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Abstract: The United Nations Sustainable Development Goals (SDGs) emphasize enhancing agri-
cultural productivity sustainably and strengthening the resilience of agricultural systems amidst
rising economic uncertainties, escalating climate change risks, and geopolitical tensions. Amidst
these challenges, the relentless progress of digital and information technologies heralds the digital
economy as a potential game-changer for agricultural productivity. In 2023, the scale of China’s
digital economy reached 7.64 trillion US dollars, accounting for 42.8% of China’s GDP, with the
contribution of digital economy growth to GDP growth reaching 66.45%. As a nascent yet formidable
force in the global economy, the digital economy is reshaping industries worldwide, particularly
the agricultural sector. Food security and sustainability could potentially be affected by the digital
economy, while agricultural productivity is a crucial element of food security and sustainability.
The primary objective of this study is to investigate the extent to which the digital economy (DE)
contributes to agricultural technical efficiency (ATE) in the context of China and to explore the
mechanisms through which this impact is mediated and the implications for regional disparities.
This study delves into the Chinese context, examining the empirical evidence of how the DE bolsters
ATE utilizing provincial panel data. Key findings reveal the following: (1) DE exerts a significant and
positive impact on ATE, demonstrating robust effects. (2) Marketization acts as a pivotal mediation
mechanism in transmitting the positive influence of DE on ATE. (3) DE fosters convergence in ATE,
narrowing regional disparities. Based on these insights, we propose strategic recommendations
to mitigate agricultural production risks in agricultural productivity and propel food security and
sustainability in China.

Keywords: food security and sustainability; digital economy; agricultural technical efficiency; convergence;
mediating mechanism

1. Introduction

The digital economy is a new driver of the global economy that is profoundly affecting
many industries, especially in the agricultural sector. The United Nations Sustainable
Development Goals (SDGs) encompass the “Zero Hunger” goal (SDG 2) [1], emphasizing
the promotion of sustainable agricultural production and the enhancement of agricultural
systems’ resilience to guarantee sufficient nutrition and food for all individuals. The digital
economy holds a pivotal role in facilitating the attainment of this objective. In the face of
global challenges, prioritizing food security and sustainability is more important than ever;
from a global perspective, the challenges of agricultural production are rising sharply due
to rising economic uncertainty, the growing risk of climate change, and the instability of
geopolitical conflicts. In recent years, digital and information technology has advanced
continuously, and the advancement of the digital economy could serve as the driving force
to address the present challenges related to food security and sustainability.
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China offers rich material for our study. China’s agriculture has long been challenged
by low productivity, such as fragmented land, low mechanization, an aging and feminized
rural labor force, etc., which have constrained China’s agricultural development. Chinese
policymakers view digital technology as a crucial means to drive the high-quality ad-
vancement of agriculture. Certain research suggests that the digital economy can facilitate
the circulation of elements and optimize resource allocation [2–4]. Focusing on the effect
of the digital economy on the productivity of agriculture is valuable, as it contributes
practical implications for the global sustainable development goals (SDGs) and theoretical
development for the study related to agricultural productivity.

As the new generation of information technology continues to evolve, the digital
economy is increasingly characterized by new technologies such as the Internet, big data,
and artificial intelligence, which has shaped new economic formats and promoted the
digital transformation of traditional formats. Based on research conducted by the China
Academy of Information and Communications Technology, the annual penetration of
the digital economy in China’s primary industry is steadily rising, and the penetration
rate will exceed 35% by 2023. By shaping the economy, digital technologies optimize the
allocation of industrial elements and strengthen the accumulation of human capital by
digital means. The combination of digital technology and agriculture has great potential
for the improvement of agricultural total factor productivity in China.

At present, few studies have concentrated on the relationship between the digital
economy and agricultural productivity. Most studies still focus on the effects of agricultural
factors on overall agricultural performance, including the participation of agricultural
cooperatives [5,6], urban distance [7], interpersonal trust [8], arable land transfer [9,10], off-
farm work [11] on agricultural production performance. From the perspective of total factor
productivity (TFP), most academic studies have empirically shown that the digital economy
can promote macroeconomic growth by optimizing element allocation and improving total
factor productivity levels: firstly, the development of DE can significantly improve the
allocation of data elements by integrating them with especially production elements such
as labor and capital, thereby enhancing production efficiency and fostering economic
growth. Second, upgrading industrial structures and technological innovation are critical
mechanisms through which DE improves total factor productivity [9]. Therefore, we draw
attention to the relationship between the digital economy and agricultural productivity as
an area of significant concern for further research.

Hence, the primary objective of this study is to investigate the extent to which the DE
contributes to ATE in the context of China and to explore the mechanisms through which
this impact is mediated and the implications for regional disparities. Three main marginal
contributions: (1) Based on overcoming endogeneity, we construct a digital economy index
covering digital infrastructure, Internet development, and the information industry and
select historical data on energy consumption in the production of electronic communica-
tions equipment and chips as instrumental variables. Through comparative analysis of the
technical efficiency of agriculture at different scales and in northern or southern provinces
of China, our findings indicate that the effect of the digital economy on agricultural techni-
cal efficiency is both significant and stable; (2) through theoretical analysis and empirical
models, we examined the mechanism of the marketization of agricultural elements in the
digital economy on the improvement of agricultural technical efficiency, and creatively
measured the degree of marketization by agricultural farming structure, off-farm work,
and arable land transfer, expanding the content of the examination of the improvement
mechanism of agricultural technical efficiency driven by the digital economy. (3) Based
on the “super efficiency” DEA and the methods of absolute β convergence and spatial
conditional β convergence, we found that the digital economy significantly promotes the
convergence growth rate of China’s agricultural technical efficiency.
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2. Literature Review
2.1. Digital Economy and Agricultural Technical Efficiency

