Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features
<p>Spatial information of the study area: (<b>a</b>) Location of Xi’an; (<b>b</b>) The central area of Xi’an; (<b>c</b>) The road network of the study area.</p> "> Figure 2
<p>Overview of the proposed methodology.</p> "> Figure 3
<p>Structure of the BPNN model.</p> "> Figure 4
<p>Performance of the proposed method: (<b>a</b>) CDF of the absolute percentage error; (<b>b</b>) Influence of travel distance on MAPE; (<b>c</b>) Influence of travel time on MAPE; (<b>d</b>) Influence of travel speed on MAPE.</p> "> Figure 5
<p>MAPE distribution with travel time and distance.</p> ">
Abstract
:1. Introduction
2. Data Collection and Preprocessing
2.1. Data Description
2.2. Data Preprocessing
2.3. Feature Extraction
2.4. Problem Statement
3. Model Construction and Implementation
3.1. Back Propagation Neural Networks (BPNNs)
3.2. Model Structure and Implementation
3.3. Bayesian Hyperparameter Optimization
4. Results and Discussion
4.1. Evaluation Metrics
4.2. Ablation Study and Performance Analysis
4.3. Robustness and Generalization Analysis
4.3.1. Cumulative Distribution of Absolute Percentage Error (APE)
4.3.2. Influence of Travel Distance on Prediction Accuracy
4.3.3. Influence of Travel Time on Prediction Accuracy
4.3.4. Influence of Travel Speed on Prediction Accuracy
4.3.5. Comprehensive Analysis of Model Robustness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OD | Origin–destination |
ITSs | Intelligent transportation systems |
BPNN | Back Propagation Neural Network |
TTP | Travel time prediction |
ATT | Average travel time |
SDTT | Standard deviation of travel time |
TOD | Time of day |
DOW | Day of week |
RMSE | Root mean squared error |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
References
- Wang, S.F.; Li, L.; Ma, W.J.; Chen, X.Q. Trajectory analysis for on-demand services: A survey focusing on spatial-temporal demand and supply patterns. Transp. Res. Part C Emerg. Technol. 2019, 108, 74–99. [Google Scholar] [CrossRef]
- Luo, S.J.; Zou, F.M.; Zhang, C.; Tian, J.S.; Guo, F.; Liao, L.C. Multi-View Travel Time Prediction Based on Electronic Toll Collection Data. Entropy 2022, 24, 1050. [Google Scholar] [CrossRef] [PubMed]
- Ta, X.; Liu, Z.; Hu, X.; Yu, L.; Sun, L.; Du, B. Adaptive spatio-temporal graph neural network for traffic forecasting. Knowl.-Based Syst. 2022, 242, 108199. [Google Scholar] [CrossRef]
- Zhong, R.X.; Chen, C.; Huang, Y.P.; Sumalee, A.; Lam, W.H.K.; Xu, D.B. Robust perimeter control for two urban regions with macroscopic fundamental diagrams: A control-lyapunov function approach. Transp. Res. Part B Methodol. 2018, 117, 687–707. [Google Scholar] [CrossRef]
- Zhang, S.; Tang, J.J.; Wang, H.X.; Wang, Y.H.; An, S. Revealing intra-urban travel patterns and service ranges from taxi trajectories. J. Transp. Geogr. 2017, 61, 72–86. [Google Scholar] [CrossRef]
- Chughtai, J.; Haq, I.; Islam, S.; Gani, A. A Heterogeneous Ensemble Approach for Travel Time Prediction Using Hybridized Feature Spaces and Support Vector Regression. Sensors 2022, 22, 9735. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Fu, K.; Wang, Z.; Shahabi, C.; Ye, J.P.; Liu, Y. Multi-task Representation Learning for Travel Time Estimation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar]
- Yuan, H.; Li, G. A survey of traffic prediction: From spatio-temporal data to intelligent transportation. Data Sci. Eng. 2021, 6, 63–85. [Google Scholar] [CrossRef]
