How Urban Street Spatial Composition Affects Land Surface Temperature in Areas with Different Population Densities: A Case Study of Zhengzhou, China
<p>Study area: (<b>a</b>) location of Zhengzhou in China, (<b>b</b>) locations of the four ring roads in Zhengzhou.</p> "> Figure 2
<p>Study view sampling point.</p> "> Figure 3
<p>Population density.</p> "> Figure 4
<p>Research framework.</p> "> Figure 5
<p>Indicators of the street environment. (<b>a</b>) The green space index refers to the proportion of plant pixels (trees, flowers, grass, etc.) in the image. (<b>b</b>) The tree canopy index refers to the proportion of tree canopy pixels among the plant pixels, representing the vertical structure of greenery along the streets. (<b>c</b>) The sky open index indicates the proportion of sky pixels in the image. (<b>d</b>) The spatial enclosure index is the sum of the proportions of pixels representing buildings, walls, fences, pillars, and other similar elements in the image; appropriate enclosure contributes to ventilation and provides a comfortable feeling. (<b>e</b>) The road width index represents the proportion of pixels for road surfaces, including vehicle lanes and sidewalks, reflecting the relative width of the street. (<b>f</b>) The street walking index refers to the proportion of sidewalk pixels among the road width-related pixels, indicating the relative width of sidewalks in the street.</p> "> Figure 6
<p>Spearman’s correlation analysis results.</p> "> Figure 7
<p>Results of the GAM analysis.</p> "> Figure 8
<p>Distribution of beta values in the GWR model. (<b>a</b>) GSI; (<b>b</b>) TCI; (<b>c</b>) SOI; (<b>d</b>) SEI; (<b>e</b>) RWI; (<b>f</b>) SWI.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Sources
2.3. Research Flow
2.3.1. Land Surface Temperature Retrieval
2.3.2. Extraction of Street Space Indicators
2.3.3. Data Check
3. Results
3.1. Preliminary Testing Results of Data
3.2. Nonlinear Relationships Between Indices and LST
3.3. Highest-Impact Index on LST
4. Discussion
4.1. Impact of Street Composition Indicators on LST
4.2. Further Research Possibilities
5. Conclusions
- The generalized additive model reveals that the relationship between the composition indicators of the street environment and LST across different groups is significantly nonlinear. The GSI has a negative effect on LST. The influence of the TCI and SEI on land surface temperature follows a “J”-shaped curve pattern, with a longer left side and a shorter right side. Specifically, inflection points emerge when the TCI and SEI values are approximately 0.75 and 0.5, respectively. This suggests that excessively high TCI and SEI values can hinder street ventilation, subsequently shifting their cooling effect on LST to a heating one. Conversely, the SOI and RWI demonstrate a “J”-shaped curve trend with a longer right side, accelerating the temperature rise effect on LST once their values surpass the inflection points. Notably, in the HP group, the RWI exhibits a cooling effect, which is attributed to the improved state of green facilities supporting the streets. Lastly, the SWI exhibits a unidirectional positive effect on LST.
- Based on the generalized additive model and geographically weighted regression, the impact of various constituent elements on land surface temperature (LST) is ranked as follows: GSI > SEI > SWI > SOI > TCI > RWI. The GSI has the strongest impact on LST at 72.04%, while the RWI has the weakest at 41.43%, indicating that the proportion of green plant space is key to optimizing the land surface temperature of urban roads. Overall, the composition indicators of the street environment contribute significantly to the LST of streets.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Zhou, Y.; Asrar, G.R.; Imhoff, M.; Li, X. The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Sci. Total Environ. 2017, 605–606, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Mertes, C.M. Expansion and growth in Chinese cities, 1978–2010. Environ. Res. Lett. 2014, 9, 024008. [Google Scholar] [CrossRef]
