten, E.; Messmer, M.M.; Lammerts van Bueren, E.T. Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability 2016, 9, 18. [Google Scholar] [CrossRef]
- Gázquez, J.A.; Castellano, N.N.; Manzano-Agugliaro, F. Intelligent low cost telecontrol system for agricultural vehicles in harmful environments. J. Clean. Prod. 2016, 113, 204–215. [Google Scholar] [CrossRef]
- Zapata-Sierra, A.J.; Manzano-Agugliaro, F. Controlled deficit irrigation for orange trees in Mediterranean countries. J. Clean. Prod. 2017, 162, 130–140. [Google Scholar] [CrossRef]
- Monaco, F.; Zasada, I.; Wascher, D.; Glavan, M.; Pintar, M.; Schmutz, U.; Sali, G. Food Production and Consumption: City Regions between Localism, Agricultural Land Displacement, and Economic Competitiveness. Sustainability 2017, 9, 96. [Google Scholar] [CrossRef]
- Nejat, N.; Mantri, N. Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defense. Curr. Issues Mol. Biol. 2017, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Schumann, G.L.; D’Arcy, C.J. Essential Plant Pathology; APS Press: St. Paul, MN, USA, 2006; ISBN 9780890543429. [Google Scholar]
- Taiz, L.; Zeiger, E. Secondary Metabolites and Plant Defense. In Plant Physiology; Taiz, L., Zeiger, E., Eds.; Sinauer Associates: Sunderland, UK, 2006; Volume 4, pp. 315–344. ISBN 9780878935659. [Google Scholar]
- Monaghan, J.; Zipfel, C. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 2012, 15, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.E.; Martínez, M.; Cambra, I.; Grbic, V.; Diaz, I. Understanding plant defence responses against herbivore attacks: An essential first step towards the development of sustainable resistance against pests. Transgenic Res. 2013, 22, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Kaloshian, I. Gene-for-gene disease resistance: Bridging insect pest and pathogen defense. J. Chem. Ecol. 2004, 30, 2419–2438. [Google Scholar] [CrossRef] [PubMed]
- Spoel, S.H.; Dong, X. How do plants achieve immunity? Defence without specialized immune cells. Nat. Rev. Immunol. 2012, 12, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Mur, L.A.; Kenton, P.; Lloyd, A.J.; Ougham, H.; Prats, E. The hypersensitive response; the centenary is upon us but how much do we know? J. Exp. Bot. 2007, 59, 501–520. [Google Scholar] [CrossRef] [PubMed]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Muthamilarasan, M.; Prasad, M. Plant innate immunity: An updated insight into defense mechanism. J. Biosci. 2013, 38, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Xie, Z.; Chen, W.; Glazebrook, J.; Chang, H.-S.; Han, B.; Zhu, T.; Zou, G.; Katagiri, F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 2003, 15, 317–330. [Google Scholar] [CrossRef] [PubMed]
- De Vleesschauwer, D.; Xu, J.; Höfte, M. Making sense of hormone-mediated defense networking: From rice to Arabidopsis. Front Plant Sci. 2014, 5, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, M.; Lamb, C. Systemic immunity. Curr. Opin. Plant Biol. 2006, 9, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Bari, R.; Jones, J.D. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Fürstenberg-Hägg, J.; Zagrobelny, M.; Bak, S. Plant defense against insect herbivores. Int. J. Mol. Sci. 2013, 14, 10242–10297. [Google Scholar] [CrossRef] [PubMed]
- Pichersky, E.; Gershenzon, J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Dudareva, N.; Negre, F.; Nagegowda, D.A.; Orlova, I. Plant volatiles: Recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25, 417–440. [Google Scholar] [CrossRef]
