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Abstract: The Senise red pepper, known as peperone crusco, is a protected geographical
indication (PGI) product from Basilicata, Italy, traditionally consumed dried. Producers
use semi-open greenhouses to meet PGI standards, but significant losses are caused by rot
from microorganisms thriving in high moisture, temperature, and humidity, which also
encourage pest infestations. To minimize losses, a low-cost alert system was developed.
The study, conducted in summer 2022 and 2023, used external parameters from the ALSIA
Senise weather station and internal sensors monitoring the air temperature and humidity
inside the greenhouse. Since rot is complex and difficult to model, an artificial intelligence
(AI)-based approach was adopted. A feed forward neural network (FFNN) estimated
greenhouse climate conditions as if it were empty, comparing them with actual values
when peppers were present. This revealed the most critical period was the first 3–4 days
after introduction and identified a critical air relative humidity threshold. The system could
also predict microclimatic parameters inside the greenhouse with red peppers, issuing
warnings one hour before risk conditions arose. In 2023, it was tested by comparing
predicted values with previously identified thresholds. When critical levels were exceeded,
greenhouse operators were alerted to adjust conditions. In 2023, pepper rot decreased.

Keywords: red pepper; weather station; machine learning; smart sensors; greenhouse

1. Introduction
1.1. Problem Statement and Context

Since ancient times, humans have relied on solar drying as a natural and effective
way to preserve agricultural and animal products. This method leverages the sun, a free
and renewable energy source, to remove moisture and extend the life of these products.
The Senise red pepper belongs to this category of products, and due to its characteristics
and properties, it has obtained a PGI (protected geographical indication) designation
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from the Basilicata region. Traditionally, it was dried during the summer months by
threading peppers into necklaces and hanging them under porticoes or balconies during the
summer months. Today, Senise peppers are not only consumed locally but also distributed
throughout Europe, with a growing local demand due to increased tourism. Consequently,
producers cannot remain tied to traditional drying methods but must adapt their systems to
meet today’s business needs (quantity, quality, traceability, and healthiness of production).
The economy of the Basilicata region, centered around its premium products, is founded
on the high natural value of the territories, from which the stringent PGI regulations
originate [1]. Current rules require that the peppers be dried in open-air environments,
allowing only lightweight coverings that facilitate ventilation and can be easily removed.
This effectively excludes the use of modern smart greenhouses equipped with automated
systems to regulate the temperature, humidity, and ventilation. Many producers face
significant challenges during the drying process, with some reporting losses exceeding 20%
and, in extreme cases, up to 60% of the dry matter. Factors contributing to these losses
include poor handling practices, suboptimal production methods, and inadequate storage
facilities. Spoilage is primarily caused by microorganisms that thrive in the high moisture
content of vegetables. Moreover, high temperature and relative humidity gradients can
accelerate rot and create conditions conducive to pest and insect attacks [2]. The objective
of the present study was to develop a low-cost monitoring system that complied with
existing drying regulations while minimizing farmers’ losses. The research focused on
optimizing greenhouse production and drying methods, prioritizing sustainability and
product quality. Technological advancements, such as the Internet of Things (IoT), cloud
computing, and big data analytics, are increasingly integrated into agricultural practices.
These tools enable the development of new process control systems, innovative services,
and higher-quality products [3,4]. Real-time data analysis is critical for addressing complex
challenges, such as complying with regulations, minimizing losses, optimizing timelines,
and ensuring quality [5]. Advanced multivariate methodologies are necessary to achieve
these objectives [6].