Many studies have found that the digital economy (DE) can improve the level of total
factor productivity (TFP) by optimizing the allocation of elements to promote macroeco-
nomic growth. TFP is similar to agricultural technical efficiency (ATE), which measures
the efficiency of economic growth and mainly evaluates the input–output effect of all
production elements in the production process, including labor, capital, energy, and raw
materials. ATE is a measure of the capacity of decision-making units (DMU). Standard
evaluation produces a certain amount of output with as little input as possible, which can
be used to evaluate agricultural production performance, covering agricultural issues such
as land fragmentation [12], irrigation shortages [13], agricultural skills deficiencies [14],
and industrial air pollution [15]. The literature on the impact of the digital economy on TFP
has concluded important mechanism findings: the development of the digital economy can
significantly improve the allocation of elements by integrating data elements with elements
such as labor and capital, thereby enhancing production efficiency and achieving economic
growth [16,17]. Industrial structure upgrading and technological innovation are two major
mediation impact mechanisms for the digital economy to improve TFP. For example, stud-
ies have determined that the digital economy (DE) has markedly enhanced China’s green
total factor productivity (GTFP) by advancing the industrial structure, utilizing method-
ologies such as quantile regression analysis, Tobit, and mediation effect models [15,18].
The study indicates that DE stimulates an innovation-driven enhancement in China’s TFP,
contributing to the broad and sustainable expansion of TFP. [19].

Agricultural production is an essential part of the economy, and optimizing the allo-
cation of production elements is an important path to improve agricultural productivity.
According to the study of the digital economy on issues related to TFP, this paper focuses
on agricultural technical efficiency (ATE). ATE represents the development of agricultural
productivity and will also be affected by DE. Optimizing the allocation of agricultural
factors in the digital economy will also improve the efficiency of agricultural technology.
Therefore, hypothesis 1 of this study is that the digital economy can promote the efficiency
of agricultural technology.

Due to differences in China’s economic development level, social and cultural envi-
ronment, etc., the impact of the digital economy on agricultural technical efficiency may,
therefore, vary across regions of China. The improvement gradually weakens from east to
west, while a significant inhibitory effect is observed in the west [20]. The impact of digital
finance on agricultural total factor productivity varies across regions. Among them, the
impact of digital finance on total factor productivity in the central region is the strongest
compared to the eastern and western regions [21]. In the central and western regions
of China, the impact of the digital economy on total factor productivity in agriculture is
greater than in the eastern part of the country. At the same time, taking into account the
decomposition effect of total factor productivity in agriculture, the impact of the digital
economy on technological progress and efficiency is also greater in the central and western
regions of China than in the eastern part of the country [22]. The contribution of the digital
economy to total factor productivity in agriculture in China is mainly reflected in the
following: it has played both a positive and a negative role in southwest and northern
China, respectively [23]. This paper focuses on the North–South divide in China and argues
that this difference in agricultural production patterns may decisively influence the impact
of DE on ATE. Therefore, based on Hypothesis 1, this paper further proposes Hypothesis
1a: The effect of DE on ATE varies significantly across regions.

2.2. Marketization of Agricultural Elements

The development of digital technology has promoted the marketization level and
improved the element distortion of the rural labor market and capital market. As a result,
TFP has increased [24]. DE optimizes the allocation of agricultural resources through
marketization, improves efficiency, and transforms farmers’ production from “relying on
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the weather” to systematic input and output based on digital technology [25]. The marketi-
zation of agriculture promotes the progress of agricultural productivity, the upgrading and
optimization of the agricultural industrial structure, and the increased mobility of factors
of agricultural production. In this way, producers can participate more efficiently in the
production process, and ATE can be improved. Therefore, Hypothesis 2 of this study is as
follows: DE promotes the enhancement of ATE by facilitating agricultural marketization.

2.3. The Impact of Digital Economy on the Convergence of Agricultural Technical Efficiency

Related research has concentrated on the convergence of TFP. Some research has dis-
cussed the convergence of agricultural TFP in China and found that there is an absolute β

convergence of TFP in China [26,27]. Similarly, some research found that agricultural GTFP
showed an absolute σ convergence trend [28]. Based on information and communication
technology, the digital economy promotes the growth of agricultural productivity [29,30]
and guides traditional enterprises to move towards digitalization by forming a virtuous cir-
cle between the supply of information products and the demand of other industries [31,32].
With e-commerce platforms, digital consumption and transactions have changed the mode
of distribution of agricultural products. The third hypothesis of our study is as follows: DE
promotes the convergence of ATE.

3. Materials and Methods
3.1. Digital Economy

The Australian government defines the digital economy (DE) as the integration of
global economic and social networks facilitated by information and communication tech-
nologies, including the Internet, mobile phones, and sensor networks. DE is also defined as
taking digital information as the core element of production, information technology as the
support, modern information network as the main carrier, and digital technology to provide
products or services. It is a new economic form of technology integration, industrial integra-
tion, producer and consumer integration [33,34]. This paper summarizes the connotation of
the digital economy into three aspects: the development of information, the development
of the Internet, and the development of digital transactions. For the measurement, we refer
to existing studies [35,36], which contain 8 secondary indicators: information infrastructure,
information communication, Internet terminal equipment, mobile phone, fixed telephone,
mobile network impact, information industry infrastructure, and information industry.
Detailed indicators are shown in Table A1. The original data can be sourced from the China
Statistical Yearbook and the China Information Industry Yearbook. Through the improved
entropy method [37], the above eight indicators are grouped into groups to reduce the
dimension after data standardization, and the comprehensive development index of the
digital economy is obtained, which is recorded as DE.

Figure 1 illustrates the trend of the digital economy (DE) across different years. The
DE index in Figure 1 shows the great differences in the digital economy across provinces
of China, which reflects the imbalance in China’s internal economic development. The
Appendix A Tables A3 and A4 contain detailed maps of the spatial distribution of China’s
digital economy from 2013 to 2019.

As shown in Figure 1, a clear distribution feature of the DE indicator within the
observation period (2013~2019) can be found: there is a significant gap between the DE of
the eastern provinces of China and that of the other provinces. However, during the period
from 2013 to 2019, China’s DE has risen rapidly—in 2013, the central and western provinces
were basically in the low range (0.07~0.12), but in 2019, the DE of these provinces was close
to 0.2. The most significant increases were in Shaanxi, Sichuan, Hubei, Chongqing, and
Anhui, all of which increased by more than 0.1.
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3.2. Calculation of Agricultural Technical Efficiency Based on the DEA

Currently, Data Envelopment Analysis (DEA) is commonly employed for measure-
ment purposes. DEA models include the CCR and BCC approaches [38]. The CCR model
operates under the assumption of constant returns to scale, whereas the BCC model assumes
increasing or decreasing returns to scale. The efficiency, as defined by DEA, encompasses
three dimensions: overall technical efficiency (CCR), pure technical efficiency (BCC), and
scale efficiency [33]. In this study, ATE is assessed as overall technical efficiency (based on
the CCR), which assesses the ability to produce a given output using the least amount of
inputs. Therefore, the input-oriented CCR model is utilized.

