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Abstract: One of the keys towards sustainable policies and advanced air quality monitoring is the
detailed assessment of all factors that affect the surface concentrations of greenhouse gases (GHGs)
and aerosols. While the development of new atmospheric tracers can pinpoint emission sources,
the atmosphere itself plays a relevant role even at local scales: Its dynamics can increase, or reduce,
surface concentrations of pollutants harmful to human health and the environment. PBL (planetary
boundary layer), or peplospheric, variability is known to affect such concentrations. In this study,
an unprecedented characterization of PBL cycles and patterns is performed at the WMO/GAW
regional coastal site of Lamezia Terme (code: LMT) in Calabria, Southern Italy, in conjunction with
the analysis of key GHGs and aerosols. The analysis, accounting for five months of 2024 data,
indicates that peplospheric variability and wind regimes influence the concentrations of key GHGs
and aerosols. In particular, PBLH (PBL height) patterns have been tested to further influence the
surface concentrations of carbon monoxide (CO), black carbon (BC), and particulate matter (PM).
This research introduces four distinct wind regimes at LMT: breeze, not complete breeze, eastern
synoptic, and western synoptic, each with its peculiar influences on the local transport of gases and
aerosols. This research demonstrates that peplosphere monitoring needs to be considered when
ensuring optimal air quality in urban and rural areas.

Keywords: Lamezia Terme; GAW; sustainability; peplosphere; planetary boundary layer; atmospheric
boundary layer; Mediterranean basin; greenhouse gas; aerosol; synoptic flow

1. Introduction

The peplosphere, also referred to in the literature as the planetary boundary layer (PBL)
or atmospheric boundary layer (ABL), is the lowest part of the atmosphere. The peplosphere
is heavily influenced in its dynamics by constant contact with Earth’s surface [1–6]; it is
also characterized by turbulences, vertical currents, distinct temperature profiles, and air
flows, which are not parallel to the surface or isobars [7–10]. Only in the free atmosphere
above, air flows are mostly geostrophic [11,12].

The peplosphere has a well-defined diurnal–nocturnal cycle [13–19], which also results
in peculiar dynamics directly affected by this cycle [20–24]. PBLH (planetary boundary
layer height) is among the key parameters used in research to characterize peplospheric
variability over time [25–27]. The PBLH is normally described as the height of the inversion
level separation between the free troposphere above the boundary layer [14]. In addition to
the physical boundary of the peplosphere, it is worth mentioning that it possesses peculiar
characteristics in terms of microbial ecology [28,29].
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Research demonstrated correlations between PBLH and the concentration of several
GHGs and aerosols: Therefore, peplospheric control over the surface concentration of these
compounds is among the factors that can help predict their variability and diffusion [30–37].
This also has a number of implications in terms of human health and environmental
protection, as higher concentrations can lead to hazards [38–40]. For example, in the case of
black carbon (BC), an inverse correlation with PBLH was demonstrated in areas affected by
anthropogenic pollution [41]. In a world that is constantly dealing with climate change,
air quality issues, and the need for sustainable policies and regulations [42], additional
knowledge on the peplosphere may be required.

In research, two main methods for PBLH measurement are used: the gradient method
and the threshold method. The former estimates PBLH by pinpointing the height of the
minimum backscatter gradient [43–47], while the latter estimates PBLH as the threshold at
which the backscatter signal is below a certain value [45,48].

In addition to the complexities of surface-peplosphere-free atmosphere interactions
that normally occur on Earth, a significant role in peplospheric dynamics is played by
the presence of sea/ocean masses, continents, and coastal boundaries below [8,49–56].
These extra complexities require ad hoc methodologies to assess PBLH variability in
these environments [57–59]. A better understanding of peplospheric influences over the
concentration of GHGs and aerosols is necessary to provide regulators and policymakers
with additional tools to better manage air quality issues in urban and rural areas. Various
parameters affect air quality and local air pollution; this research paper will focus on three
gases and two aerosol types.

Carbon dioxide (CO2) is the main driver of present-day anthropogenic climate
change [60–62] and is therefore subject to monitoring on local to global scales [63,64].
Although CO2 does not pose the same health hazards as other pollutants, this compound
can impact the environment [65,66] and trigger long-term effects on human health [67–69].
Fossil fuel burning is the main source of anthropogenic CO2 in the atmosphere [70].

Carbon monoxide (CO) is an effective tracer of combustion and can be both natural
and anthropogenic in origin. Wildfires are a prominent source of CO in the atmosphere [71]
and the multi-year variability of this gas has shown a generally downward trend [72] that
followed years of constant increases [73]. However, the decrease rate of CO has reduced
in the past few years, indicating changes in the total global budget [74]. Although carbon
monoxide is short-lived, it is known to play a role in the increase of methane [75] and
surface ozone (O3) [76]. CO per se is not defined as a GHG; however, for the sake of
convenience, this paper will report it among the GHGs.

Methane (CH4) is heterogeneous in origin, with anthropogenic [77,78] and natural [79]
sources contributing to its global budget. It is also a byproduct of fuel combustion [80,81].
Due to its high GWP (global warming potential) compared to CO2, CH4 emission reductions
are one of the main challenges of present-day climate change mitigation [82].

Black carbon (BC) is a notable byproduct of combustion processes [71] and acts as
both a driver of climate change [83–85] and a factor of health hazard [86]. Its effects are
partially counterbalanced by a short persistence rate in the atmosphere: BC has in fact been
observed to last for days [87,88].

Particulate matter (PM) is a common byproduct of vehicular emissions in urban
areas [89,90] but can also originate from several natural processes [91–93]. PM constitutes a
significant health hazard due to its small size and the consequent capacity to affect the lungs
directly [94,95]; for this reason, it is subject to constant monitoring at various levels [96].
Several research studies have reported significant correlations between peplospheric and
particulate patterns, thus showing that research on PBLH variability has implications for
air quality and the sustainable development of urban and rural areas [97–101].

