Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020
<p>Overview of the study area.</p> "> Figure 2
<p>(<b>a</b>) Spatiotemporal characteristics of RSEI in 2001, (<b>b</b>) spatiotemporal characteristics of RSEI in 2010, (<b>c</b>) spatiotemporal characteristics of RSEI in 2020, and (<b>d</b>) spatiotemporal characteristics of the average RSEI values from 2001 to 2020.</p> "> Figure 3
<p>Proportion of different levels of RSEI in the Tianshan Mountains from 2001 to 2020.</p> "> Figure 4
<p>The sustainability and stability of the ecological environment in the Tianshan Mountains of China from 2001 to 2020. (<b>a</b>) Spatial distribution of the RSEI coefficient of variation; (<b>b</b>) spatial distribution of Hurst exponent of the RSEI.</p> "> Figure 5
<p>(<b>a</b>) Spatiotemporal characteristics of the average NDVI values from 2001 to 2020; (<b>b</b>) temporal changes in NDVI from 2001 to 2020.</p> "> Figure 6
<p>(<b>a</b>) Spatiotemporal characteristics of FVC in 2001, (<b>b</b>) spatiotemporal characteristics of FVC in 2010, (<b>c</b>) spatiotemporal characteristics of FVC in 2020, and (<b>d</b>) spatiotemporal characteristics of the average FVC values from 2001 to 2020.</p> "> Figure 7
<p>Area and proportion of vegetation coverage grades in the Tianshan Mountains from 2001 to 2020.</p> "> Figure 8
<p>(<b>a</b>) Spatiotemporal characteristics of NPP in 2001, (<b>b</b>) spatiotemporal characteristics of NPP in 2010, (<b>c</b>) spatiotemporal characteristics of NPP in 2020, and (<b>d</b>) temporal changes in NPP in China’s Tianshan Mountains from 2001 to 2020.</p> "> Figure 9
<p>(<b>a</b>) Spatiotemporal characteristics of NEP in 2001, (<b>b</b>) spatiotemporal characteristics of NEP in 2010, (<b>c</b>) spatiotemporal characteristics of NEP in 2020, and (<b>d</b>) temporal changes in NEP in China’s Tianshan Mountains from 2001 to 2020.</p> "> Figure 10
<p>Annual spatiotemporal characteristics of climate factors in Tianshan Mountains from 2001 to 2020. (<b>a</b>) Precipitation spatial patterns, (<b>b</b>) precipitation temporal trends, (<b>c</b>) temperature spatial patterns, and (<b>d</b>) temperature temporal trends.</p> "> Figure 11
<p>Correlation coefficients between the RSEI and precipitation, temperature in the Tianshan Mountains from 2001 to 2020.</p> "> Figure 12
<p>Dynamic changes in land types in the Chinese Tianshan Mountains from 2000 to 2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Construction of Relatively Stable RSEI
2.3.2. Analysis Method of RSEI Trend
- (1)
- Coefficient of Variation (Cv)
- (2)
- Hurst Index
2.3.3. Vegetation Model Calculation
- (1)
- Fractional Vegetation Cover Calculation
- (2)
- CASA Model
- (3)
- Carbon Source/Sink Estimation Model
2.3.4. Pearson Correlation Coefficient
3. Results
3.1. Remote Sensing Ecological Index Characteristics
3.1.1. Basic Statistics of Remote Sensing Ecological Index
3.1.2. Spatiotemporal Variations in Remote Sensing Ecological Quality Index
3.1.3. Stability and Persistence
3.2. Vegetation Characteristics
3.2.1. NDVI Changes
3.2.2. Fractional Vegetation Cover Changes
3.2.3. Spatiotemporal Development of Vegetation NPP
3.2.4. Temporal and Spatial Dynamics of Vegetation Carbon Source/Sink