- Arimura, G.I.; Kost, C.; Boland, W. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta 2005, 1734, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Arimura, G.I.; Matsui, K.; Takabayashi, J. Chemical and molecular ecology of herbivore-induced plant volatiles: Proximate factors and their ultimate functions. Plant Cell Physiol. 2009, 50, 911–923. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Bodenhausen, N.; Reymond, P. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol. Plant Microbe Interact. 2007, 20, 1406–1420. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.; Leon-Reyes, A.; Van Der Ent, S.; Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Cañas-Guerrero, I.; Mazarrón, F.R.; Pou-Merina, A.; Calleja-Perucho, C.; Díaz-Rubio, G. Bibliometric analysis of research activity in the “Agronomy” category from the Web of Science, 1997–2011. Eur. J. Agron. 2013, 50, 19–28. [Google Scholar] [CrossRef]
- Singh, V.; Perdigones, A.; Garcia, J.L.; Cañas-Guerroro, I.; Mazarrón, F.R. Analyzing worldwide research in hardware architecture, 1997–2011. Commun. ACM 2015, 58, 76–85. [Google Scholar] [CrossRef]
- Rojas-Sola, J.I.; Aguilera-García, Á.I. Global Bibliometric Analysis of the ‘Mining & Mineral Processing’ Subject Category from the Web of Science (1997–2012). Miner. Process. Extr. Metall. Rev. 2015, 36, 349–369. [Google Scholar] [CrossRef]
- Montoya, F.G.; Baños, R.; Meroño, J.E.; Manzano-Agugliaro, F. The research of water use in Spain. J. Clean. Prod. 2016, 112, 4719–4732. [Google Scholar] [CrossRef]
- De la Cruz-Lovera, C.; Perea-Moreno, A.J.; de la Cruz-Fernández, J.L.; Alvarez-Bermejo, J.A.; Manzano-Agugliaro, F. Worldwide Research on Energy Efficiency and Sustainability in Public Buildings. Sustainability 2017, 9, 1294. [Google Scholar] [CrossRef]
- Salmerón-Manzano, E.; Manzano-Agugliaro, F. Worldwide scientific production indexed by Scopus on Labour Relations. Publications 2017, 5, 25. [Google Scholar] [CrossRef]
- Hirsch, J.E.; Buela-Casal, G. The meaning of the h-index. Int. J. Clin. Health Psychol. 2014, 14, 161–164. [Google Scholar] [CrossRef]
- Alonso, S.; Cabrerizo, F.J.; Herrera-Viedma, E.; Herrera, F. H-Index: A review focused in its variants, computation and standardization for different scientific fields. J. Informetr. 2009, 3, 273–289. [Google Scholar] [CrossRef]
- Bornmann, L.; Mutz, R.; Hug, S.E.; Daniel, H.D. A multilevel meta-analysis of studies reporting correlations between the h index and 37 different h index variants. J. Informetr. 2011, 5, 346–359. [Google Scholar] [CrossRef]
- Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. The metagenomics worldwide research. Curr. Genet. 2017, 63, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Montoya, F.G.; Montoya, M.G.; Gómez, J.; Manzano-Agugliaro, F.; Alameda-Hernández, E. The research on energy in Spain: A scientometric approach. Renew. Sustain. Energy Rev. 2014, 29, 173–183. [Google Scholar] [CrossRef]
- Montoya, F.G.; Alcayde, A.; Baños, R.; Manzano-Agugliaro, F. A fast method for identifying worldwide scientific collaborations using the Scopus database. Telemat. Inform. 2017. [Google Scholar] [CrossRef]
- Redei, G.P. Arabidopsis as a genetic tool. Annu. Rev. Genet. 1975, 9, 111–127. [Google Scholar] [CrossRef] [PubMed]
- Clement, J.; Novas, N.; Gázquez, J.A.; Manzano-Agugliaro, F. High speed intelligent classifier of tomatoes by colour, size and weight. Span. J. Agric. Res. 2012, 10, 314–325. [Google Scholar] [CrossRef]
- Manzano-Agugliaro, F.; Garcia-Cruz, A. Time study techniques applied to labor management in greenhouse tomato (Solanum lycopersicum L.) cultivation. Agrociencia 2009, 43, 267–277. [Google Scholar]
- Gimenez, E.; Manzano-Agugliaro, F. DNA Damage Repair System in Plants: A Worldwide Research Update. Genes 2017, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Kagias, K.; Nehammer, C.; Pocock, R. Neuronal Responses to Physiological Stress. Front. Genet. 2012, 3, 222. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.D. Primary metabolism and plant defense--fuel for the fire. Mol. Plant Microbe Interact. 2009, 22, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Todaka, D.; Nakashima, K.