The analyzed parameters are heterogeneous in characteristics, sources, and variability,
and the influence of anthropic activities on their release and diffusion is also heterogeneous.
The possibility of combining PBLH data with gas and aerosol concentrations, their cycles,
and trends further contributes to a better understanding of the local environment.
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Previous research aimed at the WMO/GAW (World Meteorological Organization—
Global Atmosphere Watch) observation site of Lamezia Terme (code: LMT) in the southern
Italian region of Calabria was limited to data gathered during a summer 2009 campaign
(12 July to 6 August) [102]. The campaign allowed the characterization of the main features
of peplospheric variability at LMT; however, at the time, there were no measurements of
GHGs and aerosols available. Further characterization of peplospheric influences over the
concentration of pollutants focused on the 2015 solar eclipse [103], but the study could not
provide additional details on variability over time.

This study is therefore aimed at an unprecedented analysis of PBLH variability at
LMT, as well as its correlations with the patterns of key GHGs and aerosols, via the
implementation of additional instruments and data that were not available during the short
2009 campaign. Specifically, this research paper is targeted at further characterization of
LMT in the context of Mediterranean observation sites. This paper is divided as follows:
Section 2 describes the LMT site, its instruments, and datasets; Section 3 will show the
results of this campaign; Sections 4 and 5 cover the discussion and results, respectively.

2. The Station, Methods, Instruments, and Datasets
2.1. The Observation Site and Its Characteristics

Fully operated by the National Research Council of Italy—Institute of Atmospheric
Sciences and Climate (CNR-ISAC), the observation site (code: LMT; Lat: 38.88 N◦; Lon:
16.23 E◦; Elev: 6 m.a.s.l.) is located in the southern Italian region of Calabria, in the
municipality of Lamezia Terme (Figure 1). The station is located 600 m from the Tyrrhenian
coast of the region, in an area known to be the narrowest point in the entire Italian peninsula,
as the distance between the Tyrrhenian and Ionian coasts is ≈30 km. This area, known
as the Catanzaro isthmus, effectively separates the coastal chain (Catena Costiera) and
Sila Massif in the north, from the Serre Massif in the south. The presence of two seas,
with the Calabria region in between, leads to increased meteorological instability and
oftentimes results in the occurrence of floods in the area [104–106]. Local wind circulation
patterns in the western part of the isthmus were characterized in two 2010 studies by
Federico and collaborators, who demonstrated the presence of a well-defined west–east
local circulation [107,108]. In fact, the Lamezia Terme International Airport (IATA: SUF;
ICAO: LICA), located 2 km north of the LMT observatory, has a 10/28 (100/200◦ N)
runway (RWY) orientation and local air traffic is subject to the same wind regime. Vertical
wind profiles were characterized in a consequent study [109], which integrated previously
gathered data on preliminary peplosphere characterization at the site [102]. A cross-study
on multiple southern Italian stations also performed a PBLH characterization via WRF
modeling and related methodologies; however, the study was limited to one month of data
from the 2009 summer season and did not evaluate GHGs or aerosols [110].

Measurements of GHGs and other key parameters at the site started in 2015. The first
study evaluating the results, Cristofanelli et al. (2017) [111], provided new insights into the
characterization of LMT and what would later be defined as a “multisource” site. The study
also indicated that local wind circulation patterns, characterized in earlier studies [107,108],
have a direct influence on LMT observations: Western-seaside winds generally yield low
concentrations, while northeastern-continental winds are linked with higher mole fractions
of GHGs. With respect to aerosols, a more detailed description was performed in a study
by Donateo et al. (2018) [112].

Seven years (2016–2022) of methane data at LMT have been evaluated by D’Amico
et al. (2024a) [113] and confirmed the influence of wind regimes on CH4 mole fractions with
additional details. The study also provided new insights on seasonal cycles: The highest
mole fractions were observed during the winter season, while the lowest were typically
observed during the summer. The authors also found evidence of an HBP (hyperbola
branch pattern), with the highest mole fractions linked to low wind speeds and, vice versa,
the lowest fractions linked to high speeds. The research by D’Amico et al. (2024d) [114]
on nine years (2015–2023) of surface ozone (O3) data, however, demonstrated that these
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patterns do not apply to all parameters, as ozone maxima are linked to spring/summer
diurnal winds from the western sector. The presence of opposite or “reversed” patterns at
LMT underlined the growing complexity of parameters and how they combine with local
wind circulation.
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center. The “Station” label points to the busiest train station in the municipality of Lamezia Terme, 
the central one (Lamezia Terme Centrale). 
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[111]. The study also reported possible influence from Tyrrhenian shipping, as the Gioia 
Tauro port located 60 km southwest of LMT could contribute to pollution in the area. In 
D’Amico et al. (2024a) [113], the Lamezia Terme central station (Lamezia Terme Centrale) 
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Figure 1. (A) Modified Copernicus Digital Elevation Model [115] of Europe, with a mark on LMT’s
location. (B) Modified EMODnet [116] highlighting LMT’s specific location in Southern Italy, within
the region of Calabria. (C) Google Earth map, tilted by 70◦, showing the observation site and key
infrastructural/emission hotspots in the area. The “Highway” label indicates a point where the
distance between LMT and the highway is ≈4.2 km. The “Lamezia Terme” label points to the town
center. The “Station” label points to the busiest train station in the municipality of Lamezia Terme,
the central one (Lamezia Terme Centrale).

