Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques
<p>(<b>a</b>) Google Earth map of the Red Sea region showing the main countries and water bodies. The inset map and white dashed box show the location of the study and Neom city (<b>b</b>), respectively.</p> "> Figure 2
<p>General geomorphological characteristics of Neom city: (<b>a</b>) Digital elevation model map (SRTM 30 spatial resolution), (<b>b</b>) Slope map. (<b>c</b>) Digital contouring map showing constant elevation, and (<b>d</b>) Stream order map presenting the river networks of the study city.</p> "> Figure 3
<p>Simple flowchart showing the pre-processing steps.</p> "> Figure 4
<p>Map of the study city showing the distribution of basins from 1 to 52 delineated by ArcGIS.</p> "> Figure 5
<p>Map of the study city presenting basic geometries of the study basins. The colors white, red, yellow, and blue indicate the area (km<sup>2</sup>), perimeter (km), basin length (km), and basin relief (m), respectively.</p> "> Figure 6
<p>Map of the study city presenting stream orders of the study basins. Yellow numbers indicate stream orders from I to V for all basins; respectively and black numbers show the basin numbers.</p> "> Figure 7
<p>(<b>a</b>) Total stream length against stream order of Neom city, and (<b>b</b>) is an example from Kabite and Gessesse [<a href="#B6-sustainability-16-00023" class="html-bibr">6</a>].</p> "> Figure 8
<p>Flood susceptibility: (<b>a</b>) bifurcation ratio against drainage density, (<b>b</b>) bifurcation ratio against stream frequency. The A, B, and C symbols indicate Class A, Class B, and Class C, respectively.</p> "> Figure 9
<p>Flood hazard map based on the El-Shamy approach method.</p> ">
Abstract
:1. Introduction
2. Study Area Description
3. Data and Methods
4. Results and Discussion
4.1. Morphometric Analysis
4.1.1. Linear Aspects
4.1.2. Areal Aspects
4.1.3. Relief Aspects
4.2. Hydro-Geomorphology of Neom City
4.2.1. Drainage Morphology and Topography
4.2.2. Drainage Morphology and Lithology
4.2.3. Morphometric Analysis, the El-Shamy Approach, and Flood Hazard Mapping
4.2.4. Morphometric Parameters and Soil Erosion Processes
4.2.5. Basin Morphometric and Groundwater Recharge Impact
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboud, E.; Alqahtani, F.; Abdulfarraj, M.; Abraham, E.; El-Masry, N.; Osman, H. Geothermal Imaging of the Saudi Cross-Border City of NEOM Deduced from Magnetic Data. Sustainability 2023, 15, 4549. [Google Scholar] [CrossRef]
- Iqbal, M.; Sajjad, H.; Bhat, F.A. Morphometric Analysis of Shaliganga Sub Catchment, Kashmir Valley, India Using Geographical Information System. Int. J. Eng. Trends Technol. 2013, 4, 10–21. [Google Scholar]
- Singh, P.; Gupta, A.; Singh, M. Hydrological Inferences from Watershed Analysis for Water Resource Management Using Remote Sensing and GIS Techniques. Egypt. J. Remote Sens. Sp. Sci. 2014, 17, 111–121. [Google Scholar] [CrossRef]