Since DEA gives every efficient decision-making unit (DMU) a score of 1, it complicates
the task of establishing a hierarchy among them. As a result, the effectiveness of DEA as a
framework system for measuring efficiency is undermined because only inefficient DMUs
can be ranked. Some studies have introduced the concept of ‘super efficiency’ as a means
to create a hierarchy among decision-making units [39].

The fundamental principle of the super-efficiency evaluation technique is to exclude
the effective evaluation unit from the dataset and conduct a re-evaluation. This method
retains the original assessment of non-effective values, enabling comparison when the
initial effective value exceeds 1. To measure agricultural technical efficiency (ATE), we
utilize a super-efficiency DEA model. Assuming there are n decision-making units, m input
indicators, and q output indicators, the following model is employed to determine ATE:
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min

(
θ − ε

(
m
∑

i=1
s−i +

q
∑

j=1
s+j

))

s.t.



n
∑

k=1
λkxik + s−i = θxi ; i = 1, 2, . . . , m ; k ̸= j

n
∑

k=1
λkyjk − s+j = yj ; j = 1, 2, . . . , q ; k ̸= j

λk ≥ 0, k = 1, . . . , n
s−i ≥ 0, s+j ≥ 0

(1)

For the kth DMU, xik denotes the ith input indicator, yjk represents the jth output
indicator. and s−i and s+j are input and output slack variables, respectively. λk denotes the
weight coefficient. An elevated θ value serves as an indicator of increased ATE.

Additionally, the variables incorporated into the DEA model are defined as follows:
fertilizer input is measured by the amount of nitrogen and phosphate fertilizer applied to
agricultural production; pesticide input is quantified based on the amount of pesticides
used; diesel consumption in agricultural production is utilized as an indicator of energy
input; total agricultural water use is employed to represent water input; the total area sown
acts as a proxy for land input; and the yield value of the agricultural planting industry is
used as an indicator of output value. To account for inflation, output values are deflated
using 2013 as the base year.

In Figure 2, the average of ATE increased from 0.51 in 2013 to 0.74 in 2019. This is an
increase of nearly 45.09%. Similar to DE, ATE shows a clear spatial distribution feature.
However, the trend of imbalance is declining, which means that the ATE in different regions
of China is experiencing balanced growth.

3.3. Econometric Model

We investigate the impact of the digital economy on agricultural technical efficiency,
where the digital economy (DE) serves as the key independent variable and agricultural
technical efficiency (ATE) is the dependent variable. Dynamic panel methods are employed
to analyze the potential lagged effects on ATE. The basic model is formulated as follows:

LnATEit = α + β0LnATEi,t−1 + β1LnDEit + β2Xit + εit (2)

In Equation (2), i represents the province, and t represents the corresponding year for
each variable. The intercept term is represented by α. εit represents the stochastic error term.
While βi represents the coefficients for the regress. The agricultural technical efficiency of
the province is denoted by LnATEit, and DEit represents the digital economy. A vector of
control variables is denoted by X. From the perspective of agricultural production, existing
research on the factors influencing agricultural production efficiency can be categorized
into several angles: first, the fundamental elements of agricultural production, such as
water resources [40]; second, uncertain factors like climate and natural disasters [41,42];
and third, agricultural energy efficiency, environmental regulation intensity, and other
policy functions [43,44].

In addition, agricultural energy efficiency (AEE) is calculated as fiscal agricultural
expenditure divided by total fiscal expenditure. Water resource adequacy (WRA) is evalu-
ated by dividing regional water resources (in 100 million m3) by the area sown to crops
(in 1000 hectares). Environmental regulation intensity (ERI) is determined by the share of
industrial pollution control investments completed in the secondary sector. The measure
for natural disasters (ND) is the ratio of the affected area relative to the cultivated area.
Table A2 shows the descriptive statistics.
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3.4. Data Sources

Constrained by the availability of data, this research period is limited to 2013–2020.
For this study, all data were sourced exclusively from the public database of the National
Bureau of Statistics (https://data.stats.gov.cn/, accessed on 10 March 2024), particularly
the China Statistical Yearbook, the China Agriculture Yearbook, the China Rural Statistical
Yearbook, and the China Population and Employment Statistics Yearbook. We refer to the
selection of relevant studies [45,46] and the issues of concern to this study and conduct the
screening and collection of yearbook data. All data in this study are public data and can be
used free of charge. Table 1 displays the descriptive statistics of our key variables.

Table 1. Descriptive statistics of key variables.

Variables Observations Mean Standard Deviation Min Max

LnATE 240 −0.424 0.351 −1.544 0.222
LnDE 240 −1.633 0.501 −2.617 −0.264

LnWRA 240 −2.146 1.202 −4.923 0.571
LnAEE 240 3.196 1.279 0.583 5.939
LnND 240 −2.294 1.036 −7.169 0.964
LnERI 240 −6.200 0.914 −10.022 −3.709

https://data.stats.gov.cn/
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4. Results

This study employs several key empirical estimation methodologies. First, the Pesaran
cross-sectional dependence (CD) test and the Lagrange Multiplier (LM) test are conducted
in Section 4.1 to determine the existence of cross-sectional dependence. Then, panel unit
root tests are performed in Section 4.2 to assess the stationarity of each variable. Lastly,
in Section 4.3, the ordinary least squares (OLS), generalized least squares (GLS), random
effects (RE), and fixed effects (FE) methods are applied to estimate the impact.

4.1. Examination of Cross-Sectional Dependency

Before conducting a valid econometric analysis, it is essential to check for cross-
sectional dependency in panel data. Neglecting cross-sectional independence often leads
to unreliability and inconsistencies [47]. To address this, the analysis incorporates several
assessments to determine the presence of cross-sectional interdependence: the Pesaran CD
test [48], the Breusch–Pagan LM test [49], the Frees test [50], and the Friedman test [51].