During LMT’s observational history, a number of local sources of local pollution have
been reported as responsible for certain peaks. The international airport located nearby, as
well as the A2 highway (part of European route E45), and local livestock farming have been
indicated as local sources of methane and other gases in Cristofanelli et al. (2017) [111]. The
study also reported possible influence from Tyrrhenian shipping, as the Gioia Tauro port
located 60 km southwest of LMT could contribute to pollution in the area. In D’Amico et al.
(2024a) [113], the Lamezia Terme central station (Lamezia Terme Centrale) was also indicated
as a local emission source. Overall, considering its position in central Calabria, Lamezia
Terme serves as a transportation hub for the region, with the highway, airport, and central
station connecting cross-country Tyrrhenian lines with Ionian lines via an interchange at the
Catanzaro isthmus. In Figure 1C, the main sources of anthropogenic pollution in the area
are indicated. Farms—including those dedicated to livestock—as well as minor landfills,
are spread over the plain.

Research studies on LMT data also focused on weekly trends under the assumption
that they can only be anthropic in nature, unlike natural trends characterized by daily,
seasonal, and yearly cycles. In D’Amico et al. (2024c) [117], the first COVID-19 lockdown
period of 2020 was used to further assess local sources in a context of exceptionally limited
anthropic activities due to the strict measures applied by the Italian government to counter
the pandemic. In fact, the restrictions introduced at the time [118] preceded similar mea-
sures issued by other European countries by days or even weeks, thus allowing changes in
LMT data to be linked to local changes in emission sources. A cross-study on aerosol data
from multiple southern Italian stations, LMT included, was performed by Donateo et al.
(2020) [119] and provided new insights on local vehicular traffic influences on local aerosol
diffusion. A more detailed assessment of weekly patterns was performed by D’Amico et al.
(2024b) [120] and demonstrated different behaviors of GHGs and aerosols, possibly linked
to changes in anthropogenic activities throughout the week. Due to LMT’s location in the
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central Mediterranean sector, observations are also known to be affected by Saharan dust
events [121] and open fires [122].

2.2. Instruments, Methodologies, and Datasets

To retrieve the aerosol backscatter profiles at the monitoring site, a Lufft CHM 15k
Nimbus ceilometer (Fellbach, Germany) operating within ALICEnet (Italian Automated
LIdar–CEilometer network) was used. The network is coordinated by CNR-ISAC in
partnership with other Italian research institutions and environmental agencies. ALICEnet
measurements are currently employed to detect the altitude and temporal evolution of
cloud layers and track the transport of polluted or mineral dust aerosol plumes at different
sites along the Italian peninsula. This ceilometer is a ground-based, monostatic, active
remote sensing instrument based on the LiDAR (Light Detection and Ranging) technique
and principle [123].

The Nimbus ceilometer observes backscattered profiles with a vertical resolution of
15 m over 24 continuous hours per day. Data are averaged every 15 s. The operating range
is between the surface (~15 m) and 15,000 m. Technical details of the instrument are shown
in Table 1.

Table 1. Technical specifications of the Lufft CHM 15k Nimbus ceilometer.

Parameters Description/Values

Laser source Nd: YAG solid-state laser
Wavelength 1064 nm

Operating mode Pulsed
Pulse energy 7 µJ

Pulse repetition frequency 5–7 kHz
Filter bandwidth 1 nm

Field of view receiver 0.45 mrad

Specifically, the LiDAR technique is used by the Nimbus to emit short light pulses
facing directly upward. Cloud layers, precipitations, and aerosols present in the column
scatter back the pulses: By analyzing flight time, the intensity of backscattering, and
counted pulses, the main features of the vertical column can be determined. The output
is used to evaluate PBLH influences on tropospheric GHG and aerosol transport and
dispersion [124]. In particular, the topmost aerosol layer detected by ceilometer pulses
and consequent backscatter is used to infer details on PBLH [125]. The expression used to
receive the normalized backscattered signal power is reported below (Equation (1)) and is
also provided by the manufacturer [126]:

P(r) =
Praw(r)− b

csO(r)
1

Pcalc
(1)

where P(r) is the normalized backscattered signal power, Praw is the raw backscattered
profile (photon counts), b is the baseline, Cs is the calibration constant, O(r) is the overlap
function, and Pcalc is average test pulse intensity. In this study, the beta_raw = P(r) × r2

output has been used, and negative signals have been filtered out.
During diurnal time ranges, dense and/or multiple cloud and aerosol layers may alter

the backscattering signal and generate noise due to attenuation. In order to optimize the
accuracy of results, backscattering profile data are averaged on a 5 min basis to improve
the signal-to-noise ratio. Raw LIDAR backscatter data are smoothed to reduce noise while
preserving signal gradients. Boundary layer height detection is achieved by analyzing
variations in backscatter gradients: Significant changes in backscattering indicate layer
transitions, such as the peplosphere’s topmost layer, and the Gradient Method was used to
determine and assess this information. The Gradient Method, as described in Section 1,
has its fundament in the calculation of the vertical gradient parameter, which is the first
derivative—with respect to height—of the backscatter signal [43–47]. As a derivative, the



Sustainability 2024, 16, 10175 7 of 33

gradient is an indicator of the backscatter rate of change; considering that the peplosphere is
generally characterized by a higher aerosol concentration compared to the free atmosphere
above, backscatter signals would significantly drop at the transition, thus resulting in
distinct gradient values. The analysis of peaks and certain thresholds are both used to
determine the extent of these transitions [47–49,55].

The campaign took place between May and September 2024, during the boreal warm
season: In order to reduce the influence of rainy days, the analysis relied on additional
flags used by the Nimbus ceilometer to filter out entire days affected by rain and major
cloud covers. This procedure ensured ceilometer data used in this work matched nearly
clear sky conditions.

In addition to ceilometer outputs, additional data have been gathered and processed to
assess correlations between PBLH, GHGs, pollutants, and key meteorological parameters.
All data have been aggregated on an hourly and daily basis to allow direct comparison
between different parameters.