- Bloomfield, J.P.; Bricker, S.H.; Newell, A.J. Some Relationships between Lithology, Basin Form and Hydrology: A Case Study from the Thames Basin, UK. Hydrol. Process. 2011, 25, 2518–2530. [Google Scholar] [CrossRef]
- Chandrashekar, H.; Lokesh, K.V.; Sameena, M.; Roopa, J.; Ranganna, G. GIS –Based Morphometric Analysis of Two Reservoir Catchments of Arkavati River, Ramanagaram District, Karnataka. Aquat. Procedia 2015, 4, 1345–1353. [Google Scholar] [CrossRef]
- Kabite, G.; Gessesse, B. Hydro-Geomorphological Characterization of Dhidhessa River Basin, Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 175–183. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Van de Giesen, N. Floods and Flood Management in Pakistan. Phys. Chem. Earth 2012, 47–48, 11–20. [Google Scholar] [CrossRef]
- Bajabaa, S.; Masoud, M.; Al-Amri, N. Flash Flood Hazard Mapping Based on Quantitative Hydrology, Geomorphology and GIS Techniques (Case Study of Wadi Al Lith, Saudi Arabia). Arab. J. Geosci. 2014, 7, 2469–2481. [Google Scholar] [CrossRef]
- Ullah, K.; Zhang, J. GIS-Based Flood Hazard Mapping Using Relative Frequency Ratio Method: A Case Study of Panjkora River Basin, Eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [Google Scholar] [CrossRef]
- Radaideh, O.M.A.; Grasemann, B.; Melichar, R.; Mosar, J. Detection and Analysis of Morphotectonic Features Utilizing Satellite Remote Sensing and GIS: An Example in SW Jordan. Geomorphology 2016, 275, 58–79. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakır, Z.; Kaya, Ş.; Gabr, S. ASTER Spectral Band Ratios for Lithological Mapping: A Case Study for Measuring Geological Offset along the Erkenek Segment of the East Anatolian Fault Zone, Turkey. Arab. J. Geosci. 2020, 13, 832. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Abdullah, A.; Öğretmen, N. Morpho-Tectonic Assessment of the Abu-Dabbab Area, Eastern Desert, Egypt: Insights from Remote Sensing and Geospatial Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 784. [Google Scholar] [CrossRef]
- Patel, A.; Katiyar, S.K.; Prasad, V. Performances Evaluation of Different Open Source DEM Using Differential Global Positioning System (DGPS). Egypt. J. Remote Sens. Sp. Sci. 2016, 19, 7–16. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Naik, S.P.; Nappi, R. Remotely Sensed Data, Morpho-Metric Analysis, and Integrated Method Approach for Flood Risk Assessment: Case Study of Wadi Al-Arish Landscape, Sinai, Egypt. Water 2023, 15, 1797. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Bachir, H. Morphometric-Hydro Characterization of the Coastal Line between El-Qussier and Marsa-Alam, Egypt: Preliminary Flood Risk Signatures. Appl. Sci. 2022, 12, 6264. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Morphotectonic Analysis of the East Anatolian Fault, Turkey. Turkish J. Earth Sci. 2018, 27, 110–126. [Google Scholar] [CrossRef]