3.3. Exploring the Impact of Climate Factors on RSEI Variation
4. Discussion
4.1. Land Use Change
4.2. Climate Factors
4.3. Uncertainty
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zi, F.Z.; Song, T.J.; Liu, J.X.; Wang, H.H.; Serekbol, G.; Yang, L.T.; Hu, L.H.; Huo, Q.; Song, Y.; Huo, B.; et al. Environmental and Climatic Drivers of Phytoplankton Communities in Central Asia. Biology 2024, 13, 717. [Google Scholar] [CrossRef] [PubMed]
- Ling, Q.; Yuan, X.L.; Hu, Q.; Ochege, F.U.; Edwin, I.E.; He, H.L.; Chen, B.J.; Hou, G.Y.; Luo, G.P. Temperature change in the Tianshan Mountains and its external drivers. Atmos. Res. 2023, 294, 106972. [Google Scholar] [CrossRef]
- Fan, M.T.; Xu, J.H.; Li, D.H.; Chen, Y.N. Response of Precipitation in Tianshan to Global Climate Change Based on the Berkeley Earth and ERA5 Reanalysis Products. Remote Sens. 2022, 14, 519. [Google Scholar] [CrossRef]
- Ding, C.; Li, Y.; Xie, Q.Y.; Li, H.; Zhang, B.W. Impacts of terrain on land surface phenology derived from Harmonized Landsat 8 and Sentinel-2 in the Tianshan Mountains, China. Gisci. Remote Sens. 2023, 60, 2242621. [Google Scholar] [CrossRef]
- Cai, X.R.; Li, Z.Q.; Zhang, H.; Xu, C.H. Vulnerability of glacier change in the Tianshan Mountains region of China. J. Geogr. Sci. 2021, 31, 1469–1489. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, Y.N.; Li, W.H.; Li, Z. Quantifying the contributions of snow/glacier meltwater to river runoff in the Tianshan Mountains, Central Asia. Glob. Planet. Change 2019, 174, 47–57. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Liu, L.; He, X.L.; Li, Z.Q.; Wang, P.Y. Evaluation on glaciers ecological services value in the Tianshan Mountains, Northwest China. J. Geogr. Sci. 2019, 29, 101–114. [Google Scholar] [CrossRef]
- Chen, H.Y.; Chen, Y.N.; Li, W.H.; Hao, X.M.; Li, Y.P.; Zhang, Q.F. Identifying evaporation fractionation and streamflow components based on stable isotopes in the Kaidu River Basin with mountain-oasis system in north-west China. Hydrol. Process. 2018, 32, 2423–2434. [Google Scholar] [CrossRef]
- Cheng, W.J.; Feng, Q.; Xi, H.Y.; Sindikubwabo, C.; Chen, Y.Q.; Zhao, X.Y. Spatio-temporal dynamics of water storage across Northwest China over the past four decades. J. Hydrol. Reg. Stud. 2023, 49, 101488. [Google Scholar] [CrossRef]
- Wang, R.Z.; Sun, Y.H.; Zong, J.K.; Wang, Y.H.; Cao, X.Y.; Wang, Y.Z.; Cheng, X.L.; Zhang, W.K. Remote Sensing Application in Ecological Restoration Monitoring: A Systematic Review. Remote Sens. 2024, 16, 2204. [Google Scholar] [CrossRef]
- Wang, Z.W.; Chen, T.; Zhu, D.Y.; Jia, K.; Plaza, A. RSEIFE: A new remote sensing ecological index for simulating the land surface eco-environment. J. Environ. Manag. 2023, 326, 116851. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Bao, A.M.; Xu, W.Q.; Zheng, G.X.; Nzabarinda, V.; Yu, T.; Huang, X.R.; Long, G.; Naibi, S. Dynamics of forest net primary productivity based on tree ring reconstruction in the Tianshan Mountains. Ecol. Indic. 2023, 146, 109713. [Google Scholar] [CrossRef]
