Toward the Construction of a Sustainable Society: Assessing the Temporal Variations in and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China
<p>Map of research area (Anhui Province, AH in abbreviation).</p> "> Figure 2
<p>Trends of decoupling index changes for five national economic sectors in Anhui Province from 2000 to 2019.</p> "> Figure 3
<p>Trends of decoupling index changes for five industrial sectors in Anhui Province from 2000 to 2020.</p> "> Figure 4
<p>Trends of DAIs of five national economic sectors in each period.</p> "> Figure 5
<p>Trends of DAIs of the five industrial sectors in each period.</p> "> Figure 6
<p>Decomposition trends of the LMDI of the five national economic sectors in each period.</p> "> Figure 7
<p>LMDI decomposition trends of the five industrial sectors in each period.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Research Datasets
2.3. Research Methods
2.3.1. The Measuring Method of Carbon Dioxide Emissions
2.3.2. Computation of Decoupling Analysis Index (DAI)
2.3.3. The Exponential Decomposition of the LMDI Model
2.3.4. The Computation of Attribution Analysis (AA)
3. Results and Discussion
3.1. Decoupling Analysis
3.1.1. Analysis of the Long-Term Decoupling Analysis Indexes
3.1.2. Analysis of the Short-Term Decoupling Analysis Indexes
3.1.3. LMDI Decomposition Analysis
3.2. Attribution Analysis
3.3. Confirmatory Analysis
4. Conclusions
5. Policy Implications and Suggestions
6. Limitations and Future Research
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson, V.; Lemonsu, A.; Hidalgo, J.; Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 2020, 45, 411–444. [Google Scholar] [CrossRef]
- Earsom, J.; Delreux, T. Evaluating EU responsiveness to the evolution of the international regime complex on climate change. Int. Environ. Agreem. Politics Law Econ. 2021, 21, 711–728. [Google Scholar] [CrossRef]
- Wallace, J.P.; Wiedenman, E.; Mcdermott, R.J. Physical Activity and Climate Change: Clear and Present Danger? Health Behav. Policy Rev. 2019, 6, 534–545. [Google Scholar] [CrossRef]
- Majeed, M.T.; Mazhar, M. Financial development and ecological footprint: A global panel data analysis. Pak. J. Commer. Soc. Sci. 2019, 13, 487–514. [Google Scholar]
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef]
- Sari, R.; Soytas, U. Are global warming and economic growth compatible? Evidence from five OPEC countries? Appl. Energy 2009, 86, 1887–1893. [Google Scholar] [CrossRef]
- Sun, D.; Cai, S.; Yuan, X.; Zhao, C.; Gu, J.; Chen, Z.; Sun, H. Decomposition and decoupling analysis of carbon emissions from agricultural economic growth in China’s Yangtze River economic belt. Environ. Geochem. Health 2022, 44, 2987–3006. [Google Scholar] [CrossRef]
- Majeed, M.T.; Khan, S. Decomposition and decoupling analysis of carbon emissions from economic growth: A case study of Pakistan. Pak. J. Commer. Soc. Sci. 2019, 13, 868–891. [Google Scholar]
- Leal, P.A.; Marques, A.C.; Fuinhas, J.A. Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia. Econ. Anal. Policy 2019, 62, 12–26. [Google Scholar] [CrossRef]
- Chen, S.; Hai, G.; Gao, H.; Chen, X.; Li, A.; Zhang, X.; Dong, W. Modulation of the charge transfer behavior of Ni(II)-doped NH2-MIL-125(Ti): Regulation of Ni ions content and enhanced photocatalytic CO2 reduction performance. Chem. Eng. J. 2021, 406, 126886. [Google Scholar] [CrossRef]
- Majeed, M.T.; Luni, T. Renewable energy, water, and environmental degradation: A global panel data approach. Pak. J. Commer. Soc. Sci. 2019, 13, 749–778. [Google Scholar]