- La, V. Hot days or heat waves: A split over how to count heat deaths. Science 2024, 385, 922. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, J.; Yin, P.; Liu, W.; He, C.; Gao, Y.; Zhou, L.; Zhu, Y.; Kan, H.; Chen, R.; et al. Rising cause-specific mortality risk and burden of compound heatwaves amid climate change. Nat. Clim. Chang. 2024, 14, 1201–1209. [Google Scholar] [CrossRef]
- Alho, A.M.; Oliveira, A.P.; Viegas, S.; Nogueira, P. Effect of heatwaves on daily hospital admissions in Portugal, 2000–2018: An observational study. Lancet Planet. Health 2024, 8, e318–e326. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Man, S.; Jian, C.; Di, W.; Bangyong, Q.; Shengyang, L. Remote Sensing Monitoring and Analysis of Surface Thermal Environment at City District Scale. Infrared Technol. 2019, 41, 84–91. [Google Scholar]
- O’Brien, D.T.; Gridley Msui, B.; Trlica, A.; Wang, J.A.; Shrivastava, A. Urban Heat Islets: Street Segments, Land Surface Temperatures, and Medical Emergencies During Heat Advisories. Am. J. Public Health 2020, 110, e1–e8. [Google Scholar] [CrossRef]
- Ge, Z.; Zhen, T.; Qi, W.; Yongqing, S.; Yan, Y.; Haitao, W. Study on the influence of urban form on land surface temperature based on machine learning. Environ. Sci. Technol. 2022, 45, 214–227. [Google Scholar] [CrossRef]
- Zhang, Y.; Middel, A.; Turner, B.L. Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression. Landsc. Ecol. 2019, 34, 681–697. [Google Scholar] [CrossRef]
- Xingyu, L.; Yaolin, L.; Chaohui, Y.; Zhide, T. Infulence of Urban Physical Form and Human Activities on Thermal Environment at Community Scale. J. Wuhan Univ. Technol. 2020, 42, 72–79. [Google Scholar]
- Yuting, C.; Zhaohua, L.; Linlin, L.; Shibiao, L.; Qingting, L. Spatio-temporal Dynamics of Surface Urban Heat Island in Coastal Mega Cities along the Belt and Road from Remote Sensing Data. Remote Sens. Technol. Appl. 2020, 35, 1197–1205. [Google Scholar]
- Yang, L.; Yu, K.; Ai, J.; Liu, Y.; Yang, W.; Liu, J. Dominant Factors and Spatial Heterogeneity of Land Surface Temperatures in Urban Areas: A Case Study in Fuzhou, China. Remote Sens. 2022, 14, 1266. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Murayama, Y.; Morimoto, T. Impacts of Land Cover/Use on the Urban Thermal Environment: A Comparative Study of 10 Megacities in China. Remote Sens. 2020, 12, 307. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L. Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 171–181. [Google Scholar] [CrossRef]
- Nurwanda, A.; Honjo, T. The prediction of city expansion and land surface temperature in Bogor City, Indonesia. Sustain. Cities Soc. 2020, 52, 101772. [Google Scholar] [CrossRef]
- Li, L.; Tan, Y.; Ying, S.; Yu, Z.; Li, Z.; Lan, H. Impact of land cover and population density on land surface temperature: Case study in Wuhan, China. J. Appl. Remote Sens. 2014, 8, 084993. [Google Scholar] [CrossRef]
- Ramírez-Aguilar, E.A.; Lucas Souza, L.C. Urban form and population density: Influences on Urban Heat Island intensities in Bogotá, Colombia. Urban Clim. 2019, 29, 100497. [Google Scholar] [CrossRef]
- Talukdar, S.; Ratnam, M.V. Mutual response hypothesis between surface temperature and aerosol (BC and non-BC) mass concentration observed in an urban environment. Sci. Total Environ. 2023, 887, 164048. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Dong, R.; Wurm, M.; Taubenbock, H. Seasonal and Diurnal Variation of Land Surface Temperature Distribution and Its Relation to Land Use/Land Cover Patterns. Int. J. Environ. Res. Public Health 2022, 19, 12738. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-B.; Yu, Z.-W.; Ma, J.; Zhao, B. Quantifying the influence of 2D and 3D urban morphology on the thermal environment across climatic zones. Landsc. Urban Plan. 2022, 226, 104499. [Google Scholar] [CrossRef]