Table 2 provides the findings of the four tests of cross-sectional dependency. Except
for the Friedman test, all p-values for cross-sectional dependence checks were greater than
1%. As a result, the analysis disproves the null hypothesis, which posits the absence of
cross-sectional dependency. The result indicates that the cross-sectional components of the
research are not independent. Therefore, the presence of cross-sectional dependence must
be considered in the subsequent empirical analysis.

Table 2. Tests for cross-sectional dependency.

Statistics Probability

Frees test 3.307 *** 0.0001
Friedman test 40.956 * 0.0695

Breusch–Pagan LM test 604.41 *** 0.0001
Pesaran CD test 10.532 *** 0.0001

Note: *** p < 0.01; * p < 0.1.

4.2. Verifying the Stationarity of Panel Data

Testing stationarity is essential for avoiding biased regression results. Notably, the
reliability of first-generation panel unit root tests, such as the Phillips–Perron test and the
LLC test, is diminished in the presence of cross-sectional dependence [52]. Consequently,
second-generation panel unit root tests, which account for cross-sectional dependence,
are recommended by Pesaran [52]. In this study, both the Levin–Lin–Chu (LLC) and
Phillips–Perron (PP) panel unit root tests are applied in Table 2.

Each of the indicators analyzed in this study possesses a first-order integration, de-
noted as I (1). The unit root tests emphasize two distinct forms: one with intercept only
and another with both intercept and trend components. Table 3 presents evidence sug-
gesting that, with the exception of ATE and ERI, the original data series is non-stationary,
irrespective of the presence of a trend component. Subsequently, first-order differentiation
is applied to the raw data, resulting in statistically significant p-values (p < 0.01) for the
transformed first-order series. Therefore, the raw data are not stationary.

Table 3. Outcomes of verifying panel stationarity.

Level Difference of the First Order IntegrationI I + T I I + T

LLC test

LnATE −0.31842 *** −0.86594 *** −1.24207 *** −1.32299 *** I (1)
LnDE −0.35841 −0.94970 −1.30371 *** −1.36913 *** I (1)

LnWRA −0.93447 −1.11783 −1.32972 *** −1.42627 *** I (1)
LnND −0.57860 −0.85285 −1.19507 *** −1.38679 *** I (1)
LnAEE −0.19917 −0.64242 −0.91364 *** −1.13099 *** I (1)
LnERI −0.79274 * −1.22233 * −1.50375 *** −1.62972 *** I (1)
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Table 3. Cont.

Level Difference of the First Order IntegrationPP test

LnATE −0.35129 *** −0.98138 *** −1.38976 *** −1.49584 *** I (1)
LnDE −0.40736 −1.09469 −1.47458 *** −1.52114 *** I (1)

LnWRA −1.06781 −1.24955 −1.47306 *** −1.54437 *** I (1)
LnND −0.63142 −0.93365 ** −1.33835 *** −1.46378 *** I (1)
LnAEE −0.21908 −0.73768 −1.00202 *** −1.22309 *** I (1)
LnERI −0.87101 *** −1.33499 ** −1.62875 *** −1.74869 *** I (1)

Note: I: Intercept; I + T: Intercept and trend. *** p < 0.01; ** p < 0.05; * p < 0.1.

4.3. Digital Economy’s Effect on Agricultural Technical Efficiency

To assess the impact of DE on ATE, it is crucial to apply appropriate econometric
models. The Feasible Generalized Least Squares (FGLS) method is particularly effective
for panel estimation, as it maximizes the advantages of panel data while minimizing
estimation errors. It is commonly used when heteroscedasticity and serial correlation are
present in the sample data [53]. Given the results from the cross-sectional dependence and
panel stationarity tests, this study uses FGLS as the benchmark method for evaluating the
influence of DE on ATE, ensuring greater consistency and validity in the panel regression,
as shown in Table 4.

Table 4. Assessing the impact of DE on ATE.

Estimating Static Panel
OLS FE RE GLS FGLS

LnDE 0.238 *** 0.300 *** 0.293 *** 0.238 *** 0.230 ***
(0.0429) (0.0232) (0.0229) (0.0423) (0.0173)

LnWRA 0.045 *** 0.023 0.030 0.045 *** 0.044 ***
(0.0161) (0.0240) (0.0211) (0.0159) (0.0077)

LnAEE 0.053 *** −0.029 −0.016 0.053 *** 0.054 ***
(0.0150) (0.0175) (0.0162) (0.0148) (0.0079)

LnND −0.042 ** −0.003 −0.004 −0.042 ** −0.040 ***
(0.0195) (0.007) (0.0076) (0.0192) (0.0089)

LnERI −0.053 ** −0.034 *** −0.033 *** −0.053 ** −0.047 ***
(0.0255) (0.0119) (0.0118) (0.0252) (0.0130)

Constant −0.534 ** −0.009 −0.044 −0.534 ** −0.496 ***
(0.2159) (0.1235) (0.1297) (0.2132) (0.1031)

Observations 240 240 240 240 240
Note: standard errors are in parentheses. *** p < 0.01; ** p < 0.05.

The coefficient of DE displays positive, demonstrating that DE exerts a positive facili-
tating effect on ATE. Besides, we run the estimation based on the ordinary least squares,
fixed effects, random effects, and generalized least squares method to guarantee the robust-
ness of the main results. The effect of DE on ATE is robust, as all the signs and coefficients
in columns 1–6 of Table 3 are consistent. The coefficients of DE on ATE in FGLS are 0.23 and
statistically significant at the 1% level, which shows that a 1% increase in DE leads to a
0.23% increase in ATE.