- Hai, G.; Xue, X.; Feng, S.; Ma, Y.; Huang, X. High-Throughput Computational Screening of Metal–Organic Frameworks as High-Performance Electrocatalysts for CO2RR. ACS Catal. 2022, 12, 15271–15281. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, M.; Li, R.; Su, M. Decomposition and decoupling analysis of carbon emissions from economic growth: A comparative study of China and the United States. J. Clean. Prod. 2018, 197, 178–184. [Google Scholar] [CrossRef]
- Fu, R.; Jin, G.; Chen, J.; Ye, Y. The effects of poverty alleviation investment on carbon emissions in China based on the multiregional input–output model. Technol. Forecast. Soc. Chang. 2021, 162, 120344. [Google Scholar] [CrossRef]
- Huo, T.; Li, X.; Cai, W.; Zuo, J.; Jia, F.; Wei, H. Exploring the impact of urbanization on urban building carbon emissions in China: Evidence from a provincial panel data model. Sustain. Cities Soc. 2020, 56, 102068. [Google Scholar] [CrossRef]
- Huo, T.; Ma, Y.; Yu, T.; Cai, W.; Liu, B.; Ren, H. Decoupling and decomposition analysis of residential building carbon emissions from residential income: Evidence from the provincial level in China. Environ. Impact Assess. Rev. 2021, 86, 106487. [Google Scholar] [CrossRef]
- Akerlof, K.L.; Boules, C.; Ban Rohring, E.; Rohring, B.; Kappalman, S. Governmental Communication of Climate Change Risk and Efficacy: Moving Audiences Toward “Danger Control”. Environ. Manag. 2020, 65, 678–688. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Duan, H.; Wang, X.e. Coupling between energy efficiency and industrial structure: An urban agglomeration case. Energy 2021, 234, 121304. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, T.; Xie, X.; Huang, Z. Regional low carbon development pathways for the Yangtze River Delta region in China. Energy Policy 2021, 151, 112172. [Google Scholar] [CrossRef]
- Zhu, B.; Zhang, T. The impact of cross-region industrial structure optimization on economy, carbon emissions and energy consumption: A case of the Yangtze River Delta. Sci. Total Environ. 2021, 778, 146089. [Google Scholar] [CrossRef]
- Zhang, K.; Hou, Y.; Jiang, L.; Xu, Y.; Liu, W. Performance evaluation of urban environmental governance in Anhui Province based on spatial and temporal differentiation analyses. Environ. Sci. Pollut. Res. 2021, 28, 37400–37412. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Chen, Y.; Yi, X.; Feng, C. Decoupling and decomposition analysis of transportation carbon emissions at the provincial level in China: Perspective from the 11th and 12th Five-Year Plan periods. Environ. Sci. Pollut. Res. 2019, 26, 15039–15056. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Hou, F.; Li, J.; Chang, K. Decoupling analysis between carbon dioxide emissions and the corresponding driving forces by Chinese power industry. Environ. Sci. Pollut. Res. 2021, 28, 2369–2378. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Geng, Y.; Tian, X.; Zhang, X.; Chen, W.; Gao, Z. Uncovering CO2 emission drivers under regional industrial transfer in China’s Yangtze River Economic Belt: A multi-layer LMDI decomposition analysis. Front. Energy 2021, 15, 292–307. [Google Scholar] [CrossRef]
- Jiang, J.-J.; Ye, B.; Zhou, N.; Zhang, X.-L. Decoupling analysis and environmental Kuznets curve modelling of provincial-level CO2 emissions and economic growth in China: A case study. J. Clean. Prod. 2019, 212, 1242–1255. [Google Scholar] [CrossRef]
