A Review of Sustainable Supplier Selection with Decision-Making Methods from 2018 to 2022
<p>Procedure of the present review study.</p> "> Figure 2
<p>Number of single-form MCDM methods.</p> "> Figure 3
<p>Number of extension-form MCDM methods.</p> "> Figure 4
<p>Classification of the MCDM methods as free function, MODM, and MADM.</p> "> Figure 5
<p>The distribution of analyzed articles by year (Black dots) and the polynomial regression model of the distribution (Red dots).</p> "> Figure 6
<p>Distribution of the analyzed articles according to the application area.</p> "> Figure 7
<p>Distribution of the analyzed articles according to the author’s country.</p> "> Figure 8
<p>Distribution of the analyzed articles according to the journals.</p> ">
Abstract
:1. Introduction
- The MCDM methods employed for SSS in the last five years have been classified in detail.
- The mathematical concepts frequently utilized in MCDM methods have been identified and discussed in detail.
- It is explained why specific academic journals tend to publish an excessive number of studies on this topic.
2. Material and Methods
2.1. Research Methodology
- Q1:
- How can the studies on SSS with social, economic, and environmental dimensions in the five years (2018–2022) be categorized according to MCDM methods?
- Q2:
- What extensions are utilized to improve MCDM methods in SSS?
2.2. Related Studies
- The MCDM methods used and their classification;
- The countries of the authors;
- The most frequently used journals;
- The application area.
Paper | Years Covered | Keywords Searched | Number of Papers Analyzed | Dimensions | Databases Searched |
---|---|---|---|---|---|
[3] | 2002–2016 | “sustainable supply chain” | 286 | All dimensions | “Scopus” |
[2] | 1990–2018 | All combinations of the following groups: Group 1: “purchaser “, “supplier”, “vendor”, “contractor”, “buyer”, “seller” Group 2: “purchasing”, “evaluation”, “assessment”, “selection”, “procuring”, “buying” and “procurement” Group 3: “sustainability”, “ecological”, “environmental”, “green”, “social”, “corporate social responsibility”, “sustainable “and “CSR (Corporate social responsibility)”. | 66 | All dimensions | “WoS and Scopus” |
[4] | 1990–2019 | “sustainable vendor selection” OR “sustainable supplier selection” AND (“*criteria*” OR “*attribute*” OR “multi-objective*” OR “multi*objective*” | 82 | All dimensions | “Google Scholar” and “Scopus” |
[5] | 1994–2022 | “green procurement” and “supplier selection” | 220 | All dimensions | “WoS” and “Google Scholar” |
[6] | 2010–2022 | “data envelopment analysis”, “supplier”, and “sustainable” | 87 | All dimensions | “Scopus” and “WoS” |
Present study | 2018–2022 | “sustainable supplier selection”, “green supplier selection”, “sustainable vendor selection”, and “green vendor selection” | 101 | All dimensions | “Scopus” and “WoS” |