- Afrin, T.; Yodo, N. A long short-term memory-based correlated traffic data prediction framework. Knowl.-Based Syst. 2022, 237, 107755. [Google Scholar] [CrossRef]
- An, J.Y.; Guo, L.; Liu, W.; Fu, Z.Q.; Ren, P.; Liu, X.Z.; Li, T. IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction. Neural Netw. 2021, 143, 355–367. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, L.; Qiang, L.; Kuang, X. Urban expressway travel time prediction method based on fuzzy adaptive kalman filter. Appl. Math. Inform. Sci. 2013, 7, 625–630. [Google Scholar] [CrossRef]
- Jin, G.; Yan, H.; Li, F.; Huang, J.; Li, Y. Spatio-temporal dual graph neural networks for travel time estimation. ACM Trans. on Spat. Algor. 2024, 10, 1–22. [Google Scholar] [CrossRef]
- Kolidakis, S.; Botzoris, G.; Profillidis, V.; Lemonakis, P. Road traffic forecasting—A hybrid approach combining artificial neural network with singular spectrum analysis. Econ. Anal. Policy 2019, 64, 159–171. [Google Scholar] [CrossRef]
- Lu, Z.L.; Lv, W.F.; Xie, Z.P.; Du, B.W.; Xiong, G.X.; Sun, L.L.; Wang, H.Q. Graph sequence neural network with an attention mechanism for traffic speed prediction. ACM Trans. Intell. Syst. Tec. 2022, 13, 20. [Google Scholar] [CrossRef]
- Shi, C.; Chen, B.Y.; Li, Q.Q. Estimation of travel time distributions in urban road networks using low-frequency floating car data. ISPRS Int. Geo-Inf. 2017, 6, 253. [Google Scholar] [CrossRef]
- Dion, F.; Rakha, H. Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates. Transp. Res. Part B Methodol. 2006, 40, 745–766. [Google Scholar] [CrossRef]
- Fei, X.; Zhang, Y.; Liu, K.; Guo, M. Bayesian dynamic linear model with switching for real-time short-term freeway travel time prediction with license plate recognition data. J. Transp. Eng.-ASCE 2013, 139, 1058–1067. [Google Scholar] [CrossRef]
- Tam, M.L.; Lam, W.H.K. Application of automatic vehicle identification technology for real-time journey time estimation. Inform. Fusion 2011, 12, 11–19. [Google Scholar] [CrossRef]
- Shi, C.; Chen, B.Y.; Lam, W.H.K.; Li, Q.Q. Heterogeneous data fusion method to estimate travel time distributions in congested road networks. Sensors 2017, 17, 2822. [Google Scholar] [CrossRef] [PubMed]
- Jedwanna, K.; Athan, C.; Boonsiripant, S. Estimating toll road travel times using segment-based data imputation. Sustainability 2023, 15, 13042. [Google Scholar] [CrossRef]
- Lai, S.; Xu, H.; Luo, Y.; Zou, F.; Hu, Z.; Zhong, H. Expressway Vehicle Arrival Time Estimation Algorithm Based on Electronic Toll Collection Data. Sustainability 2024, 16, 5581. [Google Scholar] [CrossRef]
- Khaled, A.; Elsir, A.M.T.; Shen, Y. GSTA: Gated spatial–temporal attention approach for travel time prediction. Neural Comput. Appl. 2022, 34, 2307–2322. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Fu, K.; Wang, Z.; Yan, Z.; Zhang, C.; Ye, J. FMA-ETA: Estimating travel time entirely based on FFN with attention. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021. [Google Scholar]
- Wang, Z.; Fu, K.; Ye, J.P. Learning to Estimate the Travel Time. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar]
- Derrow-Pinion, A.; She, J.; Wong, D.; Lange, O.; Hester, T.; Perez, L.; Nunkesser, M.; Lee, S.; Guo, X.; Wiltshire, B.; et al. ETA prediction with graph neural networks in google maps. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Gold Coast, Australia, 1–5 November 2021. [Google Scholar]
- Poongodi, M.; Malviya, M.; Kumar, C.; Hamdi, M.; Vijayakumar, V.; Nebhen, J.; Alyamani, H. New York City taxi trip duration prediction using MLP and XGBoost. Int. J. Syst. Assur. Eng. 2022, 13, 16–27. [Google Scholar] [CrossRef]