- Qian, Y.; Cao, H.; Huang, S. Decoupling and decomposition analysis of industrial sulfur dioxide emissions from the industrial economy in 30 Chinese provinces. J. Environ. Manag. 2020, 260, 110142. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Lian, X.; Guo, Y.; Song, Y.; Chang, B.; Luo, L. Research on the relationship between China’s greenhouse gas emissions and industrial structure and economic growth from the perspective of energy consumption. Environ. Sci. Pollut. Res. 2020, 27, 41839–41855. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, H.-s.; Ding, L.-l. Decomposition analysis of the decoupling and driving factors of municipal solid waste: Taking China as an example. Waste Manag. 2022, 137, 200–209. [Google Scholar] [CrossRef]
- Li, B.; Dong, N.; Huang, L. Industrial Transfer’s Effect on Competitiveness of the Manufacturing: A Case of Zhejiang, China. Singap. Econ. Rev. 2021, 66, 953–968. [Google Scholar] [CrossRef]
- Li, Z.; Feng, X.; Wang, Y. Measurement of decoupling effect of carbon emissions from China’s tourism industry and evolution of temporal and spatial pattern. Stat. Decis. Mak. 2021, 37, 46–51. [Google Scholar] [CrossRef]
- Ouyang, X.; Gao, B.; Du, K.; Du, G. Industrial sectors’ energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration. Energy 2018, 145, 408–416. [Google Scholar] [CrossRef]
- Zhang, K.; Jiang, W.; Xu, Y.; Hou, Y.; Zhang, S.; Liu, W. Assessing the corporate green technology progress and environmental governance performance based on the panel data on industrial enterprises above designated size in Anhui Province, China. Environ. Sci. Pollut. Res. 2021, 28, 1151–1169. [Google Scholar] [CrossRef] [PubMed]
- OECD. Indicators to Measure Decoupling of Environmental Pressure from Economic Growth; OECD: Paris, France, 2002. [Google Scholar]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, H.; Yue, Q. Decoupling Indicators: Quantitative Relationships between Resource Use, Waste Emission and Economic Growth. Resour. Sci. 2011, 33, 2–9. [Google Scholar]
- Wang, H.M.; Hashimoto, S.; Yue, Q.; Moriguchi, Y.; Lu, Z.W. Decoupling Analysis of Four Selected Countries. J. Ind. Ecol. 2013, 17, 618–629. [Google Scholar] [CrossRef]
- Sun, R. Improvement and application of Tapio decoupling index calculation method. Tech. Econ. Manag. Res. 2014, 23, 7–11. [Google Scholar]
- Lai, W.; Hu, Q.; Zhou, Q. Decomposition analysis of PM2.5 emissions based on LMDI and Tapio decoupling model: Study of Hunan and Guangdong. Environ. Sci. Pollut. Res. 2021, 28, 43443–43458. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z. Probing the carbon emissions in 30 regions of China based on symbolic regression and Tapio decoupling. Environ. Sci. Pollut. Res. 2022, 29, 2650–2663. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Gu, J. Decoupling elasticity and driving factors of carbon emissions and economic growth in BRICs countries—Analysis Based on Tapio decoupling and LMDI model. World Reg. Stud. 2021, 30, 501–508. [Google Scholar]
- Zhang, H.; Chen, Z.; Zhang, C. Study on decoupling between industrial water environmental pressure and economic growth in the Yangtze River economic belt. Reg. Res. Dev. 2019, 38, 13–18+30. [Google Scholar]
- Zheng, B.; Zhang, X.; Ming, Q. Research on the decoupling situation and influencing factors of tourism economy and carbon emissions in provinces along the “the Belt and Road”. Ecol. Econ. 2021, 37, 136–143. [Google Scholar]
- Gao, C.; Ge, H. Spatiotemporal characteristics of China’s carbon emissions and driving forces: A Five-Year Plan perspective from 2001 to 2015. J. Clean. Prod. 2020, 248, 119280. [Google Scholar] [CrossRef]
- Gao, Z.; Geng, Y.; Wu, R.; Zhang, X.; Pan, H.; Jiang, H. China’s CO2 emissions embodied in fixed capital formation and its spatial distribution. Environ. Sci. Pollut. Res. 2020, 27, 19970–19990. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Some methodological developments. Energy Econ. 2012, 34, 177–188. [Google Scholar] [CrossRef]