1.2. Current Advances and Relevance to the Problem

Modeling the greenhouse microclimate depends on its intended application and can
involve two main categories of models: physical models, which study the behavior and
interactions of monitored parameters, and black-box models. Physical models analyze the
relationships between variables and their behavior but can be challenging to develop due to
the nonlinear dynamics involved [7–9]. Conversely, black-box models rely on input–output
data to bypass these complexities and deliver reliable results without requiring detailed
knowledge of the underlying physical processes [10]. To develop black-box models, a
training and testing dataset is required, along with the appropriate model structure and
parameterization [11]. Given the complex interactions between internal and external cli-
matic variables, a black-box approach using AI and neural networks is the most suitable
solution. The integration of artificial intelligence and Internet of Things technologies in
smart greenhouses is transforming modern agriculture. These advanced systems enhance
productivity, resource management, and sustainability [12]. Through AI-driven automa-
tion, environmental parameters such as air temperature and relative humidity can be
controlled with remarkable precision [13]. Additionally, IoT-enabled wireless sensors al-
low for continuous, real-time data monitoring and analysis [14]. Smart greenhouses have
demonstrated the ability to achieve targeted temperature settings with 90% accuracy and
provide highly accurate humidity level estimations [15]. Data from multiple sensors are
centralized and managed through cloud-based platforms, enabling remote monitoring
and system adjustments [14,16]. Machine learning techniques, particularly artificial neural
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networks (ANNs), play a critical role in modeling complex drying processes and facilitating
both real-time monitoring and process control [17]. These methods are also used to improve
product quality metrics [18]. AI applications in smart greenhouses extend to various tasks,
including automated pesticide spraying, efficient irrigation management, and pest identi-
fication using image processing technologies [12]. IoT-based monitoring systems further
enhance efficiency by collecting temperature and humidity data in real time, enabling
improved decision-making and operational optimization, particularly in industrial drying
processes [19]. AI-powered systems are increasingly employed to refine greenhouse climate
management and drying procedures. AI controllers can simulate and regulate complex
variables, such as temperature and humidity, ensuring stable growing or drying environ-
ments [20]. For instance, in AI-enhanced greenhouses, temperature predictions achieve
a 90% accuracy rate, while humidity levels are estimated with comparable precision [13].
By considering the enhancements in the farming system for tobacco crops [21], in the
tobacco drying process, ANNs have been utilized to forecast temperature and humidity,
with prediction errors consistently below 2% [22]. Choi et al. [23] developed an MLP neural
network using external and internal greenhouse conditions as input variables. The model
successfully predicted indoor temperature and relative humidity for intervals ranging from
10 to 120 min. The neural network employed four hidden layers and a variable number
of nodes for predicting temperature and humidity separately. Similarly, Petrakis [24], in a
2022 study, introduced an ANN-based model capable of predicting indoor greenhouse con-
ditions, including temperature and humidity, based on factors such as external temperature,
wind speed, solar radiation, and prior internal conditions. The model provided accurate
predictions up to 30 min in advance. Multiple studies have demonstrated the effectiveness
of ANNs in estimating temperature and humidity within greenhouses [25–27]. Various
ANN architectures, including multilayer perceptron (MLP), recurrent neural networks with
long short-term memory (RNN-LSTM), and nonlinear autoregressive exogenous (NARX)
models, have been employed for this purpose [25,27]. RNN-LSTM models have shown
particularly high accuracy in predicting temperature and humidity over extended time
periods [25]. Several studies have explored the use of artificial neural networks (ANNs)
for predicting temperature and humidity in greenhouses. Feed forward neural networks
(FFNNs) have shown promising results in estimating these parameters [28]. These find-
ings suggest that ANNs can be valuable tools for precise greenhouse management and
climate control.

1.3. Research Challenges and Objective

The research aimed to develop a low-cost alert system to monitor microclimatic
variations inside the drying greenhouse and prevent spoilage. Due to the complexity of
rot formation and the constraints imposed by PGI regulations, commercially available
smart greenhouses are not suitable for drying Senise peppers. To address this, the study
employed an FFNN, to analyze climate data from IoT sensors inside the greenhouse and
external meteorological data from the ALSIA Senise weather station.

The primary objectives of this study were as follows:

(1) To design and implement an AI-based system capable of predicting the air temperature
and relative humidity fluctuations inside the greenhouse;

(2) To identify critical humidity thresholds that contribute to pepper spoilage;
(3) To develop an early warning system that notifies operators one hour before critical

conditions arise.

By achieving these objectives, the study sought to enhance the efficiency and sustain-
ability of the drying process, reducing economic losses for producers.
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The present study highlights the importance of AI-enhanced monitoring systems in
addressing weather variability, a longstanding challenge in agro-food production. The
developed warning system aligns with regulatory requirements while optimizing decision-
making through real-time meteorological data and predictive models, enhancing both
sustainability and efficiency. While no scientific evidence currently links the discussed
issues to climate change, climatic variations in the Senise area are undeniable. In this
context, the study demonstrates how an alert system can improve drying conditions
without violating regulations, while future adjustments to guidelines may be necessary to
adapt to evolving climatic conditions.

2. Materials and Methods
2.1. The Study Area

Senise peppers are a traditional variety grown in the Pollino National Park in the
Basilicata region (in southern Italy), predominantly in the Sinni and Agri valleys, an area
encompassing several municipalities, including Senise, from which the pepper variety
takes its name. The peppers are planted between February and March, transplanted in
May, and harvested in mid-to-late summer, with August being the peak month. Harvesting
is performed manually, with great care taken to avoid damaging the stems. The unique
genetic characteristics of this pepper variety make it especially ideal for natural drying
and the subsequent production of paprika. Senise red peppers can be pointed, trunked,
or hooked. They are particularly known for their high vitamin C content and their ability
to maintain their vibrant red color even after drying. The distinct taste and characteristics
of these peppers, coupled with their strong regional identity, led to their recognition as a
protected geographical indication (PGI) by the EU in 1996.

In the upper left corner of Figure 1, the drying infrastructure is shown; it was a
rectangular greenhouse (48 m × 9 m) with a PVC roof. The ridge height was 4.00 m, while
the sidewalls were 2.20 m high. Inside the greenhouse, a shading net was positioned around
2.00 m in height. Additionally, two large openings on the shorter sides of the greenhouse
served as entry and exit points, as well as a natural ventilation system.
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For monitoring outdoor agrometeorological variables, the Senise ALSIA weather
station, located nearest to the greenhouse, was utilized, while temperature and humidity
sensors were set up inside the drying greenhouse, approximately in the center of the
structure (see Figure 1). The 2 yellow placeholders in Figure 1 indicate the positions of the
weather stations.

