Insights into Microscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector Under Injection Pressure up to 50 MPa
<p>A schematic diagram of the experimental setup.</p> "> Figure 2
<p>The nozzle geometry and PDPA test points.</p> "> Figure 3
<p>The positive directions of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>N</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 4
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>p</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>N</mi> </mrow> </msub> </mrow> </semantics></math> at (0, 50) under <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> of 10 MPa and 50 MPa.</p> "> Figure 5
<p>The average <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>N</mi> </mrow> </msub> </mrow> </semantics></math> at (0, 50) as <math display="inline"><semantics> <mrow> <mi>t</mi> </mrow> </semantics></math> progresses under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 6
<p>The average <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>V</mi> </mrow> <mrow> <mi>T</mi> </mrow> </msub> </mrow> </semantics></math> at 50 mm of jet downstream under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 7
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>S</mi> <mi>M</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> at (0, 50) as <math display="inline"><semantics> <mrow> <mi>t</mi> </mrow> </semantics></math> progresses under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 8
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>p</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> at (0, 50) under <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> of 10 MPa and 20 MPa.</p> "> Figure 9
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>p</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> at (0, 50) under <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math> of 30 MPa and 50 MPa.</p> "> Figure 10
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>p</mi> </mrow> <mrow> <mi>d</mi> </mrow> </msub> </mrow> </semantics></math> of droplets at (0, 50) based on the classification of <math display="inline"><semantics> <mrow> <mi>W</mi> <mi>e</mi> </mrow> </semantics></math>.</p> "> Figure 11
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>S</mi> <mi>M</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> at (−16, 50) as <math display="inline"><semantics> <mrow> <mi>t</mi> </mrow> </semantics></math> progresses under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 12
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>S</mi> <mi>M</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> at (16, 50) as <math display="inline"><semantics> <mrow> <mi>t</mi> </mrow> </semantics></math> progresses under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 13
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>S</mi> <mi>M</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> at 50 mm of jet downstream under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 14
<p><math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>S</mi> <mi>M</mi> <mi>D</mi> </mrow> </msub> </mrow> </semantics></math> at (0, 50), (0, 60) and (0, 70) under different <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mi>I</mi> </mrow> </msub> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Experimental Setup and Procedure
2.2. Key Parameters
3. Results and Discussion
3.1. Velocity of Spray Droplets
3.2. Size of Spray Droplets
4. Conclusions
- (1)
- Regarding the of at (0, 50), ultra-high of 50 MPa would increase the proportion of droplets near 0 m/s . The second peak of the curves for gasoline are slightly higher compared to ethanol under the same .
- (2)
- As progresses, average demonstrates a clear reduction, and the occurrence of an initial reduction can be advanced to 0.7 ms ASOI under = 50 MPa.
- (3)
- Regarding the average at 50 mm of jet downstream, gasoline is about 5.4% greater than ethanol under the same , which would promote the horizontal development of the spray, increasing the homogeneity of the air–fuel mixture.
- (4)
- By increasing from 10 MPa to 50 MPa, of large droplets over 20 μm shows a significant decrease, suggesting that the secondary atomisation process is effectively expedited under ultra-high injection pressures.
- (5)
- In comparison to ethanol, the curve’s peak of at (0, 50) for gasoline is 1.3 percentage points higher on average under the same . Compared to = 10 MPa, of the “ < 100” region for both gasoline and ethanol has a moderate reduction under = 50 MPa, while of the regions of “100 ≤ < 1000” and “ ≥ 1000” increases by 23%.
- (6)
- For the variations of along the horizontal positions, gasoline spray shows a relatively sharp decline on the jet edge (−16, 50) or (16, 50) owing to higher and vapour density.