- Luo, P.; Yu, B.; Li, P.; Liang, P.; Liang, Y.; Yang, L. How 2D and 3D built environments impact urban surface temperature under extreme heat: A study in Chengdu, China. Build. Environ. 2023, 231, 110035. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, W.; Jin, S.; Han, W.; Du, P.; Xia, J.; Lai, J.; Li, J.; Liu, Z.; Li, L.; et al. Separate and combined impacts of building and tree on urban thermal environment from two- and three-dimensional perspectives. Build. Environ. 2021, 194, 107650. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Yin, L.; Li, B.; Zhang, B. Exploring the relationship between seasonal variations of land surface temperature and urban morphological factors in complex urban areas. Environ. Sci. Pollut. Res. 2023, 30, 59861–59876. [Google Scholar] [CrossRef]
- Yang, F.; Lau, S.S.Y.; Qian, F. Summertime heat island intensities in three high-rise housing quarters in inner-city Shanghai China: Building layout, density and greenery. Build. Environ. 2010, 45, 115–134. [Google Scholar] [CrossRef]
- Tingting, Y.; Huiyun, P.; Shaohua, T.; Mingying, Z. From Urban Stress to Neuro-Urbanization: Review and Framing of Healthy Street Research from an Interdisciplinary Perspective. Urban Plan. Int. 2023, 38, 29–38. [Google Scholar] [CrossRef]
- Shikwambana, L.; Kganyago, M.; Mhangara, P. Temporal Analysis of Changes in Anthropogenic Emissions and Urban Heat Islands during COVID-19 Restrictions in Gauteng Province, South Africa. Aerosol Air Qual. Res. 2021, 21, 200437. [Google Scholar] [CrossRef]
- Xiaohui, G.; Zhiyi, B.; Fan, W.; Shimin, Y.; Hai, Y. Influence of Street View Factors on Microclimate and Thermal Comfort of Urban Street Canyons in Summer Afternoon. Chin. Landsc. Archit. 2021, 37, 71–76. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, X.; Shi, T.; Song, D. Microclimatic Impact Analysis of Multi-Dimensional Indicators of Streetscape Fabric in the Medium Spatial Zone. Int. J. Environ. Res. Public Health 2019, 16, 952. [Google Scholar] [CrossRef]
- Li, G.; Ren, Z.; Zhan, C. Sky View Factor-based correlation of landscape morphology and the thermal environment of street canyons: A case study of Harbin, China. Build. Environ. 2020, 169, 106587. [Google Scholar] [CrossRef]
- Sanusi, R.; Johnstone, D.; May, P.; Livesley, S.J. Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index. Landsc. Urban Plan. 2017, 157, 502–511. [Google Scholar] [CrossRef]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2015, 124, 55–68. [Google Scholar] [CrossRef]
- Engel, R.A.; Millard-Ball, A.; Turner, V.K. Contributions of roads to surface temperature: Evidence from Southern California. Environ. Res. Commun. 2023, 5, 015004. [Google Scholar] [CrossRef]
- Klemm, W.; Heusinkveld, B.G.; Lenzholzer, S.; van Hove, B. Street greenery and its physical and psychological impact on thermal comfort. Landsc. Urban Plan. 2015, 138, 87–98. [Google Scholar] [CrossRef]
- Segura, R.; Krayenhoff, E.S.; Martilli, A.; Badia, A.; Estruch, C.; Ventura, S.; Villalba, G. How do street trees affect urban temperatures and radiation exchange? Observations and numerical evaluation in a highly compact city. Urban Clim. 2022, 46, 101288. [Google Scholar] [CrossRef]
- Tan, Z.; Dong, J.; Xiao, Y.; Tu, J. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons. Atmos. Environ. 2015, 104, 217–227. [Google Scholar] [CrossRef]
- Gillner, S.; Vogt, J.; Tharang, A.; Dettmann, S.; Roloff, A. Role of street trees in mitigating effects of heat and drought at highly sealed urban sites. Landsc. Urban Plan. 2015, 143, 33–42. [Google Scholar] [CrossRef]
- Qin, Y.; Wei, P.; Wang, S.J.; Tan, K. Experimental study on the thermal characteristics of urban mockups with different paved streets. Environ. Sci. Pollut. Res. Int. 2021, 28, 63008–63016. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, P.; Wang, L.; Qin, Y. Temperature of Paved Streets in Urban Mockups and Its Implication of Reflective Cool Pavements. Atmosphere 2021, 12, 560. [Google Scholar] [CrossRef]