- Radhika, K.R.; Sheela, S.V.; Jha, T.; Sushant, V.S.; Rajibul, S. Dynamic Graph Convolutional Network-based Long Short-Term Memory for Taxi Trip Time Prediction. In Proceedings of the 2024 First International Conference on Software, Systems and Information Technology, Tumkur, India, 17–18 October 2025. [Google Scholar]
- Li, X.; Wang, H.; Sun, P.; Zu, H. Spatiotemporal features—Extracted travel time prediction leveraging deep-learning-enabled graph convolutional neural network model. Sustainability 2021, 13, 1253. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Q.; Dai, S.; Deng, L.; Xiao, Y.; Jia, C. An OD time prediction model based on adaptive graph embedding. Phys. A 2025, 657, 130217. [Google Scholar] [CrossRef]
- Li, A.; Lam, W.H.; Ma, W.; Tam, M.L. A novel modelling framework for real-time prediction of path travel times using both traffic and weather data. Transp. A 2024, 1–34. [Google Scholar] [CrossRef]
- Zheng, L.; Ma, H.; Wang, Z. Travel Time Estimation for Urban Arterials Based on the Multi-Source Data. Sustainability 2024, 16, 7845. [Google Scholar] [CrossRef]
- Lu, F.; Du, Z.; Wang, Z.; Wang, L.; Wang, S. Towards enhancing the crowdsourcing door-to-door delivery: An effective model in Beijing. J. Ind. Manag. Optim. 2025, 21, 2371–2395. [Google Scholar] [CrossRef]
- Lagos, F.; Moreno, S.; Yushimito, W.F.; Brstilo, T. Urban Origin–Destination Travel Time Estimation Using K-Nearest-Neighbor-Based Methods. Mathematics 2024, 12, 1255. [Google Scholar] [CrossRef]
- Fang, H.; Liu, Y.; Chen, C.H.; Hwang, F.J. Travel Time Prediction Method Based on Spatial-Feature-based Hierarchical Clustering and Deep Multi-input Gated Recurrent Unit. ACM Trans. Sens. Netw. 2022, 19, 1–21. [Google Scholar] [CrossRef]
- Chen, B.Y.; Yuan, H.; Li, Q.Q.; Lam, W.H.K.; Shaw, S.L. Map-matching algorithm for large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sci. 2014, 28, 22–38. [Google Scholar] [CrossRef]
- Shi, C.; Li, Q.; Lu, S.; Yang, X. Exploring Temporal Intra-Urban Travel Patterns: An Online Car-Hailing Trajectory Data Perspective. Remote Sens. 2021, 13, 1825. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, J.; Yin, Y.; Ignatius, J.; Wei, X.; Kumar, A. Dynamic travel time prediction with spatiotemporal features: Using a gnn-based deep learning method. Ann. Oper Res. 2024, 340, 571–591. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Y.; Wang, Z.; Liu, X.; Yang, H. Personalized origin–destination travel time estimation with active adversarial inverse reinforcement learning and Transformer. Transp. Res. Part E Logist. Transp. Rev. 2025, 193, 103839. [Google Scholar] [CrossRef]
No. | Field Name | Description | Example 1 | Example 2 | Example 3 | Example 4 |
---|---|---|---|---|---|---|
1 | Vehicle | Vehicle ID | 1,396,569 | 1,009,012 | 1,001,742 | 1,017,095 |
2 | OrderID | Order ID | 22,652,142 | 20,060,259 | 20,011,421 | 2,011,400 |
3 | TimeOrigin | Departure time (s) | 49,773 | 62,671 | 30,497 | 64,809 |
4 | TimeDestination | Arrival time (s) | 49,935 | 73,780 | 30,560 | 64,867 |
5 | RoadIDOrigin | The link ID of the origin | 29,356 | 47,660 | 20,007 | 58,449 |
6 | mmX | Transformed coordinate of the origin | 497,452.30 | 498,142.71 | 491,888.56 | 499,857.70 |
7 | mmY | 3,794,644.89 | 3794,621.43 | 3,790,399.54 | 3,787,044.29 | |
8 | RoadIDDestination | The link ID of the destination | 29,910 | 63,372 | 42,338 | 62,597 |