3. Descriptive Analysis
3.1. Distribution of Papers concerning Applied Methods
Methods | Extensions | Hybrids | References |
---|---|---|---|
VIKOR | VIKOR | DEMATEL + VIKOR | [41] |
VIKOR + ANP | [12] | ||
IVIF-DEMATEL + ANP + VIKOR | [42] | ||
DEMATEL + ANP + VIKOR | [43] | ||
F-VIKOR | F-VIKOR + R DEMATEL | [44] | |
F-VIKOR + F-TOPSIS | [23] | ||
R-VIKOR | [45] | ||
I-VIKOR | F-BWM + I-VIKOR | [46] | |
F-E-VIKOR | [47] | ||
IVIF-E-VIKOR | IVIF-E-VIKOR + IVIF-MARCOS | [48] | |
IVITFNs-VIKOR | IVITFNs-QFD + IVITFNs-VIKOR | [59] | |
TOPSIS | TOPSIS | TOPSIS + MOM | [10] |
BWM + TOPSIS + WASPAS | [11] | ||
TOPSIS + ANFIS | [16] | ||
ANP + TOPSIS | [12] | ||
F-AHP + TOPSIS + F-MOPM | [20] | ||
TOPSIS + ELECTRE | [13] | ||
F-AHP + TOPSIS | [17] | ||
F-GRA + BWM + TOPSIS | [18] | ||
BWM + TOPSIS | [15] | ||
F-TOPSIS | Delphi + F-TOPSIS + GP | [19] | |
F-AHP + F-TOPSIS + MOOM | [20] | ||
F-COPRAS + F-MULTIMOORA + F-TOPSIS + F-BWM | [21] | ||
F-AHP + F-TOPSIS + F-MOPH | [22] | ||
F-VIKOR + F-TOPSIS | [23] | ||
ISM + F-DEMATEL + ANP + F-TOPSIS | [24] | ||
R-TOPSIS | [25] | ||
R-F TOPSIS | R-F-DEMATEL + R-F-TOPSIS | [26] | |
G-TOPSIS | [27] | ||
IFS-TOPSIS | [28] | ||
IVPFS-TOPSIS | [29] | ||
AHP | AHP | AHP + FIS | [31] |
AHP + F-MULTIMOORA | [32] | ||
IT2FSs-AHP | [39] | ||
F-AHP | F-AHP + F-COPRAS | [33] | |
F-AHP + F-TOPSIS + MOOM | [20] | ||
F-AHP + TOPSIS + F-MOPM | [22] | ||
F-AHP + PROMETHEE | [34] | ||
F-AHP + F-TOPSIS | [14] | ||
F-AHP + TOPSIS | [35] | ||
IF-AHP | IF-AHP + TODIM | [36] | |
SF-AHP | SF-AHP + G-COPRAS | [37] | |
DEA + SF-AHP + SF-WASPAS | [38] | ||
BWM | BWM | BWM + RMC-GP | [51] |
BWM + F-Shannon Entropy + F-MULTIMOORA | [52] | ||
BWM + MULTIMOORA | [54] | ||
BWM + 2DLIFVs-MULTIMOORA | [53] | ||
BWM + TOPSIS + WASPAS | [11] | ||
BWM + F-GRA + TOPSIS | [18] | ||
BWM + TOPSIS | [15] | ||
F-BWM | F-BWM + CoCoSo’B | [36] | |
F-BWM + I-VIKOR | [46] | ||
F-BWM + F-DEMATEL + F-ANP + FIS | [56] | ||
F-BWM + F-COPRAS + F-MULTIMOORA + F-TOPSIS | [21] | ||
R-BWM | R-BWM + MABAC | [57] | |
G-BWM | G-BWM + G-WISP | [58] | |
IVIULSs-BWM | IVIULSs-BWM + IVIULSs-AQM | [49] |
Methods | Extensions | Hybrids | References |
---|---|---|---|
DEA | DEA | GP + DEA | [61] |
MOM-INLP + DEA | [62] | ||
F-AHP + DEA | [68] | ||
F-DEMATEL + ANP + DEA | [64] | ||
DEA + FUCOM + MABAC | [65] | ||
DEA + SF-AHP + SF-WASPAS | [38] | ||
F-DEA | [63] | ||
DEMATEL | DEMATEL | DEMATEL + ANP + VIKOR | [43] |
F-GRA + FMEA + EWM + DEMATEL | [67] | ||
DEMATEL + VIKOR | [41] | ||
R-DEMATEL | R-DEMATEL + F-VIKOR | [44] | |
R-F DEMATEL | R-F-DEMATEL + R-F-TOPSIS | [26] | |
F-DEMATEL | ISM + F-DEMATEL + ANP + F-TOPSIS | [24] | |
F-DEMATEL + ANP + DEA | [64] | ||
F-DEMATEL + F-BWM + F-ANP + FIS | [56] | ||
IVIF-DEMATEL | IVIF-DEMATEL + ANP + VIKOR | [42] | |
MOORA | F-MOORA | [69] | |