- Biljecki, F.; Ito, K. Street view imagery in urban analytics and GIS: A review. Landsc. Urban Plan. 2021, 215, 104217. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, F.; Wu, Y.; Yang, Y.; Wu, Y. Building height calculation for an urban area based on street view images and deep learning. Comput.-Aided Civ. Infrastruct. Eng. 2022, 38, 892–906. [Google Scholar] [CrossRef]
- Gong, F.-Y.; Zeng, Z.-C.; Zhang, F.; Li, X.; Ng, E.; Norford, L.K. Mapping sky, tree, and building view factors of street canyons in a high-density urban environment. Build. Environ. 2018, 134, 155–167. [Google Scholar] [CrossRef]
- Deng, M.; Yang, W.; Chen, C.; Wu, Z.; Liu, Y.; Xiang, C. Street-level solar radiation mapping and patterns profiling using Baidu Street View images. Sustain. Cities Soc. 2021, 75, 103289. [Google Scholar] [CrossRef]
- Hou, Y.; Biljecki, F. A comprehensive framework for evaluating the quality of street view imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103094. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; Yan, H.; Han, Q.; Nan, X.; Zhao, K.; Bao, Z. Alternative scenarios for urban tree surveys: Investigating the species, structures, and diversities of street trees using street view imagery. Sci. Total Environ. 2023, 895, 165157. [Google Scholar] [CrossRef]
- Rahman, M.T. Examining and Modelling the Determinants of the Rising Land Surface Temperatures in Arabian Desert Cities: An Example from Riyadh, Saudi Arabia. J. Settl. Spat. Plan. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Alavipanah, S.K.; Liu, H.; Sedighi, A.; Mijani, N.; Kiavarz, M.; Weng, Q. A PCA–OLS Model for Assessing the Impact of Surface Biophysical Parameters on Land Surface Temperature Variations. Remote Sens. 2019, 11, 2094. [Google Scholar] [CrossRef]
- Lu, L.; Weng, Q.; Xiao, D.; Guo, H.; Li, Q.; Hui, W. Spatiotemporal Variation of Surface Urban Heat Islands in Relation to Land Cover Composition and Configuration: A Multi-Scale Case Study of Xi’an, China. Remote Sens. 2020, 12, 2713. [Google Scholar] [CrossRef]
- Soltanifard, H.; Kashki, A.; Karami, M. Analysis of spatially varying relationships between urban environment factors and land surface temperature in Mashhad city, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 987–999. [Google Scholar] [CrossRef]
- Siqi, J.; Yuhong, W.; Ling, C.; Xiaowen, B. A novel approach to estimating urban land surface temperature by the combination of geographically weighted regression and deep neural network models. Urban Clim. 2023, 47, 101390. [Google Scholar] [CrossRef]
- Wu, Z.; Qiao, R.; Zhao, S.; Liu, X.; Gao, S.; Liu, Z.; Ao, X.; Zhou, S.; Wang, Z.; Jiang, Q. Nonlinear forces in urban thermal environment using Bayesian optimization-based ensemble learning. Sci. Total Environ. 2022, 838, 156348. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wu, Z.; Liu, X.; Qiao, R.; Jiang, Q. Exploring the Nonlinear Interplay between Urban Morphology and Nighttime Thermal Environment. Sustain. Cities Soc. 2024, 101, 105176. [Google Scholar] [CrossRef]
- Liu, X.; Huang, J.; Zhang, Y.; Li, H. Analysis of influencing factors on forest soil organic matter in Guangdong Province based on GAM model. Chin. J. Ecol. 2022, 41, 2278–2288. [Google Scholar]
- Shafizadeh-Moghadam, H.; Weng, Q.; Liu, H.; Valavi, R. Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: A case study of Tehran, Iran. GIScience Remote Sens. 2020, 57, 483–496. [Google Scholar] [CrossRef]
- Yu, W.; Shi, J.; Fang, Y.; Xiang, A.; Li, X.; Hu, C.; Ma, M. Exploration of urbanization characteristics and their effect on the urban thermal environment in Chengdu, China. Build. Environ. 2022, 219, 109150. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Exploring the spatial heterogeneity of urban heat island effect and its relationship to block morphology with the geographically weighted regression model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Duan, S.; Ru, C.; Li, Z.; Wang, M.; Xu, H.; Li, H.; Wu, P.; Zhan, W.; Zhou, J.; Zhao, W.; et al. Reviews of methods for land surface temperature retrieval from Landsat thermal infrared data. Natl. Remote Sens. Bull. 2021, 25, 1591–1617. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Yingshu, W.; Peiji, S.; Wusheng, Z.; Ziyang, W.; Xiaoyi, X. Spatial-temporal characteristics and influencing factors of thermal environment in Lanzhou. Ecol. Sci. 2022, 41, 59–65. [Google Scholar] [CrossRef]