The greenhouse was located approximately 2 km from the production area; the pepper
harvest, in 2022 and 2023, took place from August to September, and the product was
stored in the greenhouse in different stages, as shown in Table 1.

Table 1. Quantity and dates of storage of red peppers in the drying greenhouse.

Time Quantity (kg)

17 August 2022 4500
26 August 2022 3800

12 September 2022 3700
24 September 2022 3900

5 August 2023 3300
20 August 2023 4700

8 September 2023 3800
16 September 2023 4100

2.2. The Climate Parameters

The data acquired by the ALSIA weather station of Senise are available online on
the website of the agency. Elaisian provided the air temperature and humidity sen-
sors positioned inside the greenhouse. The complete station “Enterprise” measured the
air temperature (accuracy ±0.3 ◦C), relative humidity (±3%), precipitation (resolution
0.1 mm), and dew point (resolution 0.1 ◦C). The sensors were positioned at a height between
1.50 and 1.70 m to ensure representative measurements. Additionally, extra sensors were
used: an ultrasonic anemometer to measure wind speed (sensitivity 0.12 m/s) and wind
direction and a leaf wetness sensor to monitor the wetness hours. The parameters were
acquired every 15 min and transmitted to the server every 60 min. This transmission
interval was configurable to suit specific monitoring needs. In the event of mobile net-
work connectivity problems, the station internally stored data from the last few days and
restored the measured values to the cloud once the connection was re-established. The
monitoring node was a Raspberry Pi (Raspberry Pi Foundation, Cambridge, UK). The
primary programming language employed on the Raspberry Pi was Python 3.10, chosen
for its versatility and extensive library support. The Raspberry Pi was a small but complete
PC on a single board. The Raspberry Pi received data from the sensors and sent it to the
Elaisian IoT platform, where parameter measurements were stored and displayed in real
time. In case there was any sudden change in the air humidity value, the IoT-based device
was able to send an autogenerated SMS alert to the owner’s mobile phone.

From June to September 2021, relative humidity and temperature sensors were placed
outside the greenhouse to evaluate whether the data acquired by the ALSIA station, located
approximately 4 km away from the greenhouse, were representative of the study area.
A correlation analysis was carried out on these data, and Pearson correlation coefficient
values of 0.89 for temperature and 0.76 for relative humidity were found. The parame-
ters were pre-processed to remove any outliers. In 2022 the sensors were placed inside
the greenhouse.

The analysis procedure consisted of two steps:

(a) The first step aimed to highlight whether the variations in temperature and humidity
inside the greenhouse, being a semi-open structure, were significantly influenced by
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the presence of the red peppers. For this purpose, a feed forward neural network
(FFNN) trained on the climate parameters acquired in the greenhouse when it was
empty and the data of the Alsia outdoor weather station were used to predict the
humidity and temperature parameters inside the greenhouse when the product was
present. The neural network was trained on a dataset comprising hourly tempera-
ture and humidity readings collected daily over a 50-day period, from late June to
16 August 2022. The parameters estimated, as if the greenhouse were empty, were
compared with those acquired by the indoor sensors from 17 August to the end of
September. From the comparison between the predicted and measured parameters,
it was possible to identify the time intervals in which the values of humidity and
temperature became higher to intervene by improving the natural ventilation of the
greenhouse. The system was tested in August and September 2022, when the pepper
was in the greenhouse for drying.

(b) In the ensuing phase, the neural network was trained from 17 August 2022 to
30 September 2022, when the peppers were dried in the greenhouse. Therefore,
the system was also able to predict the values of the microclimatic parameters inside
the greenhouse in the presence of red peppers, issuing warnings one hour before a
risk condition arose. The alert system was tested during the 2023 experimental year
by comparing the predicted values with the thresholds previously identified. When
the critical level was exceeded, the greenhouse operators were alerted to improve
conditions inside the drying structure.

To ensure the maximum reliability of the data, specific measures were implemented
during the pre-processing phase. In particular, we found that the readings from the Elaisian
station and the ALSIA platform contained no missing data. However, for gaps shorter than
two hours, a linear interpolation algorithm was applied to maintain the system’s ability to
make reliable predictions. Outliers were identified using a criterion based on the standard
deviation (3σ) and confirmed with the Grubbs test. The detected outliers were then replaced
with the weighted average of the surrounding values. These strategies enhanced the data
quality and neural network accuracy, ensuring greater model reproducibility.

2.3. The Neural Network

Feed forward neural networks (FFNNs) [29] are a class of artificial neural networks
in which the connections between nodes do not form loops. The use of a neural network
allows the extraction and analysis of complex characteristics among the multiple variables
offered by the sensors used to collect agrometeorological data. To predict the temperature
and humidity inside the greenhouse, an FFNN was implemented.