- Xu, X.Y.; Ang, B.W. Index decomposition analysis applied to CO2 emission studies. Ecol. Econ. 2013, 93, 313–329. [Google Scholar] [CrossRef]
- Du, K.; Yan, Z.; Yang, Z. The latest research progress of energy and environmental performance evaluation methods. Environ. Econ. Res. 2018, 3, 113–138. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, R. Is China’s economic growth decoupled from carbon emissions? J. Clean. Prod. 2019, 225, 1194–1208. [Google Scholar] [CrossRef]
- Sun, H.; Ni, S.; Zhao, T.; Huang, C. The transfer and driving factors of industrial embodied wastewater in China’s interprovincial trade. J. Clean. Prod. 2021, 317, 128298. [Google Scholar] [CrossRef]
- Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy Policy 2004, 32, 1131–1139. [Google Scholar] [CrossRef]
- Ang, B.W. LMDI decomposition approach: A guide for implementation. Energy Policy 2015, 86, 233–238. [Google Scholar] [CrossRef]
- Chun, T.; Wang, S.; Xue, X.; Xin, H.; Gao, G.; Wang, N.; Tian, X.; Zhang, R. Decomposition and decoupling analysis of multi-sector CO2 emissions based on LMDI and Tapio models: Case study of Henan Province, China. Environ. Sci. Pollut. Res. 2023, 30, 88508–88523. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Guo, H.; Li, S.; Chen, L. Can China achieve ecological sustainability? An LMDI analysis of ecological footprint and economic development decoupling. Ecol. Indic. 2023, 151, 110313. [Google Scholar] [CrossRef]
- Hu, J.; Chi, L.; Xing, L.; Meng, H.; Zhu, M.; Zhang, J.; Wu, J. Decomposing the decoupling relationship between energy consumption and economic growth in China’s agricultural sector. Sci. Total Environ. 2023, 873, 162323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Sharifi, A. Analysis of decoupling between CO2 emissions and economic growth in China’s provincial capital cities: A Tapio model approach. Urban Clim. 2024, 55, 101885. [Google Scholar] [CrossRef]
- Yang, F.; Shi, L.; Gao, L. Probing CO2 emission in Chengdu based on STRIPAT model and Tapio decoupling. Sustain. Cities Soc. 2023, 89, 104309. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X. Tracking China’s CO2 emissions using Kaya-LMDI for the period 1991–2022. Gondwana Res. 2024, 133, 60–71. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, T.; Liu, J. Decoupling economic growth from construction waste generation: Comparative analysis between the EU and China. J. Environ. Manag. 2024, 353, 120144. [Google Scholar] [CrossRef]
- Wang, C.; Wang, F.; Zhang, H. Carbon emission process of energy consumption in Xinjiang and its influencing factors—Based on extended Kaya identity. Acta Ecol. Sin. 2016, 36, 2151–2163. [Google Scholar] [CrossRef]
- Xu, G.Q.; Cai, Z.; Feng, S.W. Study on temporal and spatial differences and influencing factors of carbon emissions based on two-stage LMDI model—A case study of Jiangsu Province. Soft Sci. 2021, 35, 107–113. [Google Scholar] [CrossRef]
- Yan, J.; Su, B.; Liu, Y. Multiplicative structural decomposition and attribution analysis of carbon emission intensity in China, 2002–2012. J. Clean. Prod. 2018, 198, 195–207. [Google Scholar] [CrossRef]
- Choi, K.-H.; Ang, B.W. Attribution of changes in Divisia real energy intensity index—An extension to index decomposition analysis. Energy Econ. 2012, 34, 171–176. [Google Scholar] [CrossRef]
- Wang, K.; Fu, L. Study on the change and driving factors of industrial carbon emission intensity in Beijing, Tianjin and Hebei. Chin. J. Popul. Resour. Environ. 2017, 27, 115–121. [Google Scholar]