MULTIMOORA | BWM + MULTIMOORA | [54,70] | |
I-R-MULTIMOORA | [53] | ||
F-MULTIMOORA | F-COPRAS + F-MULTIMOORA + F-TOPSIS + F-BWM | [21] | |
AHP + F-MULTIMOORA | [32] | ||
BWM + F-Shannon Entropy + F-MULTIMOORA | [52] | ||
2DLIFVs-MULTIMOORA | BWM + 2DLIFVs-MULTIMOORA | [54] | |
COPRAS | COPRAS | SWARA + COPRAS | [71] |
HF-SWARA + COPRAS | [72] | ||
F-COPRAS | F-COPRAS + F-MULTIMOORA + F-TOPSIS + F-BWM | [21] | |
F-COPRAS + F-AHP | [33] | ||
G-COPRAS | F-Delphi + ISM + G-COPRAS + ANP | [73] | |
SF-AHP + G-COPRAS | [37] | ||
R-COPRAS | FUCOM + R-COPRAS | [74] |
Methods | Extensions | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rough Sets-Based | Fuzzy Sets-Based | Grey Set-Based | ||||||||||||
TOPSIS | R-TOPSIS | IVPFS-TOPSIS | F-TOPSIS | IFS-TOPSIS | G-TOPSIS | |||||||||
AHP | – | IT2FSs-AHP | SF-AHP | IF-AHP | – | |||||||||
BWM | R-BWM | IVIULSs-BWM | G-BWM | |||||||||||
MOORA | I-R MULTIMOORA | 2DLIFVs-MULTIMOORA | F- MOORA | F-MULTIMOORA | ||||||||||
DEMATEL | – | IVIF-DEMATEL | F-DEMATEL | |||||||||||
COPRAS | R- COPRAS | F- COPRAS | G-COPRAS | |||||||||||
VIKOR | R-VIKOR | I-VIKOR | F-E-VIKOR | IVITFNs-VIKOR | IVIF-E-VIKOR | – | ||||||||
DEA | F- DEA |
3.2. Distribution of the Papers concerning Journal, Area, and Year
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Concept and Method | Abbreviation | Reference for SSS |
Multi Criteria Decision Making | MCDM | |
Goal Programming | GP | [91] |
Fuzzy Goal Programming | F-GP | [92] |
Revised Multi-Choice Goal Programming | RMC-GP | [51] |
VIseKriterijumsa Optimizacija I Kompromisno Resenje | VIKOR | [93] |
Fuzzy VIKOR | F-VIKOR | [23,44] |
Rough VIKOR | R-VIKOR | [45] |
Interval VIKOR | I-VIKOR | [46] |
Fuzzy Entropy VIKOR | F-E-VIKOR | [47] |
Interval-Valued Intuitionistic Fuzzy sets Extended VIKOR | IVIF-E-VIKOR | [48] |
Integrated with Interval-Valued Intuitionistic | IVITFNs-VIKOR | [49] |
Trapezoidal Fuzzy Numbers VIKOR | ||
Technique for Order Preference by Similarity to Ideal Solution | TOPSIS | [10,16,18,94] |
Fuzzy TOPSIS | F-TOPSIS | [14,19,21,23,24,95] |
Rough Cloud TOPSIS | R-TOPSIS | [28] |
Rough-Fuzzy TOPSIS | R-F TOPSIS | [26] |
Grey-Based TOPSIS | G-TOPSIS | [27] |
Intuitive Fuzzy TOPSIS | IFS-TOPSIS | [28] |
Interval-Valued Pythagorean Fuzzy Set TOPSIS | IVPFS-TOPSIS | [29] |
Analytic Hierarchy Process | AHP | [31,96,97] |
Interval Type-2 Fuzzy Sets AHP | IT2FSs-AHP | [36] |
Fuzzy AHP | F-AHP | [22,33,34,35,68,94,98,99,100,101] |
Intuition Fuzzy AHP | IF-AHP | [36] |
Spherical Fuzzy AHP | SF-AHP | [37,38] |
Analytic Network Process | ANP | [12,24,42,43,64,102] |
Fuzzy-ANP | F-ANP | [56] |
Data Envelopment Analysis | DEA | [61,68,103,104] |
Fuzzy DEA | F-DEA | [65] |
Preference Ranking Organization Method | PROMETHEE | [34] |
for Enrichment Evaluation | ||
Fuzzy Preference Ranking Organization Method | F-PROMETHEE | [101] |