The FFNN architecture was selected due to the following advantages:

• The prediction of internal temperature and humidity was influenced by multiple cli-
mate variables with complex interdependencies. FFNNs are well suited for modeling
such nonlinear relationships, whereas traditional statistical models may struggle to
capture them effectively.

• The input features included time-lagged climate variables (t − 1 and t − 2), making
FFNNs a suitable choice for learning temporal dependencies without requiring ex-
plicit time-series models like recurrent neural networks (RNNs), which can be more
computationally expensive and prone to vanishing gradient issues.

• Compared with more complex deep learning models (e.g., LSTMs or GRUs), FFNNs
require fewer computational resources while still providing high prediction accuracy.
This makes them a practical choice for real-time applications in greenhouse monitoring.

• Through careful architecture design (e.g., reducing neurons in the second hidden
layer and applying K-Fold cross-validation), the FFNN was optimized to generalize
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well to unseen data while minimizing overfitting. Other machine learning models,
such as decision trees or support vector machines (SVMs), may require extensive
feature engineering.

This FFNN network was trained using the data collected from the climate variables
inside and outside the greenhouse, also considering the temporal correlations detected
by the preliminary statistical analysis. The inputs used for prediction at time “t” were
based on data collected over the previous two hours (t − 1 and t − 2), both outside and
inside the greenhouse:

• Internal temperature and internal humidity: T_OUT(t − 1) and H_OUT(t − 1);
T_OUT(t − 2) and H_OUT(t − 2).

• External temperature and external humidity: T_IN(t − 1) and H_IN (t − 1); T_IN
(t − 2) and H_IN (t − 2).

The model predicted the following outputs:

• Predicted internal temperature: T_IN_E(t).
• Predicted internal humidity: H_IN_E(t).

The neural network was designed with the following outputs:

(1) Input layer: 8 input features representing the past two hours of both internal and
external temperature and humidity values.

(2) Hidden layers:

• First hidden layer: 64 neurons with ReLU (rectified linear unit) activation func-
tion. The number of neurons was chosen based on empirical studies and the
complexity of the problem. The number of neurons in the FFNN was determined
based on preliminary experiments to achieve an optimal trade-off between the
predictive accuracy and the computational efficiency.

• Second hidden layer: 32 neurons with ReLU activation. This layer reduced the
number of parameters to prevent overfitting and helped in extracting higher-
order features.

(3) Output layer:

• The output layer consisted of 2 neurons, one for predicting the internal tempera-
ture and the other for predicting the internal humidity for the next hour.

• Activation: Since the problem was a regression task and the forecasts were
continuous values, the output layer used a linear trigger function. It was chosen
for its effectiveness in handling vanishing gradient problems and for its ability to
introduce non-linearity into the model.

The schematic diagram of the architecture of the feed forward neural network (FFNN)
used in this study is shown in Figure 2.
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The neural network was trained using the stochastic gradient descent (SGD) optimizer.
The model was trained for 10,000 epochs to ensure adequate learning while monitoring
the validation loss to prevent overfitting. Since MATLAB R2023a’s Deep Learning Tool-
box was employed, the batch size was automatically optimized based on the available
computational resources and dataset size, ensuring efficient memory management during
training. Hyperparameters such as weight initialization, activation functions, and dropout
rates were set based on preliminary experiments to maximize model generalization and
predictive accuracy.

During the training process, input data were propagated through the network. Each
neuron, by summing the weighted inputs, adding a bias term, and applying the ReLU
activation function in the hidden layers, calculated its activation function. The network
predictions were compared with the actual values of the target variables T_IN and H_IN,
and the error was calculated with the mean squared error (MSE) loss function. The error
was subsequently backpropagated through the network to adjust the weights and biases.
The backpropagation algorithm calculated the gradients of the loss function with respect to
the weights and updated them to minimize the error.

2.4. The Neural Network Training and Validation

After training, the model was evaluated on a test set to assess its performance. The
following metrics were used:

• Mean squared error (MSE): This was the main metric for evaluating the prediction
accuracy. A lower MSE indicated better performance.

• Mean absolute error (MAE): The MAE was also tracked to assess the model’s perfor-
mance in terms of the absolute error in the predicted temperature and humidity.

• Cross-validation: The model’s generalization ability was assessed using K-Fold cross-
validation. This approach split the dataset into K subsets, training the model K times
on different training/validation splits. This reduced the likelihood of overfitting to
any single subset of data.

The dataset used in the training phase of the neural network was divided into three
subsets: 70% for training, 20% for validation, and 10% for testing.