- Hu, P.; Zhou, Y.; Gao, Y.; Zhou, J.; Wang, G.; Zhu, G. Decomposition analysis of industrial pollutant emissions in cities of Jiangsu based on the LMDI method. Environ. Sci. Pollut. Res. 2022, 29, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, Z.; Chen, Y.; Gao, J.; Liu, W. Decomposition and decoupling analysis of carbon dioxide emissions from economic growth in the context of China and the ASEAN countries. Sci. Total Environ. 2020, 714, 136649. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, Y. A regional-scale decomposition of energy-related carbon emission and its decoupling from economic growth in China. Environ. Sci. Pollut. Res. 2020, 27, 20889–20903. [Google Scholar] [CrossRef]
- Yang, J.; Cai, W.; Ma, M.; Li, L.; Liu, C.; Ma, X.; Li, L.; Chen, X. Driving forces of China’s CO2 emissions from energy consumption based on Kaya-LMDI methods. Sci. Total Environ. 2020, 711, 134569. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Y.; Lv, H.; Wang, D. Whether China made efforts to decouple economic growth from CO2 emissions?-Production vs consumption perspective. Environ. Sci. Pollut. Res. 2020, 27, 5138–5154. [Google Scholar] [CrossRef]
- Yang, P.; Liang, X.; Drohan, P.J. Using Kaya and LMDI models to analyze carbon emissions from the energy consumption in China. Environ. Sci. Pollut. Res. 2020, 27, 26495–26501. [Google Scholar] [CrossRef]
- Isik, M.; Sarica, K.; Ari, I. Driving forces of Turkey’s transportation sector CO2 emissions: An LMDI approach. Transp. Policy 2020, 97, 210–219. [Google Scholar] [CrossRef]
- Quan, C.; Cheng, X.; Yu, S.; Ye, X. Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method. Sci. Total Environ. 2020, 734, 138473. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, T.; Liao, Z. The impact of technology-environmental innovation on CO2 emissions in China’s transportation sector. Environ. Sci. Pollut. Res. 2020, 27, 29485–29501. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shuai, C.; Wu, Y.; Zhang, Y. Analysis on the carbon emission peaks of China’s industrial, building, transport, and agricultural sectors. Sci. Total Environ. 2020, 709, 135768. [Google Scholar] [CrossRef] [PubMed]
- Alajmi, R.G. Factors that impact greenhouse gas emissions in Saudi Arabia: Decomposition analysis using LMDI. Energy Policy 2021, 156, 112454. [Google Scholar] [CrossRef]
- Pan, X.; Guo, S.; Xu, H.; Tian, M.; Pan, X.; Chu, J. China’s carbon intensity factor decomposition and carbon emission decoupling analysis. Energy 2022, 239, 122175. [Google Scholar] [CrossRef]
- Chen, J.; Xu, C.; Song, M. Determinants for decoupling economic growth from carbon dioxide emissions in China. Reg. Environ. Change 2020, 20, 11. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, R.; Li, X.; Zhao, M. On the driving factors of China’s provincial carbon emission from the view of periods and groups. Environ. Sci. Pollut. Res. 2021, 28, 51971–51988. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, H.; Zhou, Q. Spatial Analysis of Industrial Green Development and Sustainable Cities in the Yellow River Basin. Discret. Dyn. Nat. Soc. 2021, 2021, 5529153. [Google Scholar] [CrossRef]
- Liu, X.; Li, S. A comparison analysis of the decoupling carbon emissions from economic growth in three industries of Heilongjiang province in China. Environ. Sci. Pollut. Res. 2021, 28, 65200–65215. [Google Scholar] [CrossRef]
- Wu, Q.; Gu, S. Discerning drivers and future reduction paths of energy-related CO2 emissions in China: Combining EKC with three-layer LMDI. Environ. Sci. Pollut. Res. 2021, 28, 36611–36625. [Google Scholar] [CrossRef]
- Fatima, T.; Xia, E.; Cao, Z.; Khan, D.; Fan, J.-L. Decomposition analysis of energy-related CO2 emission in the industrial sector of China: Evidence from the LMDI approach. Environ. Sci. Pollut. Res. 2019, 26, 21736–21749. [Google Scholar] [CrossRef]