- Zhou, J.; Hao, M.; Zhang, D.; Zou, P.; Zhang, W. Fusion PSPnet Image Segmentation Based Method for Multi-Focus Image Fusion. IEEE Photonics J. 2019, 11, 6501412. [Google Scholar] [CrossRef]
- Yuan, W.; Wang, J.; Xu, W. Shift Pooling PSPNet: Rethinking PSPNet for Building Extraction in Remote Sensing Images from Entire Local Feature Pooling. Remote Sens. 2022, 14, 4889. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic Understanding of Scenes Through the ADE20K Dataset. Int. J. Comput. Vis. 2018, 127, 302–321. [Google Scholar] [CrossRef]
- He, D.; Miao, J.; Lu, Y.; Song, Y.; Chen, L.; Liu, Y. Urban greenery mitigates the negative effect of urban density on older adults’ life satisfaction: Evidence from Shanghai, China. Cities 2022, 124, 103607. [Google Scholar] [CrossRef]
- Yan, H.; Wu, F.; Nan, X.; Han, Q.; Shao, F.; Bao, Z. Influence of view factors on intra-urban air temperature and thermal comfort variability in a temperate city. Sci. Total Environ. 2022, 841, 156720. [Google Scholar] [CrossRef]
- Erdem Okumus, D.; Terzi, F. Evaluating the role of urban fabric on surface urban heat island: The case of Istanbul. Sustain. Cities Soc. 2021, 73, 103128. [Google Scholar] [CrossRef]
- Hu, Y.; Qian, F.; Yan, H.; Middel, A.; Wu, R.; Zhu, M.; Han, Q.; Zhao, K.; Wang, H.; Shao, F.; et al. Which street is hotter? Street morphology may hold clues-thermal environment mapping based on street view imagery. Build. Environ. 2024, 262, 111838. [Google Scholar] [CrossRef]
- Jin, Y.; Jin, H.; Kang, J.; Wong Nyuk, H. Field Study of Thermal Environment and Thermal Comfort in Public Spaces in Urban Residential Areas of Severe Cold Regions. Build. Sci. 2021, 37, 29–37. [Google Scholar]
- Sun, Y.; Gao, C.; Li, J.; Li, W.; Ma, R. Examining urban thermal environment dynamics and relations to biophysical composition and configuration and socio-economic factors: A case study of the Shanghai metropolitan region. Sustain. Cities Soc. 2018, 40, 284–295. [Google Scholar] [CrossRef]
- Feng, X.; Myint, S.W. Exploring the effect of neighboring land cover pattern on land surface temperature of central building objects. Build. Environ. 2016, 95, 346–354. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Buyantuev, A.; Stefanov, W.L.; Declet-Barreto, J.; Ruddell, B.L.; Myint, S.W.; Kaplan, S.; Li, X. Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landsc. Ecol. 2015, 31, 745–760. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Outdoor thermal environment of an open space under sea breeze: A mobile experience in a coastal city of Sydney, Australia. Urban Clim. 2020, 31, 100567. [Google Scholar] [CrossRef]
- Guo, F.; Zhao, J.; Zhang, H.; Dong, J.; Zhu, P.; Lau, S.S.Y. Effects of urban form on sea cooling capacity under the heatwave. Sustain. Cities Soc. 2023, 88, 104271. [Google Scholar] [CrossRef]
- Xinbo, S.; Gen, L.; Dongpo, L.; He, H.; Jun, G. Relationship between urban spatial morphology factors and land surface temperature in summer: A case of the central district of Tianjin. Sci. Geogr. Sin. 2023, 43, 360–369. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Yu, W.; Ren, J.; Xiao, X.; Xia, J.C. Relationship between urban spatial form and seasonal land surface temperature under different grid scales. Sustain. Cities Soc. 2023, 89, 104374. [Google Scholar] [CrossRef]
- Neog, R.; Acharjee, S.; Hazarika, J. Spatiotemporal analysis of road surface temperature (RST) and building wall temperature (BWT) and its relation to the traffic volume at Jorhat urban environment, India. Environ. Dev. Sustain. 2020, 23, 10080–10092. [Google Scholar] [CrossRef]