In Figure 3 the results of the neural network reliability analysis are shown; the plots
are related to case (a) described in Section 2.2. In the scatter plots for training, validation,
and testing (Figure 3a, along with the corresponding root mean square errors), the network
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demonstrated a strong ability to predict humidity and temperature conditions inside the
drying structure. The error histogram (Figure 3b) clearly showed that most of the air
relative humidity predictions deviated by only ±0.215%, a low measurement in relation to
the drying characteristics of the fresh peppers. Furthermore, only a very small percentage
of the predictions showed errors greater than ±3%, making the system particularly efficient
in predicting relative humidity values at practically any time of day or night.
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When the neural network was trained to predict air temperature and humidity inside
the greenhouse in the presence of the red peppers (case (b) in Section 2.2), the error his-
togram showed that most of the air relative humidity predictions deviated by only ±0.25%,
a low measurement in relation to the drying characteristics of the fresh product, and also,
in this case, a very small percentage of the predictions showed errors greater than ±3%.
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3. Results and Discussion
The main objective of the present work was to identify the conditions that determine

the onset of pepper rot phenomena and to develop an alert system to limit its occurrence,
compatibly with the restrictions imposed by the PGI directive. It is crucial to emphasize the
importance of designing a low-cost monitoring system due to the low profit margins that
this crop often generates for farmers. These challenges arise both from the damage peppers
can suffer during the growing phase (adverse weather conditions, pest attacks, diseases,
etc.) and from losses caused by rotting during the drying phase. From this perspective,
leveraging free data provided by the regional weather station is highly advantageous
both for the reliability of the data, periodically validated by ALSIA operators, and for
the presence in the Senise area of numerous drying greenhouses for peppers owned by
producers organized into a consortium. The system was, therefore, designed to be easily
applied also to other greenhouses in the area without the need to install external weather
stations at each site, thereby avoiding additional costs.

In 2022, the FFNN was used to predict air temperature and humidity values inside the
greenhouse in the absence of the red peppers. A comparison was conducted between the
values measured in the presence of the product and those estimated by the neural network
to evaluate the impact of the pepper’s presence inside the greenhouse. This analysis aimed
to assess the significance of these variations and their evolution over time and to calculate
critical threshold values during the red pepper drying phase.

In 2023, the neural network was trained using data acquired in the previous year
(17 August to 30 September) to predict relative humidity and temperature values inside the
greenhouse in the presence of the product, with a one-hour lead time. By comparing the
estimated relative humidity in the absence of the stored red peppers with that in its presence
and applying the thresholds established in the prior year’s study, it became possible to
generate alerts and prompt timely interventions by farm operators.

Additionally, as the greenhouse was semi-open, excessive relative humidity could
negatively impact the pepper drying process. As a result, the system was designed to alert
producers whenever the relative humidity measured by the weather station outside the
greenhouse exceeded 85% for more than two consecutive days. Studies have shown that
to prevent fungal growth and mycotoxin production, it is essential to control drying and
storage conditions using hazard analysis and critical control point systems. This is crucial
as mycotoxin-producing fungi can thrive at relative humidity levels above 85–91% [30,31].

3.1. Analysis of Air Humidity and Temperature Patterns

Figure 4 shows the average daily values of temperature and relative humidity, inside
and outside the greenhouse in the period from 1 August to 30 September 2022. The pepper
began to be placed in the greenhouse for drying on 17 August, as shown in Table 1.
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Both measured parameters, outside and inside the greenhouse (Figure 4), showed very
similar patterns when the Senise pepper was not present in the greenhouse (1–16 August).
The relative humidity measured inside the greenhouse always showed lower values com-
pared with the external measurements (ALSIA), while the temperature inside the green-
house was higher than the corresponding values recorded outside. Under ideal ventilation
conditions, humidity levels inside and outside the greenhouse should be the same. How-
ever, due to the presence of protective sheets and the positioning of the openings, this
equilibrium was not achieved [32]. The dynamics between indoor and outdoor parame-
ters were complex, and the indoor values at time t were influenced by external ones also
relating to previous time steps. Figure 5 shows the hourly curves of the estimated and
measured relative air humidity. The estimated and measured relative humidity curves
in the greenhouse overlapped very well in the period in which the red peppers were not
present in the greenhouse, while the former shifted toward lower values in the subsequent
period. An ANOVA analysis was performed on the measured and estimated datasets
by confirming the null hypothesis, i.e., that there was no significant difference between
the means of the two datasets, in the period when the red pepper was not present in the
greenhouse (1–16 August) and rejecting it in the period in which the pepper was present in
the greenhouse. Both tests were performed with a significance level (p-value) of 0.05. A
similar analysis was performed on the estimated and measured temperature data, yielding
results closely aligned with those observed for relative humidity. However, since the most
pronounced differences were found in the relative humidity data, the neural network was
trained to incorporate both parameters (relative humidity and temperature). Neverthe-
less, for the development of the alert system, the analysis prioritized relative humidity
measurements due to their greater significance.
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Figure 5. The measured (H_IN_M, blue line) and estimated (H_IN_E, red line) relative humidity
inside the greenhouse. The graph shows the data starting from 1 August to 30 September; the period
in which the neural network was tested is highlighted in green, while the period in which the peppers
were present in the greenhouse is highlighted in red.