- Han, J.L.; Han, F.; He, B.S.; Ma, X.K.; Wang, T. Spatiotemporal changes and driving factors of alpine land cover in Tianshan world natural heritage sites. Sci. Rep. 2024, 14, 20895. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.Y.; Wu, S.X.; Long, W.Y.; Chen, C.B.; Zhang, Z.H.; Fang, Y.L.; Zhang, Y.; Luo, G.P. Quantitative analysis of the impact of climate change and oasification on changes in net primary productivity variation in mid-Tianshan Mountains from 2001 to 2020. Ecol. Indic. 2023, 154, 110820. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Cui, R.H.; Han, J.Z.; Hu, Z.Q. Assessment of Spatial Temporal Changes of Ecological Environment Quality: A Case Study in Huaibei City, China. Land 2022, 11, 944. [Google Scholar] [CrossRef]
- Peng, L.; Wu, H.W.; Li, Z.H. Spatial-Temporal Evolutions of Ecological Environment Quality and Ecological Resilience Pattern in the Middle and Lower Reaches of the Yangtze River Economic Belt. Remote Sens. 2023, 15, 430. [Google Scholar] [CrossRef]
- Lv, Y.; Xiu, L.A.; Yao, X.J.; Yu, Z.P.; Huang, X.Y. Spatiotemporal evolution and driving factors analysis of the eco-quality in the Lanxi urban agglomeration. Ecol. Indic. 2023, 156, 111114. [Google Scholar] [CrossRef]
- Zhang, L.D.; Hou, Q.H.; Duan, Y.Q.; Ma, S.B. Spatial and Temporal Heterogeneity of Eco-Environmental Quality in Yanhe Watershed (China) Using the Remote-Sensing-Based Ecological Index (RSEI). Land 2024, 13, 780. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, Z.C.; Yang, J.H.; Guo, X.H. Ecological environmental quality assessment of Chinese estuarine wetlands during 2000–2020 based on a remote sensing ecological index. Front. Mar. Sci. 2022, 9, 981139. [Google Scholar] [CrossRef]
- Qin, G.X.; Wang, N.L.; Wu, Y.W.; Zhang, Z.; Meng, Z.Y.; Zhang, Y.J. Spatiotemporal variations in eco-environmental quality and responses to drought and human activities in the middle reaches of the Yellow River basin, China from 1990 to 2022. Ecol. Inform. 2024, 81, 102641. [Google Scholar] [CrossRef]
- Du, Z.Y.; Ji, X.B.; Liu, J.; Zhao, W.Y.; He, Z.B.; Jiang, J.C.; Yang, Q.Y.; Zhao, L.W.; Gao, J.L. Ecological health assessment of Tibetan alpine grasslands in Gannan using remote sensed ecological indicators. Geo-Spat. Inf. Sci. 2024, 1–19. [Google Scholar] [CrossRef]
- Gou, R.K.; Zhao, J. Eco-Environmental Quality Monitoring in Beijing, China, Using an RSEI-Based Approach Combined With Random Forest Algorithms. IEEE Access 2020, 8, 196657–196666. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.W.; Zhang, X.L.; Wei, B.H.; Zhao, Y.Y.; Ainiwaer, M. Evaluation of Ecological Quality Status and Changing Trend in Arid Land Based on the Remote Sensing Ecological Index: A Case Study in Xinjiang, China. Forests 2023, 14, 1830. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.L.; Kung, H.T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Yuan, B.D.; Fu, L.N.; Zou, Y.; Zhang, S.Q.; Chen, X.S.; Li, F.; Deng, Z.M.; Xie, Y.H. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Li, W.J.; An, M.; Wu, H.L.; An, H.; Huang, J.; Khanal, R. The local coupling and telecoupling of urbanization and ecological environment quality based on multisource remote sensing data. J. Environ. Manag. 2023, 327, 116921. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Wu, Z.F.; Chen, Y.B.