Particulate matter (PM) data in micrograms per cubic meter (µg/m3 or µg PCM) have
been gathered by a Palas Fidas 200 S (Karlsruhe, Germany). The instruments provide
both Cn (particle numbers) and PM concentrations; however, in this study, only the latter
have been used. A Sigma-2 sampling head draws in ambient air with a flow rate of
approximately 0.3 m3/h. Aerosol gathered from ambient air passes through the sampling
tube, equipped with a drying section meant to prevent measurement distortion attributable
to moisture particles, and is ultimately drawn by the aerosol sensor. Via a Lorenz-Mie light
analysis, particle size is determined by the instrument. Particles move through an optically
differentiated volume that is illuminated by a polychromatic LED source. In response, each
particle emits an impulse of scattered light that is detected by the instrument at angles
of 85 to 95 degrees. Measurements are performed every ≈5 s, and the results have been
aggregated on an hourly and daily basis, differentiated by particle size.

Data on downward solar radiation in watts per square meter (W/m2) have been
gathered by a Kipp and Zonen radiometer, model CNR4. The radiometer used at LMT
relies on two pyrgeometers and two pyranometers to measure upward (LW, 4.5–42 µm)
and downward (SW, 0.31–2.8 µm) irradiance. The uncertainty in CNR4 measurements,
traced to the BSRN (Baseline Surface Radiation Network) standard, is approximately
1% [127]. Additional details are available in Lo Feudo et al. (2015) [128] and Romano et al.
(2017) [103].

Carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) mole fractions in
ppm (parts per million) have been gathered by a Picarro G2401 (Santa Clara, CA, USA)
CRDS (Cavity Ring-Down Spectrometry) analyzer [129]. Via the principle of CRDS, these
carbon compounds in the atmosphere are measured with high degrees of precision (1 ppb
for measurements having an interval of 5 s). At LMT, the G2401 gathers continuous data
and is subject to WMO-compliant calibration cycles and procedures. Additional details
on G2401 data gathering, calibration procedures, and quality assurance are available in
Cristofanelli et al. (2017) [111], D’Amico et al. (2024a) [113], D’Amico et al. (2024b) [120],
and D’Amico et al. (2024c) [117].

Key meteorological surface data have been gathered by a Vaisala WXT520 (Vantaa,
Finland). The instrument relies on ultrasounds to monitor wind direction and speeds and a
transducer to gather temperature data. The WXT520 also gathers data on relative humidity
(RH, as a percentage). Temperature is measured with a precision of 0.3 ◦C, while wind
speed and direction are measured with a precision of 0.3 m/s and 3 degrees, respectively.
Additional details on WXT520 measurements at Lamezia Terme are available in D’Amico
et al. (2024a) [113].

Equivalent black carbon (eBC) micrograms per cubic meter (µg/m3 or µg PCM)
have been measured by a Thermo Scientific 5012 (Franklin, MA, USA). The instrument
operates as a MAAP (Multi-Angle Absorption Photometer), measuring the short-wave
absorption parameters of aerosol [130–132]. Specifically, the aerosol absorption coefficient
(sa) and equivalent black carbon are measured at 637 nm. The minimum detection of these
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measurements is in the <100 ng/m3 range. Additional details are available in Calidonna
et al. (2020) [121], D’Amico et al. (2024b) [120], and D’Amico et al. (2024c) [117].

Particle scattering and hemispheric backscattering coefficients at wavelengths of 450,
525, and 635 nanometers (nm) were measured by an LED-based integrating nephelometer
(model Aurora 3000, Ecotech—Knoxfield, Australia) [133] at a temporal resolution of 1 min.
Air sampling was obtained from the top of a stainless steel tube having a 15 mm internal
diameter and a length of ≈1.5 m. The inlet was fitted with a funnel covered by a screen to
prevent raindrops and arthropods from reaching the sample line. No aerosol size cut-off
was applied to the sampled air, and a relative humidity threshold of 60% was set by a
processor-controlled automatic heater inside the nephelometer to prevent the hygroscopic
effects that enhance particle scattering. The reported bandwidth FWHM (Full Width at
Half Maximum) of the instrument is 30 nm for 450 and 635 nm wavelengths and 40 nm for
the 525 nm wavelength. Calibration data, reported by the instrument under an “AB” status
flag, have been excluded from the evaluation.

Each instrument and its respective dataset have been processed and quality-checked.
Data coverage rates (%) compared to the actual number of days (153) and hours (3672)
elapsed between 1 May 2024 and 30 September 2024 are shown in Table 2.

Table 2. Dataset coverage as a percentage (%) of the total number of days and hours. Coverage
variations between instruments are due to maintenance, with the exception of the Nimbus ceilometer
whose coverage rate is due to data filtering.

Type G2401 MAAP Fidas WXT520 Nimbus Aurora

Days 86.27% 88.88% 98.69% 100% 66.66% 98.69%
Hours 81.26% 89.1% 97.76% 99.7% 59.47% 98.5%

Using meteorological data, days have been divided into four categories (plus a fifth
“NA” category not matching any of the requirements, which is hereby excluded). The
“Breeze” regime has been defined as alternating wind directions (WD) between 270 and
70 degrees north (◦N) and wind speeds (WS) in the 2–6 m/s interval. The “Eastern Synoptic”
regime is defined with a constant WD of 70◦ and WS ≥ 6 m/s. The “Western Synoptic” has
the same WS threshold as its eastern counterpart, but the WD is 270◦. The “Not Complete”
(NC) breeze regime is applied to days with a growing breeze regime, which was later
overcome by a regime leaning toward Western synoptic characteristics. In this case, the WS
threshold is within 4–8 m/s. All reported WDs have an applicability range of ±15◦. Table 3
shows how days whose wind regime falls in one of the above-mentioned categories are
distributed over the observation period.

Table 3. Number of days, per month, falling into each of the four wind regime categories.