To highlight the significance of these differences, a targeted analysis was con-
ducted [33]. Figure 6 shows the histograms of the differences between the estimated
and measured relative humidity, relating to the period of absence of product (Figure 6a)
in the greenhouse and to the following two weeks in which the peppers were introduced
in the greenhouse (Figure 6b). While in Figure 6a, the distribution of deviations is almost
symmetrical around the value 0, in the other graph, it moves toward positive values.
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In Table 2, the coefficient of determination (R2) and the root mean square error (RMSE)
of the measured and estimated relative humidity were reported in relation to the different
periods. The R2 values, relating to the period in which the pepper was not present in the
greenhouse, was very high, equal to 0.98, while it dropped to 0.88 when the product was
present in the greenhouse. The coefficient of determination of the estimated and measured
relative humidity values significantly reduced in the 4 days following the introduction of
the Senise pepper in the greenhouse.

Table 2. R2 and RMSE values for linear regression of measured and estimated datasets. The ID
number is associated to the different periods following the date when the pepper was placed in the
greenhouse.

ID 2022 R2 RMSE

1–16 August 0.98 3.4
17 August to 30 September 0.89 6.9

1 17–19 August 0.86 7.4
17–25 August 0.9 6.9

2 26–29 August 0.89 7.3
26 August to 3 September 0.94 5.4

3 12–15 September 0.85 7.6
12–20 September 0.91 6.7

4 24–28 September 0.88 7.4
24–30 September 0.94 5.5

The climatic dynamics during the four periods when peppers were introduced into the
greenhouse were different. From 17 to 20 August, higher average temperatures (25–28 ◦C)
and lower relative humidity (51–62%) were recorded both inside and outside the green-
house (Figure 4). In contrast, during the period from 26 to 29 August, the average tem-
peratures decreased (22–25 ◦C), while the relative humidity increased (66–74%). From
12 to 15 September, the average temperatures were even lower (21–24 ◦C), with relative
humidity ranging between 45% and 57%. Finally, from 24 to 27 September, the average
temperatures further declined (15–20 ◦C), and the relative humidity ranged from 57% to
64%, peaking at 87% on 26 September, when 9.8 mm of rain was recorded.

Figure 7 shows the RMSE of the estimated and measured air relative humidity in the
day following the placement of the red pepper in the drying greenhouse at four different
times in the 2022 study year (as reported in Table 1).
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Temperature and relative humidity were the two most effective microclimatic vari-
ables in triggering sudden deterioration processes [34] of the peppers during the drying
period. The RMSE values confirmed the highlights of the previous analysis. The drying
process and storage conditions of the peppers were critical factors affecting their quality
and safety. Moisture content and water activity played crucial roles in fungal growth
and mycotoxin production during paprika processing [30]. The drying process typically
involved three stages: a short induction phase, a linear drying rate period, and a slower
diffusion-controlled phase [35].

During period ID-1 (Table 2), the correlation between the relative humidity values
measured inside the greenhouse and those estimated as if the greenhouse were empty
showed the lowest R2 values during the first three days after the peppers were placed in the
drying greenhouse. The increase in humidity inside the greenhouse, due to the presence
of the product, occurred more rapidly because of higher external temperatures and lower
relative humidity levels, in perfect agreement with the literature. Research on pepper drying
has examined various factors affecting the process. The temperature directly influences
the evaporation rate of water within the peppers [36], thus determining the drying rate.
High temperatures can accelerate evaporation but may also cause thermal damage to the
Senise red pepper, compromising its structural and nutritional quality [37]. Low relative
humidity, while typically resulting in faster drying rates, can lead to excessively rapid and
non-uniform drying. This creates moisture gradients within the pepper, compromising its
integrity and causing cracking or breakage [38].

During periods ID-2 and ID-3, the minimum correlation between the two parameters
occurred during the four days following the placement of the product in the greenhouse.
In both cases, the temperatures were lower than in ID-1, and only in the case of ID-2 were
the air humidity levels higher. Finally, during period ID-4, which occurred at the end of
September, there was a further drop in temperatures along with higher external air humid-
ity. In this case, the minimum correlation between the estimated and measured relative
humidity inside the greenhouse was observed in the five days following the introduction
of red peppers. This was the period during which the highest product losses occurred.
Relative humidity plays a crucial role in maintaining an optimal hygroscopic balance. High
relative humidity can reduce drying efficiency as water-saturated air impedes evaporation
from the product [39,40]. This can lead to inadequate storage conditions, encouraging the
growth of pathogenic microorganisms and increasing the risk of spoilage. Excessively low
temperatures slow the drying process, increasing the risk of microbial proliferation and
mold formation [38,41]. Air temperature and relative humidity, which regulate the rate
of moisture evaporation and the risk of microbial growth, have a significant impact on
the drying process of PGI Senise peppers. A noticeable increase in relative humidity was
observed during the first three to four days after the peppers were placed in the greenhouse.
This occurred because moisture from the fresh product was released into the surrounding
air, temporarily altering the greenhouse microclimate. The results indicated that when
external humidity levels remained high for several consecutive days, the drying process
slowed down, increasing the risk of fungal contamination. However, sudden temperature
fluctuations can accelerate moisture loss while simultaneously compromising the structural
integrity of the peppers, potentially leading to uneven drying and quality deterioration.