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Liu, Y.C.; Li, Z.; Chen, Y.N.; Li, Y.P.; Li, H.W.; Xia, Q.Q.; Kayumba, P.M. Evaluation of consistency among three NDVI products applied to High Mountain Asia in 2000–2015. Remote Sens. Environ. 2022, 269, 112821. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.W.; Zhang, X.L.; Zhao, Y.Y.; Wei, B.H. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Wu, C.Y.; Zhang, P.Z.; Zhang, Z.Q.; Zheng, W.J.; Xu, B.B.; Wang, W.T.; Yu, Z.Y.; Dai, X.Y.; Zhang, B.X.; Zang, K.Z. Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications. Earth-Sci. Rev. 2023, 238, 104362. [Google Scholar] [CrossRef]
- Yan, J.J.; Zhang, G.P.; Ling, H.B.; Han, F.F. Comparison of time-integrated NDVI and annual maximum NDVI for assessing grassland dynamics. Ecol. Indic. 2022, 136, 108611. [Google Scholar] [CrossRef]
- Miao, W.N.; Chen, Y.; Kou, W.L.; Lai, H.Y.; Sazal, A.; Wang, J.; Li, Y.L.; Hu, J.J.; Wu, Y.; Zhao, T.F. The HANTS-fitted RSEI constructed in the vegetation growing season reveals the spatiotemporal patterns of ecological quality. Sci. Rep. 2024, 14, 14686. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.P.; Gao, X.; Lei, J.Q.; Zhou, N.; Guo, Z.K.; Shang, B.J. Ecological environment quality evaluation of the Sahel region in Africa based on remote sensing ecological index. J. Arid Land 2022, 14, 14–33. [Google Scholar] [CrossRef]
- Liu, Y.H.; Zhang, J. Spatio-temporal evolutionary analysis of surface ecological quality in Pingshuo open-cast mine area, China. Environ. Sci. Pollut. Res. 2024, 31, 7312–7329. [Google Scholar] [CrossRef]
- Kim, J.; Kang, S.; Seo, B.; Narantsetseg, A.; Han, Y. Estimating fractional green vegetation cover of Mongolian grasslands using digital camera images and MODIS satellite vegetation indices. Gisci. Remote Sens. 2020, 57, 49–59. [Google Scholar] [CrossRef]
- Cao, S.; Sanchez-Azofeifa, G.A.; Duran, S.M.; Calvo-Rodriguez, S. Estimation of aboveground net primary productivity in secondary tropical dry forests using the Carnegie-Ames-Stanford approach (CASA) model. Environ. Res. Lett. 2016, 11, 075004. [Google Scholar] [CrossRef]
- Dai, E.F.; Huang, Y.; Wu, Z.; Zhao, D.S. Analysis of spatio-temporal features of a carbon source/sink and its relationship to climatic factors in the Inner Mongolia grassland ecosystem. J. Geogr. Sci. 2016, 26, 297–312. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Pyhäjärvi, T.; Mattila, T.M. New model species for arctic-alpine plant molecular ecology. Mol. Ecol. Resour. 2021, 21, 637–640. [Google Scholar] [CrossRef]
- Jiao, W.Z.; Wang, L.X.; Smith, W.K.; Chang, Q.; Wang, H.L.; D’Odorico, P. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 2021, 12, 3777. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Lai, Q.; Yin, S.; Bao, Y.H.; Qing, S.; Bayarsaikhan, S.; Bu, L.X.; Mei, L.; Li, Z.R.; Niu, J.L.; et al. Exploring grassland ecosystem water use efficiency using indicators of precipitation and soil moisture across the Mongolian Plateau. Ecol. Indic. 2022, 142, 109207. [Google Scholar] [CrossRef]
- Xu, M.; Kang, S.C.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2018, 203, 141–163. [Google Scholar] [CrossRef]
- Amantai, N.; Meng, Y.Y.; Wang, J.Z.; Ge, X.Y.; Tang, Z.Y. Climate overtakes vegetation greening in regulating spatiotemporal patterns of soil moisture in arid Central Asia in recent 35 years. Gisci. Remote Sens. 2024, 61, 2286744. [Google Scholar] [CrossRef]