- Mesa, L.M. Morphometric Analysis of a Subtropical Andean Basin (Tucumán, Argentina). Environ. Geol. 2006, 50, 1235–1242. [Google Scholar] [CrossRef]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic Geomorphology of the Easternmost Extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Ul-hadi, S.; Khan, S.D.; Owen, L.A.; Khan, A.S.; Sciences, A. Geomorphic Response to an Active Transpressive Regime: A Case Study along the Chaman Strike-Slip Fault, Western Pakistan. Earth Surf. Process. Landforms 2013, 264, 250–264. [Google Scholar] [CrossRef]
- Alzahrani, H.; Abdelrahman, K.; Qaysi, S.; Baras, M. Seismicity of the Neom Megaproject Area, Northwestern Saudi Arabia. J. King Saud Univ.-Sci. 2022, 34, 101659. [Google Scholar] [CrossRef]
- Aboulela, H.A.; Aboud, E.; Bantan, R.A. Seismicity and Major Geologic Structures of Tiran and Sanafir Islands and Their Surroundings in the Red Sea. Environ. Earth Sci. 2017, 76, 793. [Google Scholar] [CrossRef]
- Kahal, A.Y. Geological Assessment of the Neom Mega-Project Area, Northwestern Saudi Arabia: An Integrated Approach. Arab. J. Geosci. 2020, 13, 345. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, K.J.; Kharuk, V.I.; Kovacs, K. Validation of Surface Height from Shuttle Radar Topography Mission Using Shuttle Laser Altimeter. Remote Sens. Environ. 2003, 88, 401–411. [Google Scholar] [CrossRef]
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of Relative Active Tectonics, Southwest Border of the Sierra Nevada (Southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Soni, S. Assessment of Morphometric Characteristics of Chakrar Watershed in Madhya Pradesh India Using Geospatial Technique. Appl. Water Sci. 2017, 7, 2089–2102. [Google Scholar] [CrossRef]
- Asfaw, D.; Workineh, G. Quantitative Analysis of Morphometry on Ribb and Gumara Watersheds: Implications for Soil and Water Conservation. Int. Soil Water Conserv. Res. 2019, 7, 150–157. [Google Scholar] [CrossRef]
- Guidolini, J.F.; Ometto, J.P.H.B.; Nery, T.D.; Arcoverde, G.F.B.; Giarolla, A. Hydro-Geomorphological Characterization of the Rio Grande Basin, Brazil, Using Geospatial Approach. Sustain. Water Resour. Manag. 2020, 6, 93. [Google Scholar] [CrossRef]
- Saha, S.; Das, J.; Mandal, T. Investigation of the Watershed Hydro-Morphologic Characteristics through the Morphometric Analysis: A Study on Rayeng Basin in Darjeeling Himalaya. Environ. Chall. 2022, 7, 100463. [Google Scholar] [CrossRef]
- Chakraborty, S. Application of Basin Morphometry for Hydro-Geomorphological Implications: A Study of the Indo-Bhutanese Duduya Watershed. J. Geol. Soc. India 2023, 99, 473–486. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Gaber, A.F.D.; Buchroithner, M.F. Geomorphological Hazard Analysis along the Egyptian Red Sea Coast between Safaga and Quseir. Nat. Hazards Earth Syst. Sci. 2009, 9, 751–766. [Google Scholar] [CrossRef]
- Abdalla, F.; El Shamy, I.; Bamousa, A.O.; Mansour, A.; Mohamed, A.; Tahoon, M. Flash Floods and Groundwater Recharge Potentials in Arid Land Alluvial Basins, Southern Red Sea Coast, Egypt. Int. J. Geosci. 2014, 05, 971–982. [Google Scholar] [CrossRef]