3.2. The Alert System

In 2023, the FFNN was trained using data collected during the previous year
(17 August 2022 to 30 September 2022) to predict relative humidity and temperature val-
ues when the peppers were stored inside the greenhouse, with a one-hour lead time.
A comparison between the measured and predicted values of temperature and relative
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humidity was performed. Statistical analysis of the output revealed that the RMSE and
mean absolute error (MAE) for temperature predictions were 0.81 ◦C and 0.54 ◦C, respec-
tively, while the RMSE and MAE for relative humidity predictions were 2.6% and 1.88%,
respectively—results that can be considered satisfactory. Figure 8 illustrates the accuracy
of the predicted versus measured parameters within the greenhouse in the presence of the
product over a four-day sample period. The system remained operational throughout the
entire pepper drying period in the greenhouse, from August to September 2023.
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The threshold system was developed on the data acquired in 2022, and it was based
on comparing the hourly values of parameters estimated inside the greenhouse as if the
peppers were not present, H_IN_E_WP, with those estimated when the product was present
inside the greenhouse, H_IN_E_P. The threshold value was defined by referring to the
histogram in Figure 6b, setting it equal to two standard deviations, as follows:

Alert → ∆H = H_IN_E_P − H_IN_E_WP > 12%. (1)

By applying the thresholds established in the 2022 study, it became possible to generate
alerts and prompt timely interventions by farm operators. In fact, the developed alert
system could issue a warning one hour before a risk condition arose, allowing the activation
of appropriate preventive measures to improve the greenhouse microclimate. However,
these interventions were focused on enhancing natural ventilation or solar irradiance
due to the restrictions imposed by EU legislation, which grants the Senise pepper its
PGI designation.

Figure 9 shows the graph of residuals between the estimated air relative humidity
inside the greenhouse in the presence and absence of red peppers (∆H), from 5 August to
30 September 2023. The outliers were removed from the graph.
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Figure 9. Residuals of estimated air relative humidity inside the greenhouse in the presence of the
red pepper compared with its absence (∆H) in summer 2023.

During this period, patterns influenced by both the presence of products and changes
in environmental conditions were evident. Until 5 August 2023, the greenhouse was empty.
On 5 August, the first batch of red peppers was placed inside the greenhouse (Table 1).
From 5 to 9 August, external temperatures ranged between a minimum of 18 ◦C and a
maximum of 28 ◦C. During this period, ∆H reached values of 13%. Subsequently, from 20 to
24 August, when additional peppers were placed in the greenhouse for drying, ∆H values
increased again, while the external temperatures fluctuated between 22 ◦C and 35.5 ◦C,
which probably contributed to amplify the observed humidity differences. A similar
pattern was observed from 8 to 12 September, when temperatures moderated slightly, with
averages ranging between 18.5 ◦C and 31 ◦C. The final highlighted period, from 16 to 20
September, showed temperatures stabilizing again at higher levels, between 22 ◦C and
34 ◦C. Following each of these highlighted periods, the graph indicates a gradual reduction
in ∆H during the 2 days afterward, with differences dropping below 4–10%. For the
remaining periods, when no significant events occurred, ∆H consistently remained below
4%. During the study period the alert system was activated several times, highlighting that
the interventions carried out to improve natural ventilation inside the greenhouse were
likely still insufficient to fully meet the intended objectives. Nevertheless, during 2023,
product losses during the drying process were reduced.

Compared with studies on the use of predictive neural networks to predict microcli-
mate conditions inside drying facilities currently in the literature, the present experimental
approach has some key differences. Choi in 2019 [23] proposed an MLP model to predict the
microclimate inside fully enclosed greenhouses, achieving 90% accuracy in predicting air
humidity. The proposed model, however, addresses an even more complex and intriguing
challenge, namely, the estimation—and relative management—of humidity and tempera-
ture in a semi-open environment. Compared with other studies, such as the one carried
out by Petrakis in 2022 [24], which implemented a prediction system based on ANNs for
smart greenhouses, the present study stands out due to the specificity of the application
in a context characterized by extremely stringent regulations, which prevent complete au-
tomation, defining extremely critical or complex management challenges. Further studies
are underway to refine the threshold system. Additionally, ongoing investigations aim to
examine the presence of in-field infestations that could contribute to rot during the red
pepper drying phase. To further improve this study, we acknowledge certain limitations.
First, the system’s applicability to other geographical regions with different environmental
conditions may be affected by its reliance on the specific climate of the Basilicata region.
Second, the dependence on IoT-based monitoring requires a stable data transmission in-
frastructure, which may not be available in all agricultural settings. Finally, although the
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model accurately predicts temperature and humidity variations, it does not yet account
for other critical factors that could enhance the accuracy of the alert system, such as air
circulation patterns and potential external contamination. Future developments will aim
to integrate these additional variables to improve predictive reliability and ensure wider
applicability of the proposed method.