Regarding the control variables, adequate water resources and agricultural energy
efficiency both have a positive impact on elevating agricultural technical efficiency. WRA
is associated with a higher ATE. WRA increases ATE, and this reflects the crucial role
that irrigation plays in agricultural productivity. Higher AEE reduces the cost of farm
mechanization and increases ATE by increasing the substitution of farm machinery for labor.
Agricultural production is heavily influenced by climate, and droughts can impede the
accumulation of grain dry matter and lead to premature maturation, ultimately reducing
food yields. Furthermore, drought forces farmers to reallocate resources, increasing their labor
and water inputs to mitigate its effects. ERI significantly reduces the ATE by crowding out
original agricultural production inputs through increased environmental investment costs.
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5. Robustness Tests
5.1. Replacing the Dependent Variable

First, three indicators of the digital economy—informatization development (INF),
internet development (INT), and digital industries (DI)—are utilized as substitutes for the
main independent variable (DE). The regression results on ATE using the FGLS method
are presented in Columns 1–3 of Table 4. All three indicators have positive impacts on
ATE, with statistical significance at the 1% level. Specifically, the estimated elasticities for
INF, INT, and DI in relation to ATE are 0.2, 0.261, and 0.168, respectively. These findings
align with the results shown in Table 5, further confirming the robustness of the baseline
regression results.

Table 5. Robustness test: replacing the dependent variable and two-stage least squares method.

FGLS 2SLS
(1) (2) (3) (4)

LnINF 0.200 ***
(0.0140)

LnINT 0.261 ***
(0.0277)

LnDI 0.168 ***
(0.0154)

LnDE 0.565 ***
(0.1874)

LnWRA 0.048 *** 0.057 *** 0.041 *** 0.048 ***
(0.0072) (0.0079) (0.0084) (0.0179)

LnAEE 0.054 *** 0.058 *** 0.053 *** 0.021
(0.0070) (0.0083) (0.0090) (0.0241)

LnND −0.037 *** −0.039 *** −0.045 *** −0.032
(0.0087) (0.0100) (0.0094) (0.0222)

LnERI −0.045 *** −0.067 *** −0.051 *** 0.027
(0.0127) (0.0130) (0.0133) (0.0527)

Constant 0.300 *** −0.276 ** −0.432 *** 0.630
(0.1038) (0.1358) (0.1152) (0.6881)

Weak
identification

tests
15.287

Observations 240 240 240 240
Note: standard errors are in parentheses. *** p < 0.01; ** p < 0.05.

Second, although heteroscedasticity and serial correlation issues are addressed in the
benchmark regression, potential endogeneity bias may persist. This bias can arise from
omitted variables or interactions between the dependent and independent variables. To
address potential endogeneity concerns, we employ an instrumental variable approach.
Specifically, we use the lagged values of energy consumption from electronic communica-
tion equipment (LnECEt−1) and chip production (LnCPt) as instruments. The estimation
results, based on the 2SLS method, are presented in Column 4 of Table 5. Weak iden-
tification tests reject the hypothesis of weak instrumental variables, indicating that the
instruments are effective. These results further confirm the robustness of the findings.
Therefore, Hypothesis 1 is supported by robust results.

5.2. The Asymmetric Effect

To examine the potential asymmetric effects of the DE on ATE, we analyze Equation (2)
by estimating the lower, first quartile, median, third quartile, and upper quantiles of the
specified level of ATE. Utilizing the two-stage panel quantile regression methodology, we
aim to capture unobserved individual variations [54]; we present the results in Table 6,
while Figure 3 illustrates the varying impacts across these quantile levels.
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Table 6. Calculation of two-step panel quantile regression.

LnATE
Quantiles

q10 q25 q50 q75 q90

LnDE 0.378 *** 0.279 *** 0.189 *** 0.226 *** 0.230 ***
(0.0572) (0.0429) (0.0421) (0.0589) (0.0643)

LnWRA 0.125 *** 0.069 *** 0.033 0.003 0.003
(0.0203) (0.0209) (0.0235) (0.0141) (0.0111)

LnAEE 0.090 *** 0.060 *** 0.043 *** 0.013 0.020 *
(0.0263) (0.0195) (0.0134) (0.0184) (0.0122)

LnND −0.072 *** −0.030 −0.047 *** −0.026 −0.003
(0.0274) (0.0198) (0.0150) (0.0231) (0.0139)

LnERI 0.090 * −0.046 −0.076 ** −0.084 *** −0.092 ***
(0.0515) (0.0387) (0.0368) (0.0249) (0.0167)

Constant 0.211 −0.497 ** −0.718 *** −0.490 * −0.407 *
(0.3170) (0.2412) (0.2402) (0.2821) (0.2261)

R2 0.3010 0.3173 0.2676 0.2749 0.2842
Note: standard errors are in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 21 
 

 (0.0515) (0.0387) (0.0368) (0.0249) (0.0167) 
Constant 0.211 −0.497 ** −0.718 *** −0.490 * −0.407 * 

 (0.3170) (0.2412) (0.2402) (0.2821) (0.2261) 
R2 0.3010 0.3173 0.2676 0.2749 0.2842 

Note: standard errors are in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.  

 

 
Figure 3. Variations in coefficient estimates obtained via panel quantile regression. 

As shown in Table 6 and Figure 3, the impact of DE on ATE across different quantile 
ranges exhibits stability and uniformity. DE has a positive coefficient, suggesting potential 
for substantial enhancement of ATE. It is worth noting that DE made a greater impact on 
ATE in low-ATE. For control variables, the impacts of WRA, AEE, ND, and ERI on ATE 
exhibit asymmetry. Specifically, the influence of WRA and ND on ATE is notable in re-
gions with low ATE, whereas it is insignificant in those with high ATE. Higher ATEs 
demonstrated a stronger ability to defend against the challenges of ND, while lower ATE 
areas need to be alert to the damage caused to ATE by ND. In addition, ERI displays a 
negative impact on ATE in high-ATE, which may be related to regulatory costs. Higher 
ATE will compress the optimal allocation of input elements, so the negative impact of ERI 
will be more significant. 

6. Discussion 
6.1. Heterogeneity Analysis 

We segregated China’s 30 provinces into two distinct regions, according to their ge-
ographical positioning, in order to discern the regionally varying impact of DE on ATE. 
The detailed panels are outlined in Appendix A. 

The climate differs greatly between the northern and southern regions of China. To 
analyze the regionally diverse impact of DE on ATE, we divided the 30 provinces of China 

Figure 3. Variations in coefficient estimates obtained via panel quantile regression.