9 | mmX | Transformed coordinate of the destination | 498,141.79 | 499,612.06 | 49,248.83 | 499,309.39 |
10 | mmY | 3,794,600.35 | 3,794,602.39 | 3,790,394.11 | 3,787,475.35 | |
11 | PathTravelTime | OD travel time (s) | 162 | 11,109 (>7200 s) | 63 | 58 (<60 s) |
12 | PathLength | Travel distance (m) | 991.24 | 12,162.97 | 1476.81 | 719.35 |
13 | TravelSpeed | Speed (km/h) | 22.03 | 3.94 (<5) | 84.34 (>80) | 44.65 |
Bit | Number | Date |
---|---|---|
Bits 1–3 | 000 | Monday |
001 | Tuesday/Wednesday/Thursday | |
010 | Friday | |
011 | Saturday | |
100 | Sunday | |
Bit 4 | 0 | Holiday |
1 | Non-holiday |
Feature Category | Features | Description |
---|---|---|
Spatial | Origin, destination, and trip length | |
Temporal | Departure time and day-of-week classification | |
Weather | Average travel time and standard deviation under different weather conditions | |
Driver Behavior | Probability distribution of driving styles (aggressive, conservative, and neutral) |
Parameter | Parameter Space | Parameter Distribution | Optimized Parameter |
---|---|---|---|
Number of neurons in hidden layer 1 | Step size: 1 | 366 | |
Number of neurons in hidden layer 2 | Step size: 1 | 787 | |
Initial learning rate | Uniform distribution | 0.001683 | |
Training batch size | Step size: 32 | 347 | |
Maximum iterations | Step size: 1 | 72 |
Model | Spatial Feature | Temporal Feature | Weather Feature | Driver Feature | |||
---|---|---|---|---|---|---|---|
OD Location | Travel Distance | Starting Time | Travel Date | Raw Weather Feature | Quantitative Evaluation with RF | ||
Baseline model | ✓ | ✓ | |||||
Study 1 | ✓ | ✓ | ✓ | ✓ | |||
Study 2 | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Study 3 | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Study 4 | ✓ | ✓ | ✓ | ✓ | ✓ | ||
Study 5 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Ablation Studies | Evaluation Metrics | |||
---|---|---|---|---|
RMSE (s) | MAE (s) | MAPE (%) | ||
Baseline | 327.57 | 0.578 | 191.89 | 24.09 |
Study 1: Baseline+Extended Spatial–Temporal Features | 261.11 | 0.732 | 151.74 | 18.37 |
Study 2: Study 1+Quantified Weather Features | 244.32 | 0.766 | 142.97 | 17.69 |
Study 3: Study 1+Raw Weather Features | 256.59 | 0.742 | 148.84 | 18.19 |
Study 4: Study 1+Driver Features | 224.13 | 0.803 | 133.27 | 16.89 |
Study 5 (BPNN): Study 1+Combined Features | 202.89 | 0.838 | 130.48 | 16.52 |
Speed | Number of Trips | (s) | MAPE (%) | ||
---|---|---|---|---|---|
142,541 (11.8%) | 488.16 | 0.56 | 359.12 | 31.19 | |
1,070,308 (88.2%) | 151.21 | 0.88 | 100.04 | 14.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Zou, W.; Wang, Y.; Zhu, Z.; Chen, T.; Zhang, Y.; Wang, N. Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features. Sustainability 2025, 17, 2111. https://doi.org/10.3390/su17052111
Shi C, Zou W, Wang Y, Zhu Z, Chen T, Zhang Y, Wang N. Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features. Sustainability. 2025; 17(5):2111. https://doi.org/10.3390/su17052111
Chicago/Turabian StyleShi, Chaoyang, Waner Zou, Yafei Wang, Zhewen Zhu, Tengda Chen, Yunfei Zhang, and Ni Wang. 2025. "Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features" Sustainability 17, no. 5: 2111. https://doi.org/10.3390/su17052111
APA StyleShi, C., Zou, W., Wang, Y., Zhu, Z., Chen, T., Zhang, Y., & Wang, N. (2025). Enhancing Travel Time Prediction for Intelligent Transportation Systems: A High-Resolution Origin–Destination-Based Approach with Multi-Dimensional Features. Sustainability, 17(5), 2111. https://doi.org/10.3390/su17052111