- Asode, A.N.; Sreenivasa, A.; Lakkundi, T.K. Quantitative Morphometric Analysis in the Hard Rock Hirehalla Sub-Basin, Bellary and Davanagere Districts, Karnataka, India Using RS and GIS. Arab. J. Geosci. 2016, 9, 381. [Google Scholar] [CrossRef]
- Rekha, V.B.; George, A.V.; Rita, M. Morphometric Analysis and Micro-Watershed Prioritization of Peruvanthanam Sub-Watershed, the Manimala River Basin, Kerala, South India. Environ. Res. Eng. Manag. 2011, 57, 6–14. [Google Scholar]
- Mahmood, S.A.; Gloaguen, R. Appraisal of Active Tectonics in Hindu Kush: Insights from DEM Derived Geomorphic Indices and Drainage Analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Bhat, S.A.; Rashid, I. Geoinformatics for Assessing the Morphometric Control on Hydrological Response at Watershed Scale in the Upper Indus Basin. J. Earth Syst. Sci. 2012, 121, 659–686. [Google Scholar] [CrossRef]
- Mahala, A. The Significance of Morphometric Analysis to Understand the Hydrological and Morphological Characteristics in Two Different Morpho-Climatic Settings. Appl. Water Sci. 2020, 10, 33. [Google Scholar] [CrossRef]
- El-Shamy, I. Recent Recharge and Flash Flooding Opportunities in the Eastern Desert, Egypt. Annals of Geological Survey of Egypt. Ann. Geol. Surv. Egypt 1992, 18, 323–334. [Google Scholar]
- Bashir, B. Morphometric Parameters and Geospatial Analysis for Flash Flood Susceptibility Assessment: A Case Study of Jeddah City along the Red Sea Coast, Saudi Arabia. Water 2023, 15, 870. [Google Scholar] [CrossRef]
- Pal, B.; Samanta, S.P.D. Morphometric and Hydrological Analysis and Mapping for Watut Watershed Using Remote Sensing and GIS Techniques. Int. J. Adv. Eng. Technol. 2012, 3, 357–368. [Google Scholar]
- Strahler, A.N. Quantitative Geomorphology of Drainage Basins and Channel Networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill B. Company: New York, NY, USA, 1964; pp. 4–11. [Google Scholar]
- Horton, R.E. Drainage-basin Characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional Development of Streams and Their Drainage Basins: Hydrophysical Approach to Quantitative Morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Am. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A. Dynamic Basis of Geomorphology. Geol. Soc. Am. Bull. 1952, 63, 923–938. [Google Scholar] [CrossRef]
- Smith, K.G. Standards for Grading Texture of Erosional Topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee; Department of Geology, Columbia University: New York, NY, USA, 1953; pp. 389–402. [Google Scholar]
- Faniran, A. The Index of Drainage Intensity—A Provisional New Drainage Factor. Aust. J. Sci. 1968, 31, 328–330. [Google Scholar]
- Strahler, A.N. Quantitative Analysis of Watershed Geomorphology. Trans. Am. Geophys. Union 1957, 38, 913–920. [Google Scholar] [CrossRef]
- Withanage, N.S.; Dayawansa, N.D.K.; De Silva, R.P. Morphometric Analysis of the Gal Oya River Basin Using Spatial Data Derived from GIS. Trop. Agric. Res. 2015, 26, 175. [Google Scholar] [CrossRef]