- (7)
- Along the vertical direction of the jet, a gradual increase in can be found for both gasoline and ethanol spray. Under = 50 MPa, the increment in between (0, 50) and (0, 70) can be up to 3.3 μm, which is more pronounced than that under relatively low conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
ASOI | After Start of fuel Injection |
BEV | Battery Electric Vehicle |
DI | Direct Injection |
ECU | Electronic Control Unit |
FCEV | Fuel Cell Electric Vehicle |
GDI | Gasoline Direct Injection |
HEV | Hybrid Electric Vehicle |
ICE | Internal Combustion Engine |
OFC | Oxy-Fuel Combustion |
PDPA | Phase Doppler Particles Analyser |
PM | Particulate Matter |
SAE | Society of Automotive Engineers |
SI | Spark Ignition |
Droplet diameter | |
Sauter mean diameter of droplets | |
Fuel injection pressure | |
Probability | |
Reynolds number | |
Time after start of fuel injection | |
Normal component of droplet velocity | |
Tangential component of droplet velocity | |
Weber number |
References
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.-E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lei, C.; Liu, C.-H.; Perez, P.; Forehead, H.; Kong, S.; Zhou, J.L. A review of strategies for mitigating roadside air pollution in urban street canyons. Environ. Pollut. 2021, 280, 116971. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, D.; Liu, J.; Ajmal, T.; Aitouche, A.; Mobasheri, R.; Rybdylova, O.; Pei, Y.; Peng, Z. Exploring the potential benefits of Ethanol Direct Injection (EDI) timing and pressure on particulate emission characteristics in a Dual-Fuel Spark Ignition (DFSI) engine. J. Clean. Prod. 2022, 357, 131938. [Google Scholar] [CrossRef]
- Wong, P.K.; Ghadikolaei, M.A.; Chen, S.H.; Fadairo, A.A.; Ng, K.W.; Lee, S.M.Y.; Xu, J.C.; Lian, Z.D.; Li, S.; Wong, H.C.; et al. Physicochemical and cell toxicity properties of particulate matter (PM) from a diesel vehicle fueled with diesel, spent coffee ground biodiesel, and ethanol. Sci. Total Environ. 2022, 824, 153873. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, X.; Sun, F.; He, J.; Chen, Z.; Zhang, P.; Xu, H. Investigation on combustion and emission characteristics of a CRDI engine fueled with diesel cyclopentanol blends and verification through on-road real-time test. Fuel Process. Technol. 2022, 234, 107321. [Google Scholar] [CrossRef]
- Abdul-Manan, A.F.; Gordillo Zavaleta, V.; Agarwal, A.K.; Kalghatgi, G.; Amer, A.A. Electrifying passenger road transport in India requires near-term electricity grid decarbonisation. Nat. Commun. 2022, 13, 2095. [Google Scholar] [CrossRef]
- Olabi, A.; Abdelkareem, M.A.; Wilberforce, T.; Alkhalidi, A.; Salameh, T.; Abo-Khalil, A.G.; Hassan, M.M.; Sayed, E.T. Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). Int. J. Thermofluids 2022, 16, 100212. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, Y.; Yu, Y.; Liu, W. A novel energy consumption prediction model with combination of road information and driving style of BEVs. Sustain. Energy Technol. Assess. 2020, 42, 100826. [Google Scholar] [CrossRef]
- Jin, D.; Jiao, K. Charging infrastructure intellectualization and future of different automotive powertrains. Joule 2020, 4, 1634–1636. [Google Scholar] [CrossRef]
- Yap, K.Y.; Chin, H.H.; Klemeš, J.J. Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review. Renew. Sustain. Energy Rev. 2022, 169, 112862. [Google Scholar] [CrossRef]
- Niri, A.J.; Poelzer, G.A.; Zhang, S.E.; Rosenkranz, J.; Pettersson, M.; Ghorbani, Y. Sustainability challenges throughout the electric vehicle battery value chain. Renew. Sustain. Energy Rev. 2024, 191, 114176. [Google Scholar] [CrossRef]
- Liu, Y.; Tu, Z.; Chan, S.H. Applications of ejectors in proton exchange membrane fuel cells: A review. Fuel Process. Technol. 2021, 214, 106683. [Google Scholar] [CrossRef]