- Dolge, K.; Blumberga, D. Key Factors Influencing the Achievement of Climate Neutrality Targets in the Manufacturing Industry: LMDI Decomposition Analysis. Energies 2021, 14, 8006. [Google Scholar] [CrossRef]
- Qi, X.; Han, Y. How Carbon Trading Reduces China s Pilot Emissions: An Exploration Combining LMDI Decomposition and Synthetic Control Methods. Pol. J. Environ. Stud. 2020, 29, 3273–3284. [Google Scholar] [CrossRef]
- Wójtowicz, K.A.; Szołno-Koguc, J.M.; Braun, J. The Role of Public Spending in CO2 Emissions Reduction in Polish Regions: An LMDI Decomposition Approach. Energies 2022, 15, 103. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N. Decomposition of energy intensity in Chinese industries using an extended LMDI method of production element endowment. Energy 2021, 221, 119846. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, B. Decomposition analysis of patenting in renewable energy technologies: From an extended LMDI approach perspective based on three Five-Year Plan periods in China. J. Clean. Prod. 2020, 269, 122402. [Google Scholar] [CrossRef]
- Dong, B.; Ma, X.; Zhang, Z.; Zhang, H.; Chen, R.; Song, Y.; Shen, M.; Xiang, R. Carbon emissions, the industrial structure and economic growth: Evidence from heterogeneous industries in China. Environ. Pollut. 2020, 262, 114322. [Google Scholar] [CrossRef]
- Dong, F.; Li, J.; Zhang, X.; Zhu, J. Decoupling relationship between haze pollution and economic growth: A new decoupling index. Ecol. Indic. 2021, 129, 107859. [Google Scholar] [CrossRef]
- Apeaning, R.W. Technological constraints to energy-related carbon emissions and economic growth decoupling: A retrospective and prospective analysis. J. Clean. Prod. 2021, 291, 125706. [Google Scholar] [CrossRef]
- Jin, B.; Han, Y. Influencing factors and decoupling analysis of carbon emissions in China’s manufacturing industry. Environ. Sci. Pollut. Res. 2021, 28, 64719–64738. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q. Study on the influencing factors of carbon emission from energy consumption in Sichuan Province under the background of the construction of Chengdu Chongqing double City Economic Circle—From the perspective of LMDI model. Ecol. Econ. 2021, 37, 30–36. [Google Scholar]
- Liu, Y.; Jiang, Y.; Liu, H.; Li, B.; Yuan, J. Driving factors of carbon emissions in China’s municipalities: A LMDI approach. Environ. Sci. Pollut. Res. 2022, 29, 21789–21802. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, W.; Fu, Y. Decomposition of energy intensity in China’s manufacturing industry using an agglomeration extended LMDI approach. Energy Effic. 2021, 14, 66. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, F.; Liu, C.; Chen, X.; Tan, X.; Zhou, Y.; Guo, F.; Jiang, W. Study on Global Industrialization and Industry Emission to Achieve the 2 °C Goal Based on MESSAGE Model and LMDI Approach. Energies 2020, 13, 825. [Google Scholar] [CrossRef]
- Zhang, X.; Du, J. Analysis of carbon emission intensity in Shanxi Province Based on LMDI-Attribution. Hubei Agric. Sci. 2017, 56, 3358–3363. [Google Scholar] [CrossRef]
- Zhao, T.; Tian, L.; Xu, X. Study on carbon emission intensity of industrial sector in Tianjin: Based on LMDI-Attribution analysis method. Chin. J. Popul. Resour. Environ. 2015, 25, 40–47. [Google Scholar] [CrossRef]
- Yasmeen, H.; Tan, Q. Assessing Pakistan’s energy use, environmental degradation, and economic progress based on Tapio decoupling model. Environ. Sci. Pollut. Res. 2021, 28, 68364–68378. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, H.; Huang, X.; Chuai, X.; Wu, C. Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China. Energy 2015, 82, 414–425. [Google Scholar] [CrossRef]