- Hua, Z.Y.; Ma, J.; Sun, Y.; Yang, Y.J.; Zhu, X.H.; Chen, F. Multi-Scenario Simulating the Impacts of Land Use Changes on Ecosystem Health in Urban Agglomerations on the Northern Slope of the Tianshan Mountain, China. Land 2024, 13, 571. [Google Scholar] [CrossRef]
- Wang, Y.; Shataer, R.; Xia, T.T.; Chang, X.E.; Zhen, H.; Li, Z. Evaluation on the Change Characteristics of Ecosystem Service Function in the Northern Xinjiang Based on Land Use Change. Sustainability 2021, 13, 9679. [Google Scholar] [CrossRef]
- Liu, X.; Yang, H.; Li, X.; Maimaitituersun, A. Impacts of Land-Use Change on Past and Future Carbon Stocks in the Tianshan North Slope Economic Belt. Land Degrad. Dev. 2024, 35, 5860–5873. [Google Scholar] [CrossRef]
- Fan, M.T.; Xu, J.H.; Yu, W.Z.; Chen, Y.N.; Wang, M.H.; Dai, W.; Wang, Y.W. Recent Tianshan warming in relation to large-scale climate teleconnections. Sci. Total Environ. 2023, 856, 159201. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Deng, H.J.; Fang, G.H.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 39364. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Chen, Y.N.; Li, Z.; Fang, G.H.; Xiang, Y.Y.; Li, Y.P.; Ji, H.P. Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sens. 2020, 12, 2704. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Shao, Y.K.; Liu, Y.F.; Ma, T.T.; Sun, L.H.; Yang, X.H.; Li, X.S.; Wang, A.A.; Wang, Z.C. Conservation Effectiveness Assessment of the Three Northern Protection Forest Project Area. Forests 2023, 14, 2121. [Google Scholar] [CrossRef]
- Ding, J.C.; Chen, Y.Z.; Wang, X.Q.; Cao, M.Q. Land degradation sensitivity assessment and convergence analysis in Korla of Xinjiang, China. J. Arid. Land 2020, 12, 594–608. [Google Scholar] [CrossRef]
- Li, C.X.; Chai, G.Q.; Li, Z.Y.; Jia, X.; Lei, L.T.; Chen, L.; Li, Y.F.; Cao, Y.F.; Zhu, R.N.; Mei, X.L.; et al. Spatial-temporal variation of ecological environment quality and driving factors from 2000 to 2020 in Wuliangsu Lake Basin, Northern China. Front. Ecol. Evol. 2023, 11, 1240514. [Google Scholar] [CrossRef]
- Hui, J.W.; Cheng, Y.S. Evolution and Spatiotemporal Response of Ecological Environment Quality to Human Activities and Climate: Case Study of Hunan Province, China. Remote Sens. 2024, 16, 2380. [Google Scholar] [CrossRef]
- Fang, C.; Gao, Q.; Zhang, X.; Cheng, W. Spatiotemporal characteristics of the expansion of an urban agglomeration and its effect on the eco-environment: Case study on the northern slope of the Tianshan Mountains. Sci. China-Earth Sci. 2019, 62, 1461–1472. [Google Scholar] [CrossRef]
- Ahmed, G.; Zan, M.; Helili, P.; Kasimu, A. Responses of Vegetation Phenology to Urbanisation and Natural Factors along an Urban-Rural Gradient: A Case Study of an Urban Agglomeration on the Northern Slope of the Tianshan Mountains. Land 2023, 12, 1108. [Google Scholar] [CrossRef]
- Deng, Q.Z.; Wu, Y.; Zhao, X.; Qiu, C.S.; Xia, S.; Feng, Y.Y.; Liu, H.L. Influence of different irrigation methods on the alfalfa rhizosphere soil fungal communities in an arid region. PLoS ONE 2022, 17, e0268175. [Google Scholar] [CrossRef]