- İnci, M.; Büyük, M.; Demir, M.H.; İlbey, G. A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renew. Sustain. Energy Rev. 2021, 137, 110648. [Google Scholar] [CrossRef]
- Huang, H.; Liu, M.; Li, X.; Guo, X.; Wang, T.; Li, S.; Lei, H. Numerical simulation and visualization study of a new tapered-slope serpentine flow field in proton exchange membrane fuel cell. Energy 2022, 246, 123406. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Li, S.; Guo, X.; Liu, M.; Wang, T.; Lei, H. Evaluating the effect of refined flow channels in a developed biomimetic flow field on PEMFC performance. Energy 2023, 266, 126442. [Google Scholar] [CrossRef]
- Sahin, H. Hydrogen refueling of a fuel cell electric vehicle. Int. J. Hydrogen Energy 2024, 75, 604–612. [Google Scholar] [CrossRef]
- Kalghatgi, G.; Levinsky, H.; Colket, M. Future transportation fuels. Prog. Energy Combust. Sci. 2018, 69, 103–105. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, W.; Liu, S.; Wang, W.; Peng, Y.; Wang, Z. A review on ammonia-hydrogen fueled internal combustion engines. eTransportation 2023, 18, 100288. [Google Scholar] [CrossRef]
- Liu, L.; Tan, F.; Wu, Z.; Wang, Y. Combining genetic algorithm and deep learning to optimize a chemical kinetic mechanism of ammonia under high pressure. Fuel 2024, 360, 130508. [Google Scholar] [CrossRef]
- Tang, Y.; Xing, K.; Huang, H.; Tu, Z.; Wang, Y.; Guo, X. Simulation study of N2/Ar dilution gas to improve thermal efficiency and reduce NOX emissions in hydrogen engines. Int. J. Hydrog. Energy 2024, 49, 636–651. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Song, P.; Tian, G.; Ma, C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 2022, 307, 121553. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Xiao, H.; Owen-Jones, M.; David, W.I.; Bowen, P.J. Ammonia for power. Prog. Energy Combust. Sci. 2018, 69, 63–102. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; de Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on ammonia as a potential fuel: From synthesis to economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Wang, H.; Wang, B.; Yang, C.; Hu, D.; Duan, B.; Wang, Y. Study on dual injection strategy of diesel ignition ammonia/hydrogen mixture fuel engine. Fuel 2023, 348, 128526. [Google Scholar] [CrossRef]
- Li, X.; Pei, Y.; Peng, Z.; Ajmal, T.; Rana, K.-J.; Aitouche, A.; Mobasheri, R. Numerical study on the effects of intake charge on oxy-fuel combustion in a dual-injection spark ignition engine at economical oxygen-fuel ratios. Int. J. Engine Res. 2022, 23, 1602–1616. [Google Scholar] [CrossRef]
- Serrano, J.R.; Arnau, F.J.; García-Cuevas, L.M.; Gutiérrez, F.A. Coupling an oxygen generation cycle with an oxy-fuel combustion spark ignition engine for zero NOx emissions and carbon capture: A feasibility study. Energy Convers. Manag. 2023, 284, 116973. [Google Scholar] [CrossRef]
- Kang, Z.; Bai, Y.; Feng, S.; Wu, J.; Wu, Z. Effect of direct water injection timing on cycle performance and emissions characteristics within a CI-ICRC engine. Alex. Eng. J. 2023, 72, 135–145. [Google Scholar] [CrossRef]
- Wu, Z.; Fu, L.; Gao, Y.; Yu, X.; Deng, J.; Li, L. Thermal efficiency boundary analysis of an internal combustion Rankine cycle engine. Energy 2016, 94, 38–49. [Google Scholar] [CrossRef]
- Serrano, J.; Martín, J.; Gomez-Soriano, J.; Raggi, R. Theoretical and experimental evaluation of the spark-ignition premixed oxy-fuel combustion concept for future CO2 captive powerplants. Energy Convers. Manag. 2021, 244, 114498. [Google Scholar] [CrossRef]
- Li, X.; Peng, Z.; Pei, Y.; Ajmal, T.; Rana, K.J.; Aitouche, A.; Mobasheri, R. Oxy-fuel combustion for carbon capture and storage in internal combustion engines–A review. Int. J. Energy Res. 2022, 46, 505–522. [Google Scholar] [CrossRef]
- Yue, Z.; Wang, X.; Liu, H.; Li, B.; Yao, M. Exploring the application of oxy-fuel combustion to methanol spark ignition engines. Appl. Energy 2024, 367, 123449. [Google Scholar] [CrossRef]