for Enrichment Evaluation | ||
Preference Ranking Organization Method | PROMETHEE II | [105] |
for Enrichment Evaluation | ||
Elimination and Choice Translating Reality English | ELECTRE | [106] |
Rough ELECTRE | R-ELECTRE | [106] |
Decision Making Trial and Evaluation Laboratory | DEMATEL | [43,67] |
Rough DEMATEL | R-DEMATEL | [44] |
Rough Fuzzy DEMATEL | R-F DEMATEL | [26] |
Interval-Valued Intuitionistic Fuzzy DEMATEL | IVIF-DEMATEL | [42] |
Multi Attribute Border Approximation Area Comparison | MABAC | [57,65,107] |
Best Worst Method | BWM | [11,51] |
Fuzzy BWM | F-BWM | [55,56,108,109,110,111] |
Rough BWM | R-BWM | [57] |
Grey BWM | G-BWM | [58] |
Interval-Valued Intuitionistic Uncertain Linguistic Sets BMW | IVIULSs-BWM | [59] |
Complex Proportional Assessment | COPRAS | [71,72] |
Rough COPRAS | R-COPRAS | [74] |
Grey COPRAS | G-COPRAS | [37,73] |
Fuzzy COPRAS | F-COPRAS | [21,33] |
Weighted Aggregated Sum Product Assessment | WASPAS | [11,112] |
Global Fuzzy WASPAS | SF-WASPAS | [38] |
Rough Weighted Sum Model | R-SAW | [113] |
Fuzzy Multi-Objective Optimization By Ratio Analysis | F-MOORA | [69] |
The Multi-Objective Optimization by Ratio Analysis | MULTIMOORA | [54,70] |
with Full Multiplicative Form | ||
Intuitionistic-Rough MULTIMOORA | I-R-MULTIMOORA | [53] |
Fuzzy MULTIMOORA | F-MULTIMOORA | [21,32,52] |
Two-Dimension Linguistic Intuitionistic Fuzzy | 2DLIFVs-MULTIMOORA | [54] |
Variables MULTIMOORA | ||
Stepwise Weighted Assessment Ratio Analysis | SWARA | [71,112] |
Fuzzy SWARA | F-SWARA | [114] |
Hesitant-Fuzzy SWARA | HF-SWARA | [72] |
Delphi | Delphi | [19,73] |
Full Consistency Method | FUCOM | [74,113] |
Pivot Binary Relative Criterion Importance Assessment | PIPRECIA | [107] |
Measurement of Alternatives and Ranking | MARCOS | [48,115] |
According to Compromise Solution | ||
Fuzzy MARCOS | F-MARCOS | [114] |
Interval-Valued Intuitionistic Fuzzy Sets MARCOS | IVIF-MARCOS | [48] |
Fuzzy Additive Ratio Assessment Method | F-ARAS | [111] |
Fuzzy Inference Systems | FIS | [56,109,116] |
Adaptive Neuro FIS | ANFIS | [16] |
Multi-Objective Optimization Model | MOOM | [20] |
Multi-Objective Model | MOM | [10] |
Multi-Objective Linear Programming Model | MOM-LP | [117] |
Multi-Objective Mixed-Integer Non-Linear Programming | MOM-INLP | [62] |
Fuzzy KANO | F-KANO | [118] |
Tomada de Decisão Iterativa Multicritério | TODIM | [36,119] |
Interval-Valued Intuitionistic Trapezoidal Fuzzy Numbers-Quality | IVITFNs-QFD | [49] |
Function Deployment | ||
Fuzzy Grey Relational Analysis | F-GRA | [18] |
Failure Mode and Effects Analysis | FMEA | [67] |
Fuzzy FMEA | F-FMEA | [120] |
Interval Value Fuzzy Set FMEA | IVF-FMEA | [121] |
Interval-Valued Intuitionistic Uncertain Linguistic Sets | IVIULSs-AQM | [59] |
Alternative Queuing Method | ||
Fuzzy Multi-Objective Programming Model | F-MOPM | [22] |