- Grade, R.J. River Morphology; New Age International (Pvt) Ltd.: New Delhi, India, 2005. [Google Scholar]
- Ramsay, C.R.; Odell, J.; Drysdall, A.R. Felsic Plutonic Rocks of the Midyan Region, Kingdom of Saudi Arabia-II. Pilot Study in Chemical Classification of Arabian Granitoids. J. Afr. Earth Sci. 1986, 4, 79–85. [Google Scholar] [CrossRef]
- Hajam, R.A.; Hamid, A.B. Application of Morphometric Analysis for Geo-Hydrological Studies Using Geo-Spatial Technology –A Case Study of Vishav Drainage Basin. J. Waste Water Treat. Anal. 2013, 4, 157. [Google Scholar] [CrossRef]
- Bharadwaj, A.K.; Pradeep, C.; Thirumalaivasan, D.; Shankar, C.P.; Madhavan, N. Morphometric Analysis of Adyar Watershed. IOSR J. Mech. Civ. Eng. 2014, 71–77. [Google Scholar]
- Bhat, M.S.; Alam, A.; Ahmad, S.; Farooq, H.; Ahmad, B. Flood Hazard Assessment of Upper Jhelum Basin Using Morphometric Parameters. Environ. Earth Sci. 2019, 78, 54. [Google Scholar] [CrossRef]
- Obi Reddy, G.P.; Maji, A.K.; Gajbhiye, K.S. Drainage Morphometry and Its Influence on Landform Characteristics in a Basaltic Terrain, Central India—A Remote Sensing and GIS Approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16. [Google Scholar] [CrossRef]
- Babu, K.J.; Sreekumar, S.; Aslam, A. Implication of Drainage Basin Parameters of a Tropical River Basin of South India. Appl. Water Sci. 2016, 6, 67–75. [Google Scholar] [CrossRef]
- Bhatt, S.; Ahmed, S.A. Morphometric Analysis to Determine Floods in the Upper Krishna Basin Using Cartosat DEM. Geocarto Int. 2014, 29, 878–894. [Google Scholar] [CrossRef]
- Dar, I.A.; Prabu, P.; Dar, M.A. Erosion Modeling in Hard Rock Terrain Using Morphometry: A Case Study from Tamilnadu, India. Environ. Qual. Manag. 2013, 23, 47–60. [Google Scholar] [CrossRef]
- Gregory, K.J.; Wallingford, D.E. Drainage Basin Form and Process—A Geomorphological Approach; Edward Arnold: London, UK, 1973. [Google Scholar] [CrossRef]
- Alam, A.; Ahmed, B.; Sammonds, P. Flash Flood Susceptibility Assessment Using the Parameters of Drainage Basin Morphometry in SE Bangladesh. Quat. Int. 2021, 575–576, 295–307. [Google Scholar] [CrossRef]
- Suparta, W.; Rahman, R.; Singh, M.S.J. Monitoring the Variability of Precipitable Water Vapor over the Klang Valley, Malaysia during Flash Flood. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012057. [Google Scholar] [CrossRef]
- Altaf, S.; Meraj, G.; Romshoo, S.A. Morphometry and Land Cover Based Multi-Criteria Analysis for Assessing the Soil Erosion Susceptibility of the Western Himalayan Watershed. Environ. Monit. Assess. 2014, 186, 8391–8412. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Oruonye, E.; Ezekiel, B.; Atiku, H.; Baba, E.; Musa, N. Drainage Basin Morphometric Parameters of River Lamurde: Implication for Hydrologic and Geomorphic Processes. J. Agric. Ecol. Res. Int. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Weiss, A. Topographic Position and Landforms Analysis. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 64, pp. 227–245, Poster Present. [Google Scholar]