- Reitz, R.D.; Ogawa, H.; Payri, R.; Fansler, T.; Kokjohn, S.; Moriyoshi, Y.; Agarwal, A.; Arcoumanis, D.; Assanis, D.; Bae, C.; et al. IJER editorial: The future of the internal combustion engine. Int. J. Engine Res. 2020, 21, 3–10. [Google Scholar] [CrossRef]
- Duan, X.; Deng, B.; Liu, Y.; Li, Y.; Liu, J. Experimental study the impacts of the key operating and design parameters on the cycle-to-cycle variations of the natural gas SI engine. Fuel 2021, 290, 119976. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, P.; Wang, T.; He, H.; Chen, H.; Zhang, P.; Li, Y.; Geng, L.; Qi, D. Visualization study the cross spray and combustion characteristics of diesel and methanol in a constant volume combustion chamber at cold and flare flash boiling regions. Energy 2024, 301, 131654. [Google Scholar] [CrossRef]
- Huang, Y.; Surawski, N.C.; Zhuang, Y.; Zhou, J.L.; Hong, G. Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines. Renew. Sustain. Energy Rev. 2021, 143, 110921. [Google Scholar] [CrossRef]
- Li, D.; Yu, X.; Du, Y.; Xu, M.; Li, Y.; Shang, Z.; Zhao, Z. Study on combustion and emissions of a hydrous ethanol/gasoline dual fuel engine with combined injection. Fuel 2022, 309, 122004. [Google Scholar] [CrossRef]
- Feng, H.; Lai, K.; Zheng, Z.; Lin, S.; Wu, X.; Tang, Q. Effects of methanol direct injection and high compression ratio on improving the performances of a spark-ignition passenger car engine. Fuel 2024, 357, 130052. [Google Scholar] [CrossRef]
- Lee, Z.; Kim, T.; Park, S.; Park, S. Review on spray, combustion, and emission characteristics of recent developed direct-injection spark ignition (DISI) engine system with multi-hole type injector. Fuel 2020, 259, 116209. [Google Scholar] [CrossRef]
- Maricq, M.M. Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: Literature review and future prospects. Sci. Total Environ. 2023, 866, 161225. [Google Scholar] [CrossRef]
- Lee, S.; Park, S. Experimental study on spray break-up and atomization processes from GDI injector using high injection pressure up to 30 MPa. Int. J. Heat Fluid Flow 2014, 45, 14–22. [Google Scholar] [CrossRef]
- Medina, M.; Alzahrani, F.; Fatouraie, M.; Wooldridge, M.S.; Sick, V. Mechanisms of fuel injector tip wetting and tip drying based on experimental measurements of engine-out particulate emissions from gasoline direct-injection engines. Int. J. Engine Res. 2021, 22, 2035–2053. [Google Scholar] [CrossRef]
- Hoffmann, G.; Befrui, B.; Berndorfer, A.; Piock, W.F.; Varble, D.L. Fuel system pressure increase for enhanced performance of GDi multi-hole injection systems. SAE Int. J. Engines 2014, 7, 519–527. [Google Scholar] [CrossRef]
- Song, J.; Lee, Z.; Song, J.; Park, S. Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa. Energy 2018, 164, 512–522. [Google Scholar] [CrossRef]
- Lee, Z.; Park, S. Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure. Renew. Energy 2020, 149, 80–90. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Liu, J.; Ajmal, T.; Aitouche, A.; Mobasheri, R.; Rybdylova, O.; Pei, Y.; Peng, Z. Comparative Study on the macroscopic characteristics of gasoline and ethanol spray from a GDI injector under injection pressures of 10 and 60 Mpa. ACS Omega 2022, 7, 8864–8873. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Ni, P.; Weerasinghe, R.; Pei, Y.; Peng, Z. Insights into the spray impingement process from a gasoline direct injection fuel system fuelled with gasoline and ethanol. J. Energy Inst. 2023, 110, 101331. [Google Scholar] [CrossRef]
- Luo, H.; Nishida, K.; Ogata, Y.; Zhang, W. Microscopic characteristics of near-nozzle spray at the initial and end stages. Fuel 2021, 283, 118953. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, H.; Kita, K.; Ogata, Y.; Nishida, K. Statistical variation analysis of fuel spray characteristics under cross-flow conditions. Fuel 2022, 307, 121887. [Google Scholar] [CrossRef]