- Bartesaghi-Koc, C.; Osmond, P.; Peters, A. Innovative use of spatial regression models to predict the effects of green infrastructure on land surface temperatures. Energy Build. 2022, 254, 111564. [Google Scholar] [CrossRef]
- Gennian, S. Statistics Analysis on the Relationship of Highway Net Density with Population Density and Per Capita GNP in National Region. J. Southwest Jiaotong Univ. 2000, 2, 220–223. [Google Scholar]
- Fengbo, L.; Kewei, Z. Study of Spatial Pattern and Interaction Relationship betweenTraffic Dominance and Population Mobility. Highway 2023, 68, 243–252. [Google Scholar]
- Feng, Y.; Chen, L.; He, X. Sky view factor calculation based on Baidu street view images and its application in urban heat island study. J. Geo-Inf. Sci. 2021, 23, 1998–2012. [Google Scholar]
- Zhang, Y.; Li, D.; Liu, L.; Liang, Z.; Shen, J.; Wei, F.; Li, S. Spatiotemporal Characteristics of the Surface Urban Heat Island and Its Driving Factors Based on Local Climate Zones and Population in Beijing, China. Atmosphere 2021, 12, 1271. [Google Scholar] [CrossRef]
Date Source | Date | Spatial Resolution | Description |
---|---|---|---|
Landsat8 OLI/TIRS | 7 July 2019 | 30 m | Data for retrieving LST |
26 August 2020 | |||
Street-view imagery | 2020 | 100 m | Variable extraction |
Population density | 2020 | 100 m | Study area population extraction |
Open street map | 2020 | - | Study point extraction |
Variables | LP (n = 3515) | HP (n = 3514) | Total (n = 7029) | p-Values |
---|---|---|---|---|
LST (°C, mean ± SD) | 37.838, 1.98 | 38.267, 1.849 | 38.053, 1.927 | <0.001 a |
Green space index (median, IQR) | 0.1582, 0.2261 | 0.1684, 0.25 | 0.1639, 0.239 | 0.925 |
Tree canopy index (median, IQR) | 0.7828, 0.36 | 0.8394, 0.4324 | 0.8048, 0.4014 | <0.001 b |
Sky open index (median, IQR) | 0.4157, 0.2329 | 0.2909, 0.2714 | 0.3519, 0.2688 | <0.001 b |
Spatial enclosure index (median, IQR) | 0.2592, 0.2179 | 0.3797, 0.2796 | 0.3158, 0.264 | <0.001 b |
Road width index (median, IQR) | 0.2925, 0.0799 | 0.3007, 0.0708 | 0.2967, 0.0742 | <0.001 b |
Street walking index (median, IQR) | 0.0147, 0.095 | 0.0384, 0.1364 | 0.0266, 0.1167 | <0.001 b |
Variables | GWR-EV | GAM-EV |
---|---|---|
Green space index | 72.04% | 16.60% |
Tree canopy index | 52.12% | 9.32% |
Sky open index | 55.45% | 1.56% |
Spatial enclosure index | 64.44% | 2.52% |
Road width index | 41.43% | 0.58% |
Street walking index | 58.06% | 0.5% |
Variables | Moran’s I | Z-Score | p-Values |
---|---|---|---|
LST | 0.485 | 145.1657 | <0.01 |
Green space index | 0.3556 | 106.4326 | <0.01 |
Tree canopy index | 0.2041 | 61.1253 | <0.01 |
Sky open index | 0.4726 | 141.4299 | <0.01 |
Spatial enclosure index | 0.5163 | 154.5318 | <0.01 |
Road width index | 0.2367 | 70.8661 | <0.01 |
Street walking index | 0.1853 | 55.5262 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Ban, K.; Jin, L.; Wu, D. How Urban Street Spatial Composition Affects Land Surface Temperature in Areas with Different Population Densities: A Case Study of Zhengzhou, China. Sustainability 2024, 16, 9938. https://doi.org/10.3390/su16229938
Fu M, Ban K, Jin L, Wu D. How Urban Street Spatial Composition Affects Land Surface Temperature in Areas with Different Population Densities: A Case Study of Zhengzhou, China. Sustainability. 2024; 16(22):9938. https://doi.org/10.3390/su16229938
Chicago/Turabian StyleFu, Mengze, Kangjia Ban, Li Jin, and Di Wu. 2024. "How Urban Street Spatial Composition Affects Land Surface Temperature in Areas with Different Population Densities: A Case Study of Zhengzhou, China" Sustainability 16, no. 22: 9938. https://doi.org/10.3390/su16229938
APA StyleFu, M., Ban, K., Jin, L., & Wu, D. (2024). How Urban Street Spatial Composition Affects Land Surface Temperature in Areas with Different Population Densities: A Case Study of Zhengzhou, China. Sustainability, 16(22), 9938. https://doi.org/10.3390/su16229938