- Nag, S.K. Morphometric Analysis Using Remote Sensing Techniques in the Chaka Sub-Basin, Purulia District, West Bengal. J. Indian Soc. Remote Sens. 1998, 26, 69–76. [Google Scholar] [CrossRef]
- Altaf, F.; Meraj, G.; Romshoo, S.A. Morphometric Analysis to Infer Hydrological Behaviour of Lidder Watershed, Western Himalaya, India. Geogr. J. 2013, 2013, 178021. [Google Scholar] [CrossRef]
Morphometric Group | Morphometric Parameters | Methods | References |
---|---|---|---|
Linear characteristics | Stream order (Ou) | Hierarchical rank | [41] |
Stream length (Lu) | Lu = L1 + L2 + …… + Ln | [42] | |
Stream number (Nu) | Nu = N1 + N2 + …… + Nn | [43] | |
Mean stream length (Lm) | Lm = Lu/Nu | [43] | |
Bifurcation ratio (Rb) | Rb = Nu/Nu + 1; where Nu is a stream number value of any analyzed order and Nu + 1 indicates the stream number value of the next higher order | [44] | |
Areal characteristics | Drainage density (Dd) | Dd = Lu/A; where Lu represents the total basin stream length and A is the total basin area | [45] |
Stream frequency (Fs) | Fs = Nu/A; where N is the stream number | [43] | |
Drainage texture (Td) | Td = Dd × Fs | [46] | |
Overland flow length (Lg) | Lg = ½ Dd | [43] | |
Channel maintenance constant (C) | C = 1/Dd | [44] | |
Form factor (Ff) | Ff = A/L2; where L is the basin length | [43] | |
Elongation ratio (Re) | Re = 2/L (A/π) ½ | [44] | |
Circularity ratio (Rc) | Rc = 4πA/P2; where P is the basin perimeter | [47] | |
Basin shape (Bsh) | Is = 1/Fs | [42] | |
Infiltration number (If) | If = Fs/Dd | [48] | |
Relief characteristics | Basin relief (H) | H = Z − z; where Z = basin maximum elevation and z = basin minimum elevation | [44] |
Relief ratio (Rr) | Rr = H/L | [44] | |
Basin slope (Sb) | Sb = Z/L | [44] | |
Ruggedness number (Rn) | Rn = H × Dd/1000 | [47] |
Basins | Lu | Lm | Rb | Dd | Fs | Td | Lg | C | Ef | Re | Rc | Bsh | If | Rr | Rn | Sb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 543.00 | 1.54 | 5.02 | 1.00 | 0.65 | 0.65 | 0.50 | 1.00 | 0.22 | 3.49 | 0.33 | 1.47 | 0.65 | 10.53 | 0.52 | 10.35 |
2 | 305.61 | 1.33 | 4.98 | 0.91 | 0.68 | 0.62 | 0.46 | 1.10 | 0.45 | 3.93 | 0.32 | 1.46 | 0.75 | 30.03 | 0.74 | 30.03 |
3 | 220.22 | 1.23 | 5.83 | 0.83 | 0.67 | 0.56 | 0.41 | 1.21 | 0.33 | 3.00 | 0.35 | 1.49 | 0.81 | 61.37 | 1.44 | 61.55 |
4 | 41.14 | 1.11 | 3.15 | 0.75 | 0.68 | 0.51 | 0.38 | 1.33 | 0.30 | 1.29 | 0.32 | 1.48 | 0.90 | 136.29 | 1.39 | 136.95 |
5 | 69.76 | 1.29 | 5.57 | 0.88 | 0.68 | 0.60 | 0.44 | 1.13 | 0.20 | 1.26 | 0.26 | 1.46 | 0.77 | 91.56 | 1.61 | 91.76 |
6 | 79.50 | 1.22 | 5.13 | 0.91 | 0.74 | 0.67 | 0.45 | 1.10 | 0.20 | 1.34 | 0.32 | 1.35 | 0.82 | 77.74 | 1.47 | 77.93 |
7 | 86.96 | 1.58 | 3.56 | 0.92 | 0.58 | 0.54 | 0.46 | 1.09 | 0.22 | 1.44 | 0.25 | 1.72 | 0.63 | 81.86 | 1.58 | 82.10 |
8 | 422.07 | 1.52 | 5.62 | 0.99 | 0.65 | 0.68 | 0.50 | 1.01 | 0.54 | 4.84 | 0.33 | 1.45 | 0.66 | 49.13 | 1.36 | 61.21 |