As shown in Table 6 and Figure 3, the impact of DE on ATE across different quantile
ranges exhibits stability and uniformity. DE has a positive coefficient, suggesting potential
for substantial enhancement of ATE. It is worth noting that DE made a greater impact
on ATE in low-ATE. For control variables, the impacts of WRA, AEE, ND, and ERI on
ATE exhibit asymmetry. Specifically, the influence of WRA and ND on ATE is notable in
regions with low ATE, whereas it is insignificant in those with high ATE. Higher ATEs
demonstrated a stronger ability to defend against the challenges of ND, while lower ATE
areas need to be alert to the damage caused to ATE by ND. In addition, ERI displays a
negative impact on ATE in high-ATE, which may be related to regulatory costs. Higher
ATE will compress the optimal allocation of input elements, so the negative impact of ERI
will be more significant.
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6. Discussion
6.1. Heterogeneity Analysis

We segregated China’s 30 provinces into two distinct regions, according to their
geographical positioning, in order to discern the regionally varying impact of DE on ATE.
The detailed panels are outlined in Appendix A.

The climate differs greatly between the northern and southern regions of China. To
analyze the regionally diverse impact of DE on ATE, we divided the 30 provinces of China
according to their geographical locations. Table 7 presents the estimated results, which
were derived using the FGLS estimation.

Table 7. Estimation of regional heterogeneity.

Variables North South

LnDE 0.259 *** 0.300 ***
(0.0429) (0.0235)

LnWRA 0.048 *** 0.071 ***
(0.0116) (0.0163)

LnAEE 0.149 *** −0.015
(0.0145) (0.0116)

LnND −0.027 ** −0.054 ***
(0.0133) (0.0135)

LnERI −0.024 −0.024
(0.0226) (0.0207)

Constant −0.563 *** 0.018
(0.1954) (0.1667)

Observations 120 120
Note: standard errors are in parentheses. *** p < 0.01; ** p < 0.05.

In both the northern and southern areas, DE displays a positive and statistically sub-
stantial effect on ATE. A 1% increase in DE leads to a 25.9% increase in ATE in the northern
provinces, while in the southern provinces, the increase is 30%. It demonstrates that increasing
DE is more efficient in southern areas. The primary reason is the difference in natural resources
and economic development. The south is more conducive to agricultural growth in terms of
water resource reserves and weather conditions, so the progression of the digital economy
in the southern provinces is more conducive to the improvement of agricultural technical
efficiency under the same conditions. The south is more conducive to agricultural growth
because of the water resources reserves and the weather conditions, so the development of DE
in southern provinces is more significant to the improvement of ATE. For control variables, the
impact of AEE on ATE in southern provinces is not significant, while the impact in northern
provinces is significantly positive. The proportion of mechanization is comparatively higher
in the northern region than in the southern region; therefore, AEE may have a greater impact
in the north. Thus, Hypothesis 1a is supported to some extent; from the existing literature,
our findings on mechanization have not been paid attention to in previous studies [20–22].
We identify the heterogeneity of this effect by dividing the Chinese provinces into north and
south. This sample division strategy takes into account the differences in the endowments of
various Chinese provinces [23] and is more targeted to policy implementation.

6.2. Mechanism Analysis
6.2.1. Potential Mechanisms

The above results suggest that increasing DE could lead to increasing ATE. In this
study, we employ a mediation mechanism to delve into the intricate pathways through
which DE exerts its influence on ATE. It is found that the digital economy can improve
production efficiency through the optimization of element allocation. With the development
of digitization, the level of marketization has improved, the distorted rural labor and capital
market has improved, and the agricultural TFP has improved [55]. The marketization of
agriculture involves three major elements: agricultural farming structure (AFS), off-farm
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work (OFW), and arable land transfer (ALT). AFS measures the proportion of cash crops,
which changes with labor prices and population structure [56]. Cash crops are more
intensively commercialized and have higher total income than traditional crops. [57,58]. In
rural China, OFWs have always been an inevitable topic. [59,60]. As the most important
allocation mode of agricultural land, ALT represents the achievements of land marketization
reform, and their proportion evaluates the allocation of land elements [61,62].

AFS, OFW, and ALT serve as mediators in our model, enabling us to scrutinize the under-
lying mechanism linking DE to ATE. The agricultural farming structure (AFS) is represented by
the proportion of cash crop sown area to the total sown area. The proportion of non-agricultural
employment to total employment is used as an indicator for off-farm work (OFW). The ratio of
arable land transferred to total arable land serves as arable land transfer (ALT). All of the afore-
mentioned data resources are sourced from public databases. Compared to ATE, Figure 4 shows
the spatial distribution of AFS, OFW, and ALT during 2013–2019. The model for analyzing the
mechanism, which incorporates a mediating effect, is established as follows:

LnATEit = δ1LnDEit + β1Xit + ϕit (3)

LnMit = δ2LnDEit + β2Xit + µit (4)

LnATEit = δ3LnDEit + δ4LnMit + β3Xit + γit (5)

where M represents mediators such as AFS, OFM, and ALT i and t represents units and
time periods in the panel. A set of control variables is represented by X. δ1 is the total
impact of the digital economy on agricultural technical productivity. δ3 is the direct impact
of DE on ATE, δ2 and δ4 is the indirect impact.

6.2.2. Results of the Mediation Effect Analysis

In Table 8, Column 1 displays the aggregate impact of DE on ATE (δ1). The elasticity
of the aggregate impact is 0.23 and is significant. Columns 2–4 of Table 7 show the indirect
impact δ2 including AFS, PAM, and ALT, are all significant at a threshold of 1% statistical
confidence and estimated to be 0.236, 0.177, and 0.521. These results suggest that DE
exerts a positive impact on AFS, OFW, and ALT. From Columns 4–5, it can be seen that
the elasticities of AFS, OFW, and ALT are 0.275, 0.129, and 0.038, and are significant. This
suggests that AFS, OFW, and ALT significantly influence the ATE. Our finding is consistent
with the conclusions of existing research: the digital economy can significantly promote
the transfer of farmland and improve production efficiency [63], achieve coordination of
the digital economy through OFW and AFS, unleash the driving force of digital economy
innovation, and improve productivity [64].
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farming structure (AFS); (b) arable land transfer (ALT); (c) off-farm work (OFW); (d) agricultural
technical efficiency (ATE).