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice J. 2012, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stotz, H.U.; Mitrousia, G.K.; de Wit, P.J.G.M.; Fitt, B.D.L. Effector-triggered defence against apoplastic fungal pathogens. Trends Plant Sci. 2014, 19, 491–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, M.; Sohal, B.S. Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochem. 2013. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol. 2011, 52, 1569–1582. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Fijita, Y.; Noutoshi, Y.; Takahashi, F.; Narusaka, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006, 9, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Bowler, C.; Fluhr, R. The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci. 2000, 5, 241–246. [Google Scholar] [CrossRef]
- Stout, M.J.; Fidantsef, A.L.; Duffey, S.S.; Bostock, R.M. Signal interactions in pathogen and insect attack: Systemic plant-mediated interactions between pathogens and herbivores of the tomato. Lycopersicum esculentum. Physiol. Mol. Plant Pathol. 1999, 54, 115–130. [Google Scholar] [CrossRef]
- Ben Rejeb, I.; Pastor, V.; Mauch-Mani, B. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants 2014, 3, 458–475. [Google Scholar] [CrossRef] [PubMed]
- Wojtaszek, P. Oxidative burst: An early plant response to pathogen infection. Biochem. J. 1997, 322, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.; Noctor, G. Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. Plant Cell 2005, 17, 1866–1875. [Google Scholar] [CrossRef] [PubMed]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism; oxidative stress; and signal transduction. Ann. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.; Desikan, R.; Harrison, J.; Bright, J.; Hooley, R.; Neill, S. Doing the unexpected: Proteins involved in hydrogen peroxide perception. J. Exp. Bot. 2006, 57, 1711–1718. [Google Scholar] [CrossRef] [PubMed]
- Spoel, S.H.; Loake, G.J. Redox-based protein modifications: The missing link in plant immune signalling. Curr. Opin. Plant Biol. 2011, 14, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wong, J.H.; Feldman, L.J.; Lemaux, P.G.; Buchanan, B.B. A membrane-associated thioredoxin required for plant growth moves from cell to cell; suggestive of a role in intercellular communication. Proc. Natl. Acad. Sci. USA 2010, 107, 3900–3905. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ruan, Y.; Lin, Z.; Wei, R.; Peng, Q.; Guan, C.; Ishii, H. Antagonism between acibenzolar-S-methyl-induced systemic acquired resistance and jasmonic acid-induced systemic acquired susceptibility to Colletotrichum orbiculare infection in cucumber. Physiol. Mol. Plant Pathol. 2008, 72, 141–145. [Google Scholar] [CrossRef]
- Melotto, M.; Underwood, W.; Koczan, J.; Nomura, K.; He, S.Y. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126, 969–980. [Google Scholar] [CrossRef] [PubMed]
- Melotto, M.; Underwood, W.; He, S.Y. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 2008, 46, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.P.; Badruzsaufari, E.; Schenk, P.M.; Manners, J.M.; Desmond, O.J.; Ehlert, C.; Maclean, D.J.; Ebert, P.R.; Kazan, K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004, 16, 3460–3479. [Google Scholar] [CrossRef] [PubMed]
- Asselbergh, B.; De Vleesschauwer, D.; Hofte, M. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact. 2008, 21, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Bleecker, A.B.; Kende, H. Ethylene: A gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 2000, 16, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Berrocal-Lobo, M.; Molina, A.; Solano, R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 2002, 29, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, O.; Piqueras, R.; Sánchez-Serrano, J.J.; Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signal from ethylene and jasmonate pathway in plant defense. Plant Cell 2002, 15, 165–178. [Google Scholar] [CrossRef]