Months East. Synoptic West. Synoptic Breeze NC Breeze

May 4 15 1 0
June 1 2 5 0
July 2 4 8 8

August 1 5 8 2
September 0 7 17 0

Analyses have been performed in R 4.4.0 using ggplot2, ggpubr, tidyverse, ope-
nair [134,135], zoo, and dplyr packages/libraries to generate hourly/daily aggregations of
gathered data. Parameter variability throughout the observation period and daily cycles
have been plotted following the methodologies used in previous research on multi-year
trends at LMT [111,113,114,117,120]. Ceilometer data have been processed using MATLAB
2016a to generate 2D backscattered profiles [102]. Scatter plots and related correlation data
between PBLH and other parameters have also been computed in MATLAB.
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3. Results
3.1. Daily Variability During the Observation Period

The campaign evaluated in this study accounts for five months of data gathering at
LMT, from 1 May to 30 September 2024. As described in Section 2.1, the Lamezia Terme
regional WMO/GAW station is affected by cyclic wind patterns. Figure 2 shows a wind
rose based on hourly-aggregated wind speeds and directions.
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Figure 2. Wind rose based on hourly data gathered during the observation period (1 May–30
September 2024). Calm refers to the reported instances (0%) of a wind speed of 0 m/s.

Data on CO, CO2, CH4, eBC, and PM have been gathered on a daily basis to highlight
possible trends during the campaign. As reported in Table 2, the coverage rates of these
findings vary depending on instrument maintenance and quality assurance. Figure 3 shows
hourly aggregated data of all five parameters, with PM data being further divided into
multiple subcategories.
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ppm; (D) equivalent black carbon (eBC), in µg/m3; and (E) particulate matter (PM) in µg/m3, divided
into the size ranges PM1, PM2.5, PM4, and PM10. The gaps in CO, CO2, and CH4 data shown in
A-B-C are due to maintenance issues that affected the Picarro G2401. Similarly, Thermo Scientific
5012 MAAP data gathering was also affected by maintenance, as shown by a gap.

The same analysis has been applied to meteorological and environmental data. Figure 4
shows the daily averages of primary data gathered at LMT during the campaign.

In addition to daily averages, hourly aggregations have also been computed to show
variations between May and September 2024 with enhanced details. Figures 5 and 6 show
these aggregates for GHG/aerosol and environmental parameters, respectively. Y-axes
scales have been adjusted to account for observed peaks.
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ppm; (D) equivalent black carbon (eBC), in µg/m3; and (E) particulate matter (PM) in µg/m3, divided
into the size ranges PM1, PM2.5, PM4, and PM10. 36 h moving averages of CO, CO2, CH4 (pm), and
eBC (µg/m3) are shown in cyan.
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3.2. Daily Cycles

Research studies on LMT data highlighted the existence of daily cycles [111–114],
which are affected by local wind circulation patterns. Up until the campaign presented
in this research, these cycles were not assessed under distinct wind regime categories.
Figure 7, therefore, shows an enhanced evaluation of the LMT daily cycle of GHGs and
aerosol accounting for the four categories described in Section 2.2. Figure 8 shows the daily
cycle of key environmental and meteorological parameters.
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Figure 7. Daily cycles of GHG and aerosol parameters analyzed in this research study, divided by
wind regime: (A) carbon monoxide (CO), in ppm (parts per million); (B) carbon dioxide (CO2), in
ppm; (C) methane (CH4), in ppm; (D) equivalent black carbon (eBC), in µg/m3; (E) particulate matter
(PM) in µg/m3, divided into the size ranges PM1, PM2.5, PM4, and PM10 but not accounting for wind
regime categories; (F) PM2.5, with wind regimes; and (G) PM10, with wind regimes. Where present,
shaded areas refer to intervals within one standard deviation (±σ) from the reported values.
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3.3. Percentile Roses

In D’Amico et al. (2024d) [114], percentile roses have been used to correlate surface
ozone concentrations at LMT with specific wind directions. The same method has been
used in this research for CO, CO2, CH4, eBC, and PM, with the results being reported in
Figure 9. PM2.5 and PM10 have been plotted separately.
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Figure 9. Percentile roses of GHGs and aerosols evaluated in this study. The radius of each rose shows
concentrations, while the shaded areas represent the coverage rate by percentile range: (A) carbon
monoxide (CO), (B) carbon dioxide (CO2), (C) methane (CH4), (D) equivalent black carbon (eBC),
(E) total particulate matter (PM), (F) PM2.5, and (G) PM10.
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3.4. Peplospheric Variability and Cycles

Following the evaluation seen in the previous sections with respect to GHGs, aerosols,
meteorological, and environmental parameters, the PBLH at Lamezia Terme has been also
characterized using daily and hourly averages. The results are shown in Figure 10.
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Figure 10. Daily (A) and hourly (B) averages of PBLH at LMT. Daily cycle (C) divided by the four
wind regime categories described in Section 2.2. Where present, shaded areas refer to intervals within
one standard deviation (±σ) from the reported values.

Vertical profiles of select days deemed representative of all wind regimes have also
been plotted using filtered and processed Nimbus data. The results are shown in Figure 11.
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Figure 11. Temporal variation in ceilometer backscattered profiles, aggregated on a 5 min basis, dur-
ing select days with synoptic flows from west (1, 2 May) and east (14, 15 May), well-developed 
breeze (11, 12 August), and not complete breeze (17, 18 July). Yellow contours underline PBL bound-
aries, while turquoise and green contours indicate cloudy layers. 
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bottom ones show western and eastern synoptic flow data, respectively. 

Figure 11. Temporal variation in ceilometer backscattered profiles, aggregated on a 5 min basis,
during select days with synoptic flows from west (1, 2 May) and east (14, 15 May), well-developed
breeze (11, 12 August), and not complete breeze (17, 18 July). Yellow contours underline PBL
boundaries, while turquoise and green contours indicate cloudy layers.