Table 8. Mechanism analysis results of AFS, OFW, and ALT.

Variables LnATE LnOFW LnAFS LnALT LnATE LnATE LnATE

LnOFW 0.275 ***
(0.0600)

LnAFS 0.129 ***
(0.0165)

LnALT 0.038 *
(0.0214)

LnDE 0.230 *** 0.236 *** 0.177 *** 0.521 *** 0.143 *** 0.210 *** 0.197 ***
(0.0173) (0.0128) (0.0553) (0.0378) (0.0250) (0.0172) (0.0230)

LnWRA 0.044 *** −0.009 ** 0.185 *** −0.063 *** 0.045 *** 0.028 *** 0.049 ***
(0.0077) (0.0041) (0.0245) (0.0115) (0.0072) (0.0076) (0.0080)

LnAEE 0.054 *** 0.009 * 0.080 *** −0.082 *** 0.047 *** 0.037 *** 0.055 ***
(0.008) (0.0051) (0.0212) (0.0123) (0.0087) (0.0086) (0.0081)

LnND −0.040 *** −0.009 ** −0.135 *** 0.024 −0.037 *** −0.029 *** −0.044 ***
(0.0089) (0.0041) (0.0301) (0.0182) (0.0091) (0.0085) (0.0092)

LnERI −0.047 *** 0.014 ** 0.011 −0.069 *** −0.054 *** −0.037 *** −0.051 ***
(0.0130) (0.0068) (0.0430) (0.0204) (0.0128) (0.0120) (0.0134)

Constant −0.496 *** 0.017 −1.748 *** −0.551 *** −0.532 *** −0.177 * −0.533 ***
(0.1031) (0.0652) (0.3400) (0.1691) (0.1068) (0.1023) (0.1073)

Observations 240 240 240 240 240 240 240

Note: standard errors are in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.

6.3. Further Discussion

We investigated the convergence of ATE and the effect of DE on its convergence, as
shown in Table 9.

Table 9 shows the estimated outcomes of the unconditional β convergence test, cat-
egorized according to high, medium, and low levels of digital economy (DE). For these
regions, the unconditional β-convergence test solely rejects the convergence hypothesis for
ATE in the context of medium levels of DE. This section aims to answer whether DE can
exacerbate the convergence of ATE in China in the future.

The role of DE in accelerating agricultural total factor efficiency ATE convergence
is explored in this paper. By examining the lagged ATE in both unconditional and con-
ditional analyses, we test DE’s contribution to ATE convergence in China. In the full
sample analysis, the coefficient shift suggests DE’s positive effect on world agriculture
convergence. Within-group comparisons show DE facilitates convergence in the full sample
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and high DE sample. Condition β-convergence results hint at future ATE improvement
and accelerated convergence beyond DE. Overall, WRE, AEE, and ERI also significantly
impact ATE improvement and convergence. Our findings align with previous studies
emphasizing the pivotal role of technological advancements [21,63], in transforming agri-
cultural productivity and fostering efficiency convergence across regions. By enhancing
data-driven decision-making, precision farming, and resource optimization, DE narrows the
productivity gap between advanced and less developed agricultural sectors, as suggested
by the conditional β-convergence results. This reinforces the notion that technological
innovations are key drivers of agricultural development and should be a focal point of
policy interventions.

Table 9. Unconditional β-convergence and conditional β-convergence on ATE of China.

Unconditional β-Convergence Tests Conditional β-Convergence Tests
All Hight Middle Low All Hight Middle Low

L.lnATE 0.9734 *** 0.8604 *** 1.1054 0.9477 *** 0.7536 *** 0.5038 *** 0.8057 0.6634 ***
(0.0374) (0.0734) (0.0977) (0.0325) (0.0664) (0.1111) (0.1590) (0.0794)

L.lnDE 0.0798 *** 0.1500 ** 0.0218 0.0954
(0.0283) (0.0489) (0.0551) (0.0672)

LnWRA 0.0214 −0.0057 0.0762 ** −0.0062
(0.0214) (0.0355) (0.0272) (0.0415)

LnAEE 0.0190 −0.0254 0.0575 *** 0.0839
(0.0153) (0.0283) (0.0148) (0.0486)

LnND 0.0001 0.0002 0.0067 −0.0124
(0.0059) (0.0151) (0.0045) (0.0093)

LnERI −0.0135 −0.0001 −0.0262 * −0.0103
(0.0114) (0.0211) (0.0117) (0.0346)

Intercept 0.0450 ** 0.0130 0.1044 ** 0.0382 −0.0318 0.2021 −0.1481 −0.3339
(0.0171) (0.0155) (0.0459) (0.0224) (0.1077) (0.1665) (0.1228) (0.3504)

Observations 210 70 70 70 210 70 70 70
Province 30 10 10 10 30 10 10 10

Conclusion con con di con con con con con

Note: con: convergence; di: divergence. Standard errors are in parentheses. *** p < 0.01; ** p < 0.05; * p < 0.1.

7. Conclusions and Policy Implications

The key findings of the study are as outlined below:

1. The visualization revealed disparities between eastern and central/western regions,
which appeared to narrow from 2013 to 2019 due to government efforts. Notably, a
preliminary positive correlation between DE and ATE was observed;

2. DE significantly and positively impacts ATE and has been tested differently to prove
that such conclusions obtained in this study are robust. The development of the digital
economy is advantageous to agricultural productivity, and considering the disparity
in natural resources and economic development, it follows that the impact is more
pronounced in the southern region;

3. In addition, this study discusses the mechanisms. We found that marketization is a
mediation impact mechanism while DE impacts ATE. Based on the statistical results,
OFW, AFS, and ALT are all the mechanism variables of DE, which means that DE will
impact ATE by influencing OFW, AFS, and ALT;

4. Finally, we are concerned about the impact of the digital economy on the convergence
of agricultural technical efficiency. Due to the development of digital information
technology, marketization and the digitalization of agricultural production, as a result,
agricultural technical efficiency has been improved. It means that the digital economy
fosters the convergence of agricultural technical efficiency.