- Silva, L.O.; Zárate, L.E. A brief review of the main approaches for treatment of missing data. Intell. Data Anal. 2014, 18, 1177–1198. [Google Scholar] [CrossRef]
- Wang, T.; Riti, J.S.; Shu, Y. Decoupling emissions of greenhouse gas, urbanization, energy and income: Analysis from the economy of China. Environ. Sci. Pollut. Res. 2018, 25, 19845–19858. [Google Scholar] [CrossRef]
- Wang, K.; Zou, J. Guidelines for the Preparation of Urban Greenhouse Gas Inventories in China; China Environment Publishing House: Beijing, China, 2014. [Google Scholar]
- Wang, X.; Gao, X.; Shao, Q.; Wei, Y. Factor decomposition and decoupling analysis of air pollutant emissions in China’s iron and steel industry. Environ. Sci. Pollut. Res. 2020, 27, 15267–15277. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, Q.; Zhu, B. Decoupling analysis of world economic growth and CO2 emissions: A study comparing developed and developing countries. J. Clean. Prod. 2018, 190, 94–103. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.; Wang, Q. Decomposition of carbon emission and its decoupling analysis and prediction with economic development: A case study of industrial sectors in Henan Province. J. Clean. Prod. 2021, 321, 129019. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
Energy Type | EF | COF | NCV | EF |
---|---|---|---|---|
(kg C/Gj) | % | (kcal/kg or kcal/m3) | kgco2/kg or kgco2/m3 | |
Raw Coal | 26.4 | 0.94 | 5000 | 1.9027 |
Cleaned Coal | 25.4 | 0.93 | 6300 | 2.2855 |
Other Washed Coal | 25.4 | 0.93 | 2497 | 0.9059 |
Briquettes | 33.6 | 0.9 | 4200 | 1.9498 |
Coke | 29.5 | 0.93 | 6800 | 2.864 |
Crude Oil | 20.1 | 0.98 | 10,000 | 3.024 |
Gasoline | 18.9 | 0.98 | 10,300 | 2.9827 |
Kerosene | 19.6 | 0.98 | 10,300 | 3.0372 |
Diesel Oil | 20.2 | 0.98 | 10,200 | 3.0998 |
Fuel Oil | 21.1 | 0.98 | 10,000 | 3.1744 |
LPG | 17.2 | 0.98 | 12,000 | 3.1052 |
Type of Decoupling | Remark | %GDP | %C | k |
---|---|---|---|---|
Decoupling | Strong decoupling | >0 | <0 | k < 0 |
Weak decoupling | >0 | >0 | 0 < k < 0.8 | |
Recessive decoupling | <0 | <0 | k > 1.2 | |
Coupling | Expansive coupling | >0 | >0 | 0 < k < 0.8 |
Recessive coupling | <0 | <0 | 0 < k < 0.8 | |
Negative decoupling | Weak negative decoupling | <0 | <0 | 0 < k < 0.8 |
Expansive negative decoupling | >0 | >0 | k > 1.2 | |
Strong negative decoupling | <0 | >0 | k < 0 |
National Economic Sectors | Sectors | |||||||
---|---|---|---|---|---|---|---|---|
2001–2005 | 2006–2010 | 2011–2015 | 2016–2019 | 2001–2005 | 2006–2010 | 2011–2015 | 2016–2020 | |
ED | 0.01 | 0.004 | −0.007 | −0.011 | 0.012 | −0.001 | −0.001 | 0.002 |
ES | 0.024 | 0.001 | −0.009 | −0.011 | −0.003 | −0.001 | −0.002 | 0.001 |
EI | −0.419 | −0.392 | −0.147 | −0.218 | −0.344 | −0.441 | −0.055 | 0.133 |
IS | 0.18 | 0.139 | −0.008 | −0.085 | 0.164 | −0.099 | −0.372 | 0.052 |
G | 0.533 | 0.877 | 0.101 | 0.219 | 2.519 | 1.332 | −0.144 | 0.572 |
P | 0.231 | 0.297 | 0.329 | 0.06 | −0.145 | 0.394 | 0.571 | −0.39 |
2000–2005 | 2006–2010 | 2011–2015 | 2016–2019 | |||||
---|---|---|---|---|---|---|---|---|
EI | G | EI | G | EI | G | EI | G | |
Agriculture | −0.004 | 0.012 | −0.003 | 0.022 | −0.003 | 0.010 | −0.001 | 0.003 |
Industry | −0.399 | 0.514 | −0.388 | 0.831 | −0.182 | 0.120 | −0.132 | 0.080 |
Construction | −0.033 | 0.010 | −0.002 | 0.010 | 0.005 | 0.005 | −0.011 | 0.019 |
Traffic and Transportation | 0.026 | 0.004 | 0.009 | 0.008 | 0.034 | −0.046 | −0.079 | 0.101 |
Trade | −0.010 | −0.007 | −0.008 | 0.006 | 0.000 | 0.013 | 0.005 | 0.016 |
2000–2005 | 2006–2010 | 2011–2015 | 2016–2019 | |||||
---|---|---|---|---|---|---|---|---|