- Zhang, M.; Ge, Y.; Wang, X.; Xu, H.; Tan, J.; Hao, L. Effects of ethanol and aromatic compositions on regulated and unregulated emissions of E10-fuelled China-6 compliant gasoline direct injection vehicles. Renew. Energy 2021, 176, 322–333. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Tian, J.; Dong, R.; Zou, Z.; Gao, S.; Tan, D. Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ethanol/n-butanol blends. Energy 2022, 249, 123733. [Google Scholar] [CrossRef]
- da Costa, R.B.R.; Roque, L.F.A.; De Souza, T.A.Z.; Coronado, C.J.R.; Pinto, G.M.; Cintra, A.J.A.; Raats, O.O.; Oliveira, B.M.; Frez, G.V.; Da Silva, M.H. Experimental assessment of renewable diesel fuels (HVO/Farnesane) and bioethanol on dual-fuel mode. Energy Convers. Manag. 2022, 258, 115554. [Google Scholar] [CrossRef]
- Ooi, J.B.; Kau, C.C.; Manoharan, D.N.; Wang, X.; Tran, M.V.; Hung, Y.M. Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend. Energy 2023, 281, 128350. [Google Scholar] [CrossRef]
- Li, X.; Pei, Y.; Ajmal, T.; Rana, K.J.; Aitouche, A.; Mobasheri, R.; Peng, Z. Numerical investigation on implementing Oxy-Fuel Combustion (OFC) in an ethanol-gasoline Dual-Fuel Spark Ignition (DFSI) engine. Fuel 2021, 302, 121162. [Google Scholar] [CrossRef]
- Harrington, D.L.; Gandhi, A.H.; Markle, L.E.; Parrish, S.E.; Shakal, J.S.; Sayar, H.; Cummings, S.D.; Kramer, J.L. Gasoline fuel injector spray measurement and characterization–a new SAE J2715 recommended practice. SAE Int. J. Fuels Lubr. 2009, 1, 534–548. [Google Scholar]
- Arcoumanis, C.; Gavaises, M.; French, B. Effect of fuel injection processes on the structure of diesel sprays. SAE Trans. 1997, 106, 1025–1064. [Google Scholar]
- Lee, S.; Oh, Y.; Park, S. Characterization of the spray atomization process of a multi-hole gasoline direct injector based on measurements using a phase Doppler particle analyser. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 951–965. [Google Scholar] [CrossRef]
Fuel Type | Gasoline | Ethanol |
---|---|---|
Chemical formula | C5–C12 | C2H5OH |
Relative molecular mass | 95–120 | 46 |
Gravimetric oxygen content (%) | <1 | 34.78 |
Research octane number | 95 | 107 |
Density (293 K) (kg/L) | 0.73 | 0.789 |
Vapour density (293 K) (kg/m3) | 3.88 | 2.06 |
Kinematic viscosity (293 K) (mm2/s) | 0.71 | 1.52 |
Surface tension coefficient (293 K) (mN/m) | 22 | 21.97 |
Boiling range (K) | 303–473 | 351 |
Low heating value (kJ/kg) | 44,300 | 26,900 |
Latent heat of vaporisation (kJ/kg) | 370 | 840 |
Laminar flame speed (293 K) (m/s) | 0.33 | 0.5 |
Stoichiometric air–fuel ratio | 14.7 | 8.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, X.; Zhang, T.; Ji, C.; Ni, P.; Li, W.; Pei, Y.; Peng, Z.; Mobasheri, R. Insights into Microscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector Under Injection Pressure up to 50 MPa. Sustainability 2024, 16, 9471. https://doi.org/10.3390/su16219471
Li X, Zhang X, Zhang T, Ji C, Ni P, Li W, Pei Y, Peng Z, Mobasheri R. Insights into Microscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector Under Injection Pressure up to 50 MPa. Sustainability. 2024; 16(21):9471. https://doi.org/10.3390/su16219471
Chicago/Turabian StyleLi, Xiang, Xuewen Zhang, Tianya Zhang, Ce Ji, Peiyong Ni, Wanzhong Li, Yiqiang Pei, Zhijun Peng, and Raouf Mobasheri. 2024. "Insights into Microscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector Under Injection Pressure up to 50 MPa" Sustainability 16, no. 21: 9471. https://doi.org/10.3390/su16219471
APA StyleLi, X., Zhang, X., Zhang, T., Ji, C., Ni, P., Li, W., Pei, Y., Peng, Z., & Mobasheri, R. (2024). Insights into Microscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector Under Injection Pressure up to 50 MPa. Sustainability, 16(21), 9471. https://doi.org/10.3390/su16219471