- Quan, Z.M.; Zuo, Q.T.; Zang, C.; Wu, Q.S. A multi-index comprehensive evaluation method for assessing the water use balance between economic society and ecology considering efficiency-development-health-harmony. Sci. Rep. 2024, 14, 25924. [Google Scholar] [CrossRef]
- Gong, J.; Xie, Y.C.; Cao, E.J.; Huang, Q.Y.; Li, H.Y. Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210. [Google Scholar] [CrossRef]
- Liu, Q.J.; An, J.; Zhang, G.H.; Wu, X.Y. The effect of row grade and length on soil erosion from concentrated flow in furrows of contouring ridge systems. Soil Tillage Res. 2016, 160, 92–100. [Google Scholar] [CrossRef]
Products | Variables | Spatial Resolution | Temporal Resolution | Sources |
---|---|---|---|---|
MOD13A1/Q1 | NDVI | 500/250 m | 16 d | https://modis.gsfc.nasa.gov/ |
MOD09A1 | SR | 500 m | 8 d | https://modis.gsfc.nasa.gov/ |
MOD11A2 | LST | 1 km | 8 d | https://modis.gsfc.nasa.gov/ |
MOD15A3H | FPAR | 500 m | 4 d | https://modis.gsfc.nasa.gov/ |
MCD12Q1 | Land cover (IGBP) | 500 m | 96 d | https://modis.gsfc.nasa.gov/ |
TerraClimate | SOL/Pre | 4 km | monthly | https://www.ecmwf.int |
T3H(GLDAS) | Tem | 0.25° | 3 h | http://ldas.gsfc.nasa.gov/ |
CRU TSV4.06 | CRU TSV4.06 | 0.5° | monthly | https://crudata.uea.ac.uk/cru/data/hrg/ |
Monthly Precipitation Dataset with 1 km Resolution in China from 1901 to 2022 | Pre | 1 km | monthly | http://www.geodata.cn/ |
Monthly Average Temperature Dataset with 1 km Resolution in China from 1901 to 2022 | Tem | 1 km | monthly | http://www.geodata.cn/ |
CNLUCC | Land use data | 30 m | http://www.resdc.cn/ |
Year | Index | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|
2001 | LST | 0.61 | −0.02 | 0.40 | −0.68 |
NDBSI | −0.03 | −0.99 | −0.11 | −0.07 | |
NDVI | −0.63 | 0.10 | −0.26 | −0.73 | |
WET | −0.48 | −0.09 | 0.87 | 0.09 | |
Eigenvalue | 1.87 | 1.01 | 0.75 | 0.38 | |
Contribution (%) | 46.69 | 25.13 | 18.66 | 9.52 | |
2010 | LST | −0.62 | −0.02 | 0.28 | 0.73 |
NDBSI | −0.03 | 1.00 | −0.08 | 0.04 | |
NDVI | 0.60 | −0.04 | −0.43 | 0.67 | |
WET | 0.50 | 0.08 | 0.86 | 0.10 | |
Eigenvalue | 1.91 | 1.00 | 0.71 | 0.39 | |
Contribution (%) | 47.63 | 25.04 | 17.65 | 9.67 | |
2020 | LST | 0.64 | −0.00 | 0.22 | 0.74 |
NDBSI | 0.02 | 0.99 | −0.15 | 0.03 | |
NDVI | −0.61 | −0.07 | −0.44 | 0.66 | |
WET | −0.47 | 0.13 | 0.86 | 0.16 | |
Eigenvalue | 1.77 | 1.01 | 0.79 | 0.44 | |
Contribution (%) | 44.27 | 25.12 | 19.72 | 10.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chai, C.; Zhang, Q.; Huang, X.; He, H. Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020. Sustainability 2025, 17, 1673. https://doi.org/10.3390/su17041673
Liu Y, Chai C, Zhang Q, Huang X, He H. Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020. Sustainability. 2025; 17(4):1673. https://doi.org/10.3390/su17041673
Chicago/Turabian StyleLiu, Yuting, Chunmei Chai, Qifei Zhang, Xinyao Huang, and Haotian He. 2025. "Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020" Sustainability 17, no. 4: 1673. https://doi.org/10.3390/su17041673
APA StyleLiu, Y., Chai, C., Zhang, Q., Huang, X., & He, H. (2025). Monitoring and Evaluation of Ecological Environment Quality in the Tianshan Mountains of China Using Remote Sensing from 2001 to 2020. Sustainability, 17(4), 1673. https://doi.org/10.3390/su17041673