3.5. Correlations Between PBLH, Gases, and Aerosols

Scatter plots of observed parameters (x-axis) have been correlated with PBLH (y-axis)
in Figures 12–17. These plots also show correlation data and the respective p-values. For
each parameter, the top plots show breeze and not complete breeze regimes, while the
bottom ones show western and eastern synoptic flow data, respectively.



Sustainability 2024, 16, 10175 21 of 33
Sustainability 2024, 16, x FOR PEER REVIEW 23 of 35 
 

  

  
Figure 12. Scatter plots testing the correlation between PBLH and carbon monoxide (CO) under the 
four observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern syn-
optic flows). 

  

  
Figure 13. Scatter plots testing the correlation between PBLH and carbon dioxide (CO2) under the 
four observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern syn-
optic flows). 

Figure 12. Scatter plots testing the correlation between PBLH and carbon monoxide (CO) under the
four observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern
synoptic flows).

Sustainability 2024, 16, x FOR PEER REVIEW 23 of 35 
 

  

  
Figure 12. Scatter plots testing the correlation between PBLH and carbon monoxide (CO) under the 
four observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern syn-
optic flows). 

  

  
Figure 13. Scatter plots testing the correlation between PBLH and carbon dioxide (CO2) under the 
four observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern syn-
optic flows). 

Figure 13. Scatter plots testing the correlation between PBLH and carbon dioxide (CO2) under the
four observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern
synoptic flows).



Sustainability 2024, 16, 10175 22 of 33
Sustainability 2024, 16, x FOR PEER REVIEW 24 of 35 
 

  

  
Figure 14. Scatter plots testing the correlation between PBLH and methane (CH4) under the four 
observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern synoptic 
flows). 

  

  
Figure 15. Scatter plots testing the correlation between PBLH and equivalent black carbon (eBC) 
under the four observed wind regimes (top: breeze and not complete breeze; bottom: western and 
eastern synoptic flows). 

Figure 14. Scatter plots testing the correlation between PBLH and methane (CH4) under the four
observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern synoptic
flows).

Sustainability 2024, 16, x FOR PEER REVIEW 24 of 35 
 

  

  
Figure 14. Scatter plots testing the correlation between PBLH and methane (CH4) under the four 
observed wind regimes (top: breeze and not complete breeze; bottom: western and eastern synoptic 
flows). 

  

  
Figure 15. Scatter plots testing the correlation between PBLH and equivalent black carbon (eBC) 
under the four observed wind regimes (top: breeze and not complete breeze; bottom: western and 
eastern synoptic flows). 

Figure 15. Scatter plots testing the correlation between PBLH and equivalent black carbon (eBC)
under the four observed wind regimes (top: breeze and not complete breeze; bottom: western and
eastern synoptic flows).
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Figure 17. Scatter plots testing the correlation between PBLH and PM10 under the four observed
wind regimes (top: breeze and not complete breeze; bottom: western and eastern synoptic flows).

The correlation parameters seen in Figures 12–17 have been reported in Table 4. In
addition to these data, the correlations between PBLH and key meteorological parameters
(relative humidity, RH; temperature, T; downward irradiance, SW) under all wind regimes
have also been added to Table 4.
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Table 4. Correlation factors and p-values of GHGs, aerosol, and meteorological parameters with
PBLH (m) under the four wind regime categories. SW correlations are restricted to diurnal hours
(10:00–18:00 UTC).

Regime CO CH4 CO2 eBC PM10 PM2.5 RH T SW

corr pval corr pval corr pval corr pval corr pval corr pval corr pval corr pval corr pval

Breeze 0.11 0.004 0.05 0.21 0.04 0.29 0.015 0.716 0.017 0.67 −0.027 0.5 −0.188 <0.001 −0.058 0.119 −0.02 0.76
NC

Breeze 0.062 0.402 0.092 0.209 −0.077 0.3 0.083 0.26 −0.312 <0.001 −0.328 <0.001 −0.081 0.263 0.040 0.581 −0.360 <0.001
Syn.
East −0.024 0.78 0.08 0.36 0.213 0.014 0.462 <0.001 −0.03 0.734 −0.021 0.811 0.097 0.195 0.138 0.065 −0.367 <0.001
Syn.
West 0.136 0.0083 0.071 0.167 0.061 0.236 0.021 0.691 −0.021 0.69 −0.017 0.743 −0.161 <0.001 0.146 <0.001 −0.0013 0.127

4. Discussion

A campaign focused on peplosphere or planetary boundary layer (PBL) characteriza-
tion has been performed at the Lamezia Terme regional WMO/GAW observation site in
Calabria, Southern Italy. The campaign relied on a new ceilometer (Table 1), a longer obser-
vation span compared to previous comparable research, and the integration of additional
data (specifically, GHGs and aerosols, see Table 2) meant to test correlations that were not
applicable during the summer 2009 campaign described in Lo Feudo et al. (2020) [102].
Specifically, the previous campaign was limited to 23 days (15 July–6 August 2009), and
the employed ceilometer was a different model (Vaisala CL31—Vantaa, Finland). The
CL31 transmitted laser pulses on a vertical axis and measured backscattered signals, which
were correlated with the scattering particles present in the column. With a data gathering
frequency of one acquisition per second, the CL31 operated at a wavelength of 910 nm,
with a maximum operating range of 7500 m and a resolution of 20 m [136]. The previous
campaign lacked the measurement of CO, CO2, CH4, eBC, and PM concentrations necessary
to expand on the correlation between peplospheric variability and other parameters.

The preliminary evaluation of environmental data allowed us to define the fundamen-
tals upon which the findings of this campaign would be based. Local wind circulation
patterns are oriented on a W/NE axis [107,108], as shown in Figure 2. GHG and aerosol
data coverage, in addition to meteorological parameters, show both daily (Figures 3 and 4)
and hourly (Figures 5 and 6) variability during the observation period.