IS | P | IS | P | IS | P | IS | P | |
Agriculture | −0.009 | −0.004 | −0.009 | −0.004 | −0.004 | −0.004 | −0.005 | 0.000 |
Industry | 0.191 | 0.201 | 0.179 | 0.272 | 0.003 | 0.253 | −0.151 | 0.051 |
Construction | 0.008 | 0.011 | 0.000 | 0.004 | −0.001 | 0.002 | 0.009 | 0.001 |
Traffic and Transportation | −0.003 | 0.011 | −0.031 | 0.017 | −0.011 | 0.078 | 0.055 | 0.007 |
Trade | −0.007 | 0.012 | −0.001 | 0.008 | 0.005 | 0.000 | 0.007 | 0.001 |
2000–2005 | 2006–2010 | 2011–2015 | 2016–2020 | |||||
---|---|---|---|---|---|---|---|---|
EI | G | EI | G | EI | G | EI | G | |
Mining | −0.039 | 0.410 | −0.071 | 0.351 | 0.084 | −0.111 | 0.012 | 0.183 |
Textiles | −0.006 | 0.040 | −0.019 | 0.033 | −0.016 | 0.014 | 0.002 | −0.001 |
Resources | −0.165 | 1.079 | −0.239 | 0.447 | −0.134 | 0.149 | 0.073 | 0.064 |
ME | 0.000 | 0.016 | −0.004 | 0.010 | −0.006 | 0.005 | 0.005 | −0.001 |
EGW | −0.133 | 0.974 | −0.108 | 0.491 | 0.018 | −0.201 | 0.041 | 0.326 |
2000–2005 | 2006–2010 | 2011–2015 | 2016–2020 | |||||
---|---|---|---|---|---|---|---|---|
IS | P | IS | P | IS | P | IS | P | |
Mining | 0.040 | 0.010 | −0.017 | 0.032 | −0.174 | 0.133 | −0.057 | −0.172 |
Textiles | −0.011 | −0.003 | 0.001 | 0.018 | 0.006 | 0.009 | −0.006 | −0.006 |
Resources | 0.020 | −0.077 | −0.045 | 0.265 | −0.039 | 0.081 | 0.044 | −0.038 |
ME | 0.001 | 0.001 | 0.002 | 0.012 | 0.002 | 0.004 | 0.001 | 0.000 |
EGW | 0.114 | −0.077 | −0.039 | 0.066 | −0.166 | 0.344 | 0.070 | −0.174 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Energy Consumption | Carbon Emissions | Energy Consumption | |
ED | −0.062 | 0.364 | −1.288 *** |
(0.527) | (0.530) | (0.356) | |
ES | −1.108 *** | −1.113 *** | 0.075 |
(0.397) | (0.399) | (0.412) | |
EI | 1.029 *** | 1.027 *** | 1.100 *** |
(0.113) | (0.113) | (0.071) | |
IS | 5.638 *** | 5.613 *** | 5.529 *** |
(0.819) | (0.817) | (0.712) | |
G | 0.020 | 0.020 | 0.093 *** |
(0.049) | (0.049) | (0.032) | |
P | −0.220 * | −0.217 * | −0.110 |
(0.112) | (0.112) | (0.081) | |
_cons | 4.808 *** | 4.646 *** | 6.743 *** |
Year Sector | (1.313) Yes Yes | (1.317) Yes Yes | (1.080) Yes Yes |
Adj.R2 | 0.957 | 0.959 | 0.977 |
Variable | (1) | (2) | (3) |
---|---|---|---|
Energy Consumption | Carbon Emissions | Energy Consumption | |
ED | −10.274 *** | −9.869 *** | −10.042 *** |
(0.675) | (0.669) | (0.539) | |
ES | 5.411 *** | 5.414 *** | 4.343 *** |
(0.323) | (0.324) | (0.270) | |
EI | 0.349 *** | 0.350 *** | 0.442 *** |
(0.054) | (0.054) | (0.067) | |
IS | 5.924 *** | 5.934 *** | 5.713 *** |
(0.499) | (0.499) | (1.489) | |
G | 0.006 *** | 0.006 *** | 0.005 |
(0.002) | (0.002) | (0.004) | |
P | 0.244 * | 0.244 * | 0.014 |
(0.127) | (0.127) | (0.397) | |
_cons | 32.159 *** | 32.055 *** | 37.490 *** |
Year Industry | (2.447) Yes Yes | (2.432) Yes Yes | (5.366) Yes Yes |
Adj.R2 | 0.942 | 0.942 | 0.981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Jiang, L.; Liu, W. Toward the Construction of a Sustainable Society: Assessing the Temporal Variations in and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China. Sustainability 2024, 16, 9923. https://doi.org/10.3390/su16229923
Zhang K, Jiang L, Liu W. Toward the Construction of a Sustainable Society: Assessing the Temporal Variations in and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China. Sustainability. 2024; 16(22):9923. https://doi.org/10.3390/su16229923
Chicago/Turabian StyleZhang, Kerong, Liangyu Jiang, and Wuyi Liu. 2024. "Toward the Construction of a Sustainable Society: Assessing the Temporal Variations in and Two-Dimensional Decoupling of Carbon Dioxide Emissions in Anhui Province, China" Sustainability 16, no. 22: 9923. https://doi.org/10.3390/su16229923