9 | 536.29 | 1.29 | 6.77 | 0.81 | 0.63 | 0.54 | 0.41 | 1.23 | 0.40 | 5.14 | 0.45 | 1.50 | 0.77 | 35.55 | 1.18 | 45.12 |
10 | 1132.75 | 1.32 | 5.39 | 0.87 | 0.66 | 0.61 | 0.44 | 1.14 | 0.45 | 7.73 | 0.40 | 1.43 | 0.75 | 38.41 | 1.79 | 44.87 |
11 | 210.34 | 1.32 | 5.36 | 0.87 | 0.66 | 0.59 | 0.43 | 1.15 | 0.27 | 2.55 | 0.36 | 1.47 | 0.76 | 71.62 | 1.88 | 83.18 |
12 | 717.34 | 1.52 | 5.38 | 0.98 | 0.64 | 0.66 | 0.49 | 1.02 | 0.49 | 6.02 | 0.36 | 1.48 | 0.66 | 29.55 | 1.12 | 31.23 |
13 | 99.13 | 1.57 | 17.14 | 1.18 | 0.75 | 0.88 | 0.59 | 0.85 | 0.28 | 1.53 | 0.29 | 1.34 | 0.64 | 9.49 | 0.20 | 9.38 |
14 | 104.57 | 1.47 | 5.47 | 0.95 | 0.65 | 0.61 | 0.48 | 1.05 | 0.31 | 1.87 | 0.41 | 1.55 | 0.68 | 7.80 | 0.14 | 7.48 |
15 | 323.47 | 1.56 | 6.63 | 0.99 | 0.63 | 0.63 | 0.49 | 1.01 | 0.42 | 3.74 | 0.53 | 1.55 | 0.64 | 69.41 | 1.91 | 70.63 |
16 | 447.00 | 1.49 | 6.41 | 0.87 | 0.58 | 0.56 | 0.43 | 1.15 | 0.22 | 3.42 | 0.31 | 1.55 | 0.67 | 46.94 | 1.95 | 48.34 |
17 | 1034.40 | 1.36 | 5.73 | 0.85 | 0.63 | 0.55 | 0.43 | 1.17 | 0.64 | 8.87 | 0.30 | 1.55 | 0.73 | 36.88 | 1.37 | 56.01 |
18 | 474.50 | 1.31 | 5.53 | 0.92 | 0.71 | 0.68 | 0.46 | 1.08 | 0.55 | 5.34 | 0.29 | 1.36 | 0.77 | 58.41 | 1.65 | 85.76 |
19 | 64.94 | 1.67 | 3.19 | 0.97 | 0.59 | 0.57 | 0.49 | 1.03 | 0.14 | 0.99 | 0.20 | 1.71 | 0.60 | 27.75 | 0.58 | 78.17 |
20 | 205.77 | 1.60 | 5.36 | 0.95 | 0.60 | 0.57 | 0.48 | 1.05 | 0.31 | 2.61 | 0.28 | 1.68 | 0.63 | 29.81 | 0.75 | 65.30 |
21 | 72.29 | 1.45 | 5.63 | 0.96 | 0.67 | 0.64 | 0.48 | 1.04 | 0.15 | 1.08 | 0.20 | 1.50 | 0.69 | 23.98 | 0.51 | 59.62 |
22 | 298.95 | 1.54 | 5.40 | 1.00 | 0.65 | 0.65 | 0.50 | 1.00 | 0.13 | 1.97 | 0.14 | 1.54 | 0.65 | 18.38 | 0.89 | 33.06 |
23 | 355.04 | 1.58 | 5.32 | 0.98 | 0.62 | 0.63 | 0.49 | 1.02 | 0.20 | 2.74 | 0.22 | 1.55 | 0.63 | 21.06 | 0.87 | 38.58 |
24 | 226.99 | 1.67 | 5.38 | 1.04 | 0.62 | 0.65 | 0.52 | 0.96 | 0.25 | 2.34 | 0.24 | 1.60 | 0.60 | 24.52 | 0.76 | 50.25 |
25 | 384.53 | 1.43 | 5.00 | 0.94 | 0.66 | 0.63 | 0.47 | 1.06 | 0.34 | 3.77 | 0.27 | 1.50 | 0.70 | 22.27 | 0.72 | 44.39 |
26 | 105.92 | 1.14 | 5.05 | 0.89 | 0.79 | 0.70 | 0.45 | 1.12 | 0.19 | 1.53 | 0.24 | 1.27 | 0.88 | 24.60 | 0.54 | 57.52 |
27 | 130.49 | 1.32 | 5.30 | 0.82 | 0.62 | 0.54 | 0.41 | 1.22 | 0.27 | 2.07 | 0.35 | 1.51 | 0.76 | 22.86 | 0.46 | 57.63 |
28 | 182.54 | 1.23 | 5.38 | 0.88 | 0.72 | 0.63 | 0.44 | 1.14 | 0.54 | 3.38 | 0.43 | 1.40 | 0.82 | 27.63 | 0.47 | 74.00 |
29 | 671.01 | 1.55 | 6.38 | 0.92 | 0.59 | 0.58 | 0.46 | 1.08 | 0.48 | 5.94 | 0.42 | 1.60 | 0.64 | 27.82 | 1.00 | 51.94 |
30 | 1516.96 | 1.35 | 5.58 | 0.94 | 0.70 | 0.67 | 0.47 | 1.06 | 0.96 | 12.51 | 0.24 | 1.40 | 0.74 | 27.58 | 1.06 | 50.38 |
31 | 739.39 | 1.41 | 6.16 | 0.93 | 0.66 | 0.64 | 0.46 | 1.08 | 0.39 | 5.63 | 0.29 | 1.45 | 0.71 | 46.43 | 1.94 | 46.41 |
32 | 1824.47 | 1.47 | 5.62 | 0.93 | 0.63 | 0.64 | 0.47 | 1.07 | 0.14 | 5.30 | 0.13 | 1.46 | 0.68 | 17.96 | 1.97 | 17.87 |
33 | 119.78 | 1.60 | 5.78 | 0.92 | 0.58 | 0.53 | 0.46 | 1.08 | 0.20 | 1.64 | 0.34 | 1.73 | 0.63 | 24.77 | 0.58 | 24.69 |