Sustainability 2024, 16, 10225 16 of 20

These empirical findings outlined above carry important policy implications:

1. The government should (1) deepen agricultural marketization reforms, (2) optimize
agricultural industrial structures, (3) encourage the transfer of rural labor to non-
agricultural sectors, (4) facilitate the transfer of arable land, and (5) optimize agricul-
tural farming structures. These initiatives will enhance the thorough integration of the
digital economy and agricultural markets, further releasing agricultural productivity;

2. With the development of digital information technology and the digitization of agri-
cultural production, agricultural technical efficiency has been significantly improved.
The government should focus on balanced improvements in agricultural technical
efficiency, particularly providing more support to technologically backward regions
and resource-scarce areas;

3. For southern cities, enhancing the integration of the digital economy (DE) with exist-
ing agricultural practices and leveraging their superior natural resources and climate
conditions to foster agricultural growth and improve agricultural technical efficiency
(ATE) should be prioritized. Given the conducive environment for agricultural de-
velopment, the progression of DE in these regions can significantly contribute to the
optimization of agricultural input allocation and overall technical efficiency.

While our study sheds light on the pivotal role of the digital economy (DE) in accel-
erating agricultural total factor efficiency (ATE) convergence, several avenues for future
research remain open to further refine and expand our understanding of this phenomenon:

1. Our study was constrained by the availability of data, limiting our analysis to a
specific timeframe and geographic scope. To keep pace with the rapid evolution of
the digital economy, future research endeavors should strive to collect and analyze
updated datasets. This will not only allow for a more contemporary examination of
the DE–ATE relationship but also enable researchers to capture any emerging trends
or shifts in this dynamic landscape;

2. Despite discussing heterogeneity within our provincial-level analysis, substantial
variation still exists within our sample. To address this, future research could endeavor
to construct more granular datasets, potentially shifting the focus to a municipal or
even more refined perspective. Such an approach would provide deeper insights
into the nuanced impacts of the digital economy on agricultural productivity across
diverse regions;

3. Our study identified areas for improvement in the construction of the digital economy
index. The precision and comprehensiveness of this index are crucial for accurately
identifying and analyzing economic issues related to the digital economy. Future
research should strive to enhance the development of the digital economy index, in-
corporating a broader range of indicators and employing more sophisticated method-
ologies to ensure a more precise and nuanced representation of the digital economy’s
multifaceted impacts on agricultural productivity.

Author Contributions: Conceptualization, H.X., P.W. and K.D.; methodology, H.X. and P.W.; software,
H.X. and P.W.; validation, H.X.; formal analysis, K.D.; investigation, H.X., P.W. and K.D.; resources,
P.W. and H.X.; data curation, P.W. and H.X.; writing—original draft preparation, H.X. and P.W.;
writing—review and editing, H.X.; visualization, H.X.; supervision, K.D.; project administration,
K.D.; funding acquisition, H.X. and K.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was Supported by the Outstanding Innovative Talents Cultivation Funded
Programs 2024 of Renmin University of China.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.



Sustainability 2024, 16, 10225 17 of 20

Acknowledgments: We appreciate the anonymous reviewers for their invaluable comments and
suggestions on this manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Digital economy indicators.

Level 1 Indicators Level 2 Indicators Measurement Weighting

Informatization Development (INF)
Informatization Foundation

Fiber optic density 0.0628
Mobile phone base station density 0.0684

Percentage of information
technology employees 0.0275

Influence of Informatization Total telecoms business 0.1125
Software business income 0.1695

Internet Development (INT)

Fixed End Internet
Foundation Internet access port density 0.0634

Mobile Internet Foundation Mobile internet penetration 0.0294
Fixed End Internet Impact Share of broadband internet users 0.0357

Mobile Internet Impact Share of mobile internet users 0.0116

Digital Industry (DI)
Digital Industry Foundation

Number of websites per 100 businesses 0.0174
Use of computers in business 0.0426

Percentage of e-commerce businesses 0.0481

Digital Trading E-commerce sales 0.1403
Online retail sales 0.1707

Table A2. Summary statistics of variables in the econometric model.

Var Name Obs Mean SD Min Max

LnATE 240 −0.424 0.351 −1.544 0.222
LnDE 240 −1.633 0.501 −2.617 −0.264

LnWRA 240 −2.146 1.202 −4.923 0.571
LnAEE 240 3.196 1.279 0.583 5.939
LnND 240 −2.294 1.036 −7.169 0.964
LnERI 240 −6.200 0.914 −10.02 −3.709
LnINF 240 −2.727 0.582 −3.863 −1.191
LnINT 240 −2.629 0.378 −3.576 −1.959
LnDI 240 −2.939 0.659 −4.343 −1.019

LnECEt-1 240 −3.335 2.318 −10.45 0.671
LnCP 240 1.721 2.063 0 6.730

LnOFW 240 −0.387 0.198 −0.898 −0.0301
LnAFS 240 −2.047 0.824 −4.720 0.711
LnALT 240 −1.178 0.511 −3.061 −0.0931

Table A3. The specific provinces across different regions.

Region Provinces

North (15 provinces)
Beijing, Hebei, Tianjin, Inner Mongolia, Shanxi, Jilin, Liaoning,

Heilongjiang, Henan, Shandong, Gansu, Shaanxi,
Ningxia, Qinghai, Xinjiang

South (15 provinces) Shanghai, Jiangsu, Hainan, Fujian, Hubei, Jiangxi, Guangxi, Hunan,
Guangdong, Sichuan, Guizhou, Chongqing, Zhejiang, Anhui, Yunnan

Table A4. The specific provinces across Different levels of DE development regions.

Region Provinces

Hight (10 provinces) Beijing, Fujian, Guangdong, Jiangsu, Shandong, Shanghai, Sichuan,
Zhejiang, Liaoning, Shaanxi.

Middle (10 provinces) Hebei, Hubei, Inner Mongolia, Tianjin, Anhui, Qinghai, Hainan,
Xinjiang, Hunan, Chongqing.

Low (10 provinces) Shanxi, Jilin, Heilongjiang, Henan, Gansu, Ningxia, Jiangxi, Guangxi,
Guizhou, Yunnan.
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