Following the analyses seen in other research papers focused on LMT
data [111,113,114,117], daily cycles of GHGs, aerosols, and meteorological parameters
have been assessed. LMT has been proven in multiple studies to have a peculiar daily cycle,
and this research effectively integrates a new variable, peplosphere height variability, into
these cycles. In the case of GHGs and aerosols, the analysis has considered four distinct
wind regimes, each defined by specific direction (WD) and speed (WS) thresholds: breeze,
not complete (NC) breeze, eastern synoptic, and western synoptic (Table 3). In the case of
CO2 (Figure 7B) and CH4 (Figure 7C), although the breeze and NC breeze yield higher val-
ues during night-time hours, diurnal concentrations are lower and do not show differences
in terms of wind regime. However, CO (Figure 7A), eBC (Figure 7D), and PM (Figure 7E–G)
show greater variability in morning and evening hours that is compatible with inversions
in wind patterns from the northeastern-continental to the western-seaside corridors, and
vice versa. PM (Figure 7F,G) is particularly susceptible to night-time fluctuations. The sus-
ceptibility of pollutant concentrations to inversions in wind patterns was first reported in
Cristofanelli et al. (2017) [111] and further supported in D’Amico et al. (2024c) [117], which
analyzed the first 2020 COVID-19 lockdown in Italy to highlight the nature of pollutant
peaks linked to wind circulation in lockdown versus ante/post lockdown periods.

Key meteorological and environmental parameters show well-defined daily cycles
(Figure 8). In particular, scattering values (Figure 8D) show a peak linked to increased
pollutant surface concentrations that occur during inversions.

The percentile roses in Figure 9 differentiate between gases and aerosols in terms of
spatial distribution. Two types of behavior are reported: minor spatial variations, as seen
in the case of CO2 (Figure 9B) and CH4 (Figure 9C); intermediate variations, as in the case
of CO (Figure 9A), eBC (Figure 9D), and PM2.5 (Figure 9F); substantial variations, seen
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specifically in PM10 (Figure 9G). These differences reflect not only the susceptibility of
each parameter to wind regimes but also indicate distinct emission sources. CO and eBC,
which are both effective tracers of combustion processes, were linked to local wildfires in
a previous research study by Malacaria et al. (2024) [122]. CH4 is characterized by both
natural and anthropogenic sources, and local peaks are linked to northeastern-continental
winds [113]. In Cristofanelli et al. (2017) [111], methane peaks at LMT were specifically
attributed to sources located nearby via the combined implementation of atmospheric
tracers.

Particulate matter, based on its size, are indicator of distinct emission sources. In
fact, as described in Section 1, PM is heterogeneous in nature. Anthropogenic PM2.5
emissions are generally linked, for example, to fossil fuel burning and domestic heating,
while PM10 is linked to natural sources such as sea spray, biomass burning attributable
to agriculture, Saharan dust events [121], and wildfires [122]. Among the anthropogenic
sources of PM10, incomplete fossil fuel-burning processes are common. The findings of this
research study allow to narrow down the nature of observed PM depending on the four
wind regimes that affect LMT observations: The breeze is linked to diurnal sea spray from
the west and nocturnal smog from the northeast; the not complete (NC) breeze results into
a southern corridor and PM peaks that are hereby interpreted as biomass burning linked
to agricultural activities; the western synoptic regime combines sea spray outputs with
continental-anthropogenic PM; the eastern synoptic regime is linked to all PM categories.

In Figure 10, PBLH data have been plotted to show the overall variability during the
observation period, as well as the daily cycle (Figure 10C). This cycle in particular shows
daily PBLH variations depending on the four distinct categories of wind regimes, which in
turn have an impact on gas and aerosol concentrations observed at LMT. Examples of the
four categories are shown in Figure 11.

Scatter plots testing the correlation of PBLH, gases, and aerosols have been plotted in
Figures 12–17 under all four wind regimes. An apparent inverse relationship or anticorre-
lation between PBLH and CO2 and CH4 concentrations can be seen in Figures 13 and 14.
This suggests that as the PBLH increases, CO2 and CH4 concentrations tend to decrease,
indicating that lower peplosphere heights correspond to limited vertical mixing and the
accumulation of these gases near the surface. The results of the correlations tested in
Figures 12–17, as well as additional tests accounting for RH, T, and SW (irradiance evalua-
tions were restricted to diurnal hours, between 10:00 and 18:00 UTC), have been reported
in Table 4. With respect to meteorological parameters, the correlations are positive with
the exception of temperature under the breeze regime, due to the sea/land breeze phe-
nomenon. The correlation between relative humidity and PBLH is negative under all wind
regimes, with the exception of eastern synoptic conditions. In the case of SW, there are
minor negative correlations due to the fact that diurnal solar irradiance alone has been
considered, and solar irradiance in May and September is lower compared to their summer
peak counterparts. In the case of gases and aerosols, all correlations are positive with
the exception of CO under eastern synoptic conditions. CO2’s correlation with PBLH is
generally positive, except for the NC breeze regime. eBC is particularly sensitive to PBLH
variability, as it shows the highest correlation factor among all parameters in the case of
eastern synoptic wind regimes. PM10 is positively correlated with the breeze regime, and
the correlation with other regimes has a minor negative tendency. In PM2.5’s case, there are
minor negative correlations with PBLH under all wind regimes.