34 | 901.81 | 1.44 | 5.77 | 0.92 | 0.64 | 0.64 | 0.46 | 1.08 | 0.19 | 4.34 | 0.24 | 1.45 | 0.70 | 31.94 | 2.11 | 31.94 |
35 | 65.65 | 2.12 | 4.20 | 1.01 | 0.48 | 0.48 | 0.50 | 0.99 | 0.15 | 0.99 | 0.28 | 2.10 | 0.47 | 144.59 | 3.05 | 125.60 |
36 | 86.48 | 1.80 | 4.99 | 0.99 | 0.55 | 0.54 | 0.49 | 1.01 | 0.42 | 1.94 | 0.38 | 1.83 | 0.56 | 18.92 | 0.27 | 18.78 |
37 | 192.89 | 1.35 | 5.16 | 0.87 | 0.65 | 0.56 | 0.44 | 1.15 | 0.34 | 2.76 | 0.27 | 1.55 | 0.74 | 86.99 | 1.94 | 87.22 |
38 | 107.04 | 1.22 | 5.78 | 0.97 | 0.80 | 0.78 | 0.49 | 1.03 | 0.18 | 1.41 | 0.27 | 1.25 | 0.82 | 46.47 | 1.12 | 46.47 |
39 | 494.92 | 1.26 | 5.01 | 0.88 | 0.70 | 0.61 | 0.44 | 1.14 | 0.24 | 3.68 | 0.21 | 1.43 | 0.80 | 46.96 | 2.01 | 46.94 |
40 | 84.26 | 1.65 | 5.36 | 0.95 | 0.58 | 0.55 | 0.48 | 1.05 | 0.21 | 1.37 | 0.33 | 1.74 | 0.61 | 84.22 | 1.64 | 84.17 |
41 | 251.15 | 1.62 | 5.18 | 0.95 | 0.59 | 0.56 | 0.48 | 1.05 | 0.27 | 2.71 | 0.40 | 1.70 | 0.62 | 61.42 | 1.81 | 61.23 |
42 | 50.99 | 1.16 | 3.64 | 0.83 | 0.71 | 0.59 | 0.41 | 1.21 | 0.49 | 1.76 | 0.42 | 1.40 | 0.86 | 58.21 | 0.54 | 93.30 |
43 | 61.67 | 1.14 | 3.34 | 0.83 | 0.73 | 0.60 | 0.41 | 1.21 | 0.32 | 1.55 | 0.42 | 1.38 | 0.88 | 53.44 | 0.68 | 78.43 |
44 | 209.98 | 1.34 | 6.92 | 1.05 | 0.78 | 0.85 | 0.52 | 0.95 | 0.78 | 3.98 | 0.52 | 1.24 | 0.75 | 56.12 | 0.94 | 81.96 |
45 | 326.72 | 1.52 | 7.17 | 0.78 | 0.52 | 0.41 | 0.39 | 1.27 | 0.30 | 3.58 | 0.39 | 1.91 | 0.66 | 47.91 | 1.39 | 70.93 |
46 | 158.98 | 1.31 | 6.15 | 0.76 | 0.58 | 0.44 | 0.38 | 1.31 | 0.18 | 1.94 | 0.28 | 1.72 | 0.76 | 20.64 | 0.54 | 44.75 |
47 | 106.67 | 1.52 | 3.90 | 0.89 | 0.58 | 0.52 | 0.44 | 1.13 | 0.29 | 1.90 | 0.40 | 1.72 | 0.66 | 22.60 | 0.41 | 64.00 |
48 | 77.28 | 1.52 | 5.26 | 0.90 | 0.60 | 0.54 | 0.45 | 1.11 | 0.24 | 1.46 | 0.33 | 1.68 | 0.66 | 23.22 | 0.39 | 67.59 |
49 | 436.58 | 1.36 | 5.43 | 0.90 | 0.66 | 0.61 | 0.45 | 1.11 | 0.57 | 5.31 | 0.40 | 1.46 | 0.74 | 17.08 | 0.45 | 46.98 |
50 | 355.00 | 1.31 | 5.92 | 0.88 | 0.67 | 0.62 | 0.44 | 1.13 | 0.79 | 5.67 | 0.32 | 1.43 | 0.76 | 22.48 | 0.45 | 59.96 |
51 | 132.09 | 1.13 | 5.16 | 0.83 | 0.74 | 0.62 | 0.42 | 1.20 | 0.30 | 2.18 | 0.45 | 1.35 | 0.89 | 27.24 | 0.53 | 64.72 |
52 | 108.77 | 1.28 | 4.93 | 0.84 | 0.66 | 0.55 | 0.42 | 1.19 | 0.49 | 2.55 | 0.56 | 1.53 | 0.78 | 35.70 | 0.48 | 91.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Alsalman, A. Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques. Sustainability 2024, 16, 23. https://doi.org/10.3390/su16010023
Bashir B, Alsalman A. Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques. Sustainability. 2024; 16(1):23. https://doi.org/10.3390/su16010023
Chicago/Turabian StyleBashir, Bashar, and Abdullah Alsalman. 2024. "Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques" Sustainability 16, no. 1: 23. https://doi.org/10.3390/su16010023
APA StyleBashir, B., & Alsalman, A. (2024). Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques. Sustainability, 16(1), 23. https://doi.org/10.3390/su16010023