3.3. Potential Solutions to Optimize Red Pepper Drying Process

One potential solution to these challenges lies in the development of smart greenhouses
as part of the Industry 4.0 framework. The focus of this industrial revolution is not merely
on automation but on creating intelligent production systems that integrate data, making it
easily accessible, analyzable, and actionable [42]. For instance, digital twin technologies
can optimize production processes, energy consumption, and operational costs, all while
accounting for key factors that influence the product quality and yield [22,43,44].

One potential approach could involve solar greenhouses, which offer an efficient and
eco-friendly drying method for agricultural products. Compared with traditional sun-
drying methods, solar greenhouses offer better quality by protecting crops from external
contaminants [45]. They can function using either natural or forced convection systems,
with the latter offering reduced drying times and improved control over humidity levels.
Moreover, the incorporation of thermal storage solutions ensures consistent heat distribu-
tion throughout the drying cycle [46]. Unfortunately, current regional regulations prevent
the use of this method, despite its potential compatibility with many of the guidelines
already in place.

Growtronix is a modular system that monitors and controls greenhouse parameters
like temperature, humidity, and lighting, allowing precise environmental customization.
Monnit Greenhouse Monitoring is a solution that provides real-time monitoring and alerts
for temperature, humidity, and other conditions to maintain optimal growth environments.
Intel Edison-Based DIY Systems are projects using microcontrollers for smaller-scale or
custom greenhouse solutions, showcasing flexibility and adaptability. Such systems are
difficult to adapt to the specific case of Senise red peppers because the structural design of
the greenhouse used for peppers may not align with the operational requirements of off-
the-shelf smart systems, necessitating a tailored approach. Additionally, the requirements
for maintaining the peppers’ quality and preserving their geographical designation often
involve specific drying directives imposed by the PGI protocol.

Drying technologies have undergone significant evolution [47], shifting from tradi-
tional methods like sun drying to modern techniques such as solar, convective, infrared,
ultrasound, radio-frequency, microwave, and freeze drying [48]. While these innovations
have improved efficiency, their positive impact on maintaining the sensory and bioactive
qualities of chili peppers, such as color, texture, capsaicinoids, and antioxidants, should not
be viewed as an unquestioned advantage. Advanced techniques often involve high energy
costs and operational complexities that must be carefully weighed against the benefits in
terms of product quality. Recent trends highlight the optimization of processes to improve
product quality while minimizing energy consumption, raising questions about the long-
term sustainability of these solutions. Although pre-treatment techniques, like blanching
and cold plasma, have shown promising potential in preserving bioactive compounds, their
actual scalability and economic impact remain to be fully established. Furthermore, hybrid
methods that combine drying and pre-treatment strategies seem to promise an optimal
balance between efficiency and quality, but a critical examination of the synergies and
limitations of these solutions is necessary. Future research should focus on comparative
analyses of different drying methods, considering not only product quality but also energy



Sustainability 2025, 17, 1682 18 of 21

efficiency, to guide researchers, policymakers, and industry stakeholders toward more
sustainable and effective drying technologies.

4. Conclusions
While the alert system developed in this study is specifically designed for the Senise

pepper drying process, with appropriate adjustments, it can be adapted to other contexts
with similar management requirements. In fact, the Senise pepper is representative of
other Italian realities subject to strict regulations in order to maintain the PGI status. In
particular, the use of low-cost IoT sensors and publicly available meteorological data makes
this technology highly accessible, even for small-scale producers, minimizing the need
for complex and costly installations. This approach, based on AI algorithms, enables
seamless integration into environments with varying microclimatic conditions, enhancing
the efficiency of the drying process. Although smart greenhouses represent a promising
solution for sustainable food production in the face of global challenges, they are often not
applicable in such contexts. One of the main causes of Senise red pepper loss occurs in
the greenhouse during the drying phase. Monitoring the microclimatic conditions in the
greenhouse analyzing the data by using AI applications to enable targeted interventions
has proven to be a very promising approach in reducing production losses. Further
research is needed, including field monitoring of the crops, to assess potential nutritional
deficiencies or the presence of pest attacks and diseases during the growing season of
the peppers, which could also impact the drying phase. To address complex production
challenges—such as meeting production standards, minimizing product loss, optimizing
lead times, and ensuring product quality—there is a clear need for sustainable management
strategies. These strategies must be based on the careful scientific analysis of real-time data,
made possible by new technologies [49]. This underscores the importance of developing
and prototyping decision support systems (DSSs) that are both effective and cost-efficient.
As highlighted by Maraveas in 2023 [12], while these artificial intelligence applications show
potential in improving agricultural sustainability and resource use efficiency, challenges
remain, including cost, technology commercialization, and disparities between developed
and developing regions. The adoption of these technologies represents a significant step
toward more efficient and sustainable agricultural practices.
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