- Cheng, M.C.; Liao, P.M.; Kuo, W.W.; Lin, T.P. The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol. 2013, 162, 1566–1582. [Google Scholar] [CrossRef] [PubMed]
- Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Zeilinger, S.; Gupta, V.K.; Dahms, T.E.S.; Silva, R.N.; Singh, H.B.; Upadhyay, R.S.; Gomes, E.V.; Kin-Ming Tsui, C.; Nayak, S.C. Friends or foes? Emerging insights from fungal interactions with plants FEMS. Microbiol. Rev. 2016, 40, 182–207. [Google Scholar] [CrossRef] [PubMed]
- Malfanova, N.; Kamilova, F.; Validov, S.; Shcherbakov, A.; Chebotar, V.; Tikhonovich, I.; Lugtenberg, B. Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb. Biotechnol. 2011, 4, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Abd Allah, E.F.; Alqarawi, A.; Al-Huqail, A.A.; Wirth, S.; Egamberdieva, D. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Front. Plant Sci. 2016, 7, 1089. [Google Scholar] [CrossRef] [PubMed]
- Young, J.M. Taxonomy of Pseudomonas syringae. J. Plant Pathol. 2010, 92, S5–S14. [Google Scholar] [CrossRef]
- Hirano, S.S.; Upper, C.D. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 1990, 28, 155–177. [Google Scholar] [CrossRef]
Document Type | N° | % |
---|---|---|
Article | 3486 | 68.6 |
Review | 728 | 14.3 |
Conference Paper | 459 | 9.0 |
Book Chapter | 288 | 5.7 |
Others | 120 | 2.1 |
Rank | Source | N° Documents | H-Index | 5-Year Impact Factor JCR | SJR | Country |
---|---|---|---|---|---|---|
1 | Plos One | 213 | 31 | 3.394 | 1.201 | US |
2 | Frontiers In Plant Science | 122 | 22 | 4.672 | 1.917 | Switzerland |
3 | Acta Horticulturae | 80 | 7 | - | 0.180 | Belgium |
4 | BMC Genomics | 75 | 26 | 4.284 | 2.065 | UK |
5 | Journal Of Experimental Botany | 72 | 34 | 6.538 | 2.780 | UK |
6 | Plant Signaling And Behavior | 70 | 20 | - | 0.641 | US |
7 | Plant Physiology | 68 | 38 | 7.428 | 3.735 | US |
8 | Materials Science Forum | 56 | 8 | 0.515 | 0.186 | Switzerland |
9 | Plant Physiology And Biochemistry | 56 | 19 | 3.096 | 1.159 | Netherlands |
10 | BMC Plant Biology | 55 | 20 | 4.541 | 1.820 | UK |
Affiliation | Country | Reports | Plant Keyword |
---|---|---|---|
Chinese Academy of Sciences | China | 110 | Rice |
USDA Agricultural Research Service Washington DC * | USA | 82 | Zea Mays |
CNRS Centre National de la Recherche Scientifique | France | 72 | Arabidopsis |
Consejo Superior de Investigaciones Cientificas | Spain | 66 | Arabidopsis |
Nanjing Agricultural University * | China | 63 | Arabidopsis |
Ministry of Education China | China | 62 | Arabidopsis |
Zhejiang University | China | 60 | Rice |
Chinese Academy of Agricultural Sciences * | China | 57 | Arabidopsis |
Empresa Brasileira de Pesquisa Agropecuaria—Embrapa * | Brazil | 54 | Soybean |
Consiglio Nazionale delle Ricerche | Italy | 54 | Tomato |
Ministry of Agriculture of the People’s Republic of China * | China | 54 | Arabidopsis |
UC Davis | USA | 53 | Arabidopsis |
Languages | Reports | % |
---|---|---|
English | 4936 | 96.7 |
Chinese | 87 | 1.7 |
Spanish | 17 | 0.3 |
Japanese | 15 | 0.3 |
Russian | 11 | 0.2 |
German | 10 | 0.2 |
Portuguese | 8 | 0.1 |
Korean | 6 | 0.1 |
French | 4 | 0.08 |
Czech | 2 | 0.04 |
Polish | 2 | 0.04 |
Croatian | 1 | 0.02 |
Hungarian | 1 | 0.02 |
Slovenian | 1 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenez, E.; Salinas, M.; Manzano-Agugliaro, F. Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture. Sustainability 2018, 10, 391. https://doi.org/10.3390/su10020391
Gimenez E, Salinas M, Manzano-Agugliaro F. Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture. Sustainability. 2018; 10(2):391. https://doi.org/10.3390/su10020391
Chicago/Turabian StyleGimenez, Estela, Maria Salinas, and Francisco Manzano-Agugliaro. 2018. "Worldwide Research on Plant Defense against Biotic Stresses as Improvement for Sustainable Agriculture" Sustainability 10, no. 2: 391. https://doi.org/10.3390/su10020391