In the analysis of this study’s results, it is worth mentioning the contribution of the
ash sphere, which can be natural or anthropogenic in origin [137,138], on a number of
parameters addressed in this study. As ash particles absorb sunlight, a local increase in
temperature can occur: This form of heating would then perturb atmospheric circulation
and the consequent transport of GHGs and aerosols; fluctuations in temperature and solar
radiation can also alter chemical processes in the atmosphere, further contributing to the
perturbation of the system [139].
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Overall, when synoptic conditions are favorable to sea breeze development, colder
air masses from the sea with low marine aerosol content are advected over land in the
early morning and interact with the nighttime boundary layer. After the onset of the
sea breeze, an internal boundary layer develops from the coastal discontinuity and the
height of the maximum backscatter threshold from the Nimbus decreases, likely due to the
advection of the marine aerosols above the peplosphere, thus creating a discontinuity in
aerosol concentration and size distribution. Later in the morning, when the breeze is well
developed, the convection takes over and mixes marine and continental aerosols, creating
a homogeneous content of aerosols filling the convective layer.

During stationary synoptic flow with wind speed typically > 5 m/s, marine aerosols
are mixed with their continental counterparts and the height of the boundary layer detected
by LMT’s ceilometer remains constant. During sea breeze days, at the onset of the breeze,
the findings of this research and past studies indicate that the sea breeze advection of
marine aerosols causes a nonhomogeneous columnar distribution, inducing a low LiDAR
signal-to-noise ratio above the internal boundary layer [102].

Figures 12–17 show that the advection of cleaner air with marine aerosols from the sea
with respect to the land aerosols, flowing above the internal boundary layer, after the breeze
onset, causes a vertical discontinuity of aerosol concentration and thus a reduction in the
LiDAR vertical range. In the case of breeze, the resulting values of PBLH vary as expected
following the daily cycle over land, i.e., low during the stable night and high during the
unstable days. During synoptic flow, the peplosphere is constantly higher compared to
unstable conditions. It is therefore reported that during the night, synoptic PBLH is higher
than during the day. A reason can be that during summer the breeze always develops,
adding and modulating the synoptic flow (Figure 11). A well-developed breeze, adding
speed, would produce a large quantity of marine aerosols advected on land flowing over
the land; the aerosol layer would contribute to the detection of a lower PBLH.

Seasonality is likely to play a role in the observed correlation between wind regimes,
PBLH, and the atmospheric concentrations of gases and aerosols. Future works are set
to cover a longer period of time and cover the winter season, which was not covered in
the two campaigns (2009 and 2024) due to no instrument availability. At LMT, many of
the observed parameters are known from previous research to be affected by seasonal
cycles [111,113,114,117,120], so the introduction of PBLH as an additional variable will
contribute to an enhanced characterization of LMT.

Compared to the previous campaign from 2009, in this research, it is observed that
PBLH is characterized by high degrees of variability during eastern and western synoptic
conditions. The mixed layer causing pollutants to reach higher altitudes matches the
findings of the previous campaign.

Therefore, the findings of this research provide evidence of direct peplospheric in-
fluences over the surface concentrations of GHGs and aerosols. With respect to urban air
quality management, these findings may be used by policymakers and regulators to pin-
point circumstances of reduced air quality under specific pollution/peplospheric conditions
and counteract accordingly (e.g., via selective bans of vehicular traffic). The applicability
of the same methodologies employed in this study for the assessment of peplospheric
influences on other stations across the globe could be possible; however, Lamezia Terme
(LMT) shows, at least in the context of the Italian monitoring network, a unique geographic
configuration in the narrowest point of the entire peninsula, the Catanzaro isthmus, with a
local wind circulation that is channeled through the isthmus itself and results into charac-
teristic daily cycles and wind regimes. In addition to the peculiarity of LMT’s location in
the Tyrrhenian coast of Calabria, the Mediterranean basin has shown differences in trends
and chemical/atmospheric processes affecting compounds such as methane [140] and
ozone [141,142] between its western and eastern sectors; considering that LMT is located at
the center of the Mediterranean and its observations are likely influenced by this variability,
atmospheric monitoring stations in other parts of the globe could yield different results.
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5. Conclusions

This research work relied on an enhanced characterization of peplospheric variability
at the Lamezia Terme (code: LMT) regional coastal WMO/GAW observation site in Calabria,
Southern Italy. The study is based on five continuous months (May–September 2024) of
PBLH data obtained by a Nimbus ceilometer, plus GHG, aerosol, meteorological, and
environmental data gathered by other instruments. The integration of multiple datasets
has ensured a more detailed understanding of peplospheric variability at the site, as the
previous campaign on PBLH was focused entirely on one month of observations performed
during the 2009 summer season, and no correlations with the surface concentrations of key
pollutants were possible at the time.

This study has introduced four distinct categories of wind regimes (breeze, not com-
plete breeze, eastern synoptic, western synoptic) and tested the correlation of PBLH vari-
ability with the concentrations of carbon monoxide (CO), carbon dioxide (CO2), methane
(CH4), equivalent black carbon (eBC), and particulate matter (PM) under each regime. Due
to the heterogeneous value of these parameters, different correlations have been tested: eBC
has yielded the highest correlation value among all parameters under the eastern synoptic
regime, a corridor that previous research studies on LMT data have correlated with higher
anthropogenic outputs.

Overall, these findings demonstrate the need to effectively integrate PBLH data and
wind regimes in urban air quality assessments due to the influence of PBLH patterns on
the surface concentration of key pollutants. Such a study demonstrates the importance
of correlating circulation, complex orography, and boundary conditions at the interface
between land and sea when dealing with the assessment of natural and anthropogenic
pollutants. The availability of physical/chemical and aerosol data allows us to test the
correlation between PBLH variability and a number of factors.

The new findings further expand on the data obtained during the 2009 campaign and
corroborate the hypotheses from the previous study on mixed-layer behavior at the site.

The LMT observation site is therefore a challenging natural laboratory for capturing
different circulation patterns in which natural and anthropic-induced pollutant concen-
trations show different behaviors. Future research integrating the findings shown in this
study with additional parameters will further demonstrate the importance of considering
all these factors in sustainable policies/regulations and air quality monitoring.
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