Combined Compromise Solution | CoCoSo | [122] |
Combined Compromise Solution with Bonferroni | CoCoSo’B | [55] |
Grey Weighted Sum-Product | G-WISP | [58] |
Entropy Weight Method | EWM | [67] |
Fuzzy Shannon Entropy Method | F-SEM | [52] |
Interpretive Structural Modelling | ISM | [24,73] |
Z-information Possibilistic Method | Z Number | [123] |
Linguistic t-Spherical Fuzzy Generalized Distance Measure | LT-SF | [17] |
Interval Type-2 Trapezoidal Fuzzy Set Complex Preference Information | CPR-IT2TrF | [124] |
Power Dual Hesitant Fuzzy Setting | PDHFS | [125] |
Criteria Importance Through Inter-Criteria Correlation | CRITIC | [122] |
References
- Keeble, B.R. The Brundtland report: Our common future. Med. War 1988, 4, 17–25. [Google Scholar] [CrossRef]
- Rashidi, K.; Noorizadeh, A.; Kannan, D.; Cullinane, K. Applying the triple bottom line in sustainable supplier selection: A meta-review of the state-of-the-art. J. Clean. Prod. 2020, 269, 122001. [Google Scholar] [CrossRef]
- Ansari, Z.N.; Kant, R. A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management. J. Clean. Prod. 2017, 142, 2524–2543. [Google Scholar] [CrossRef]
- Schramm, V.B.; Cabral, L.P.B.; Schramm, F. Approaches for supporting sustainable supplier selection—A literature review. J. Clean. Prod. 2020, 273, 123089. [Google Scholar] [CrossRef]
- Masudin, I.; Umamy, S.Z.; Al-Imron, C.N.; Restuputri, D.P. Green procurement implementation through supplier selection: A bibliometric review. Cogent Eng. 2022, 9, 2119686. [Google Scholar] [CrossRef]
- Fotova Čiković, K.; Martinčević, I.; Lozić, J. Application of data envelopment analysis (DEA) in the selection of sustainable suppliers: A review and bibliometric analysis. Sustainability 2022, 14, 6672. [Google Scholar] [CrossRef]
- Pranckute, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications—A State-of-the-Art Survey; Springer: Berlin/Heidelberg, Germany, 1981; Volume 186, pp. 58–191. [Google Scholar]
- Shalke, P.; Paydar, M.; Hajiaghaei-Keshteli, M. Sustainable supplier selection and order allocation through quantity discounts. Int. J. Manag. Sci. Eng. Manag. 2018, 13, 20–32. [Google Scholar]
- Aslani, B.; Rabiee, M.; Tavana, M. An integrated information fusion and grey multi-criteria decision-making framework for sustainable supplier selection. Int. J. Syst. Sci. Oper. Logist. 2021, 8, 348–370. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, M.; Smarandache, F. A hybrid neutrosophic group ANP-TOPSIS framework for supplier selection problems. Symmetry 2018, 10, 226. [Google Scholar] [CrossRef]
- Yu, C.; Zhao, W.; Li, M. An integrated sustainable supplier selection approach using compensatory and non-compensatory decision methods. Kybernetes 2018, 48, 1782–1805. [Google Scholar] [CrossRef]
- Mohammed, A. Towards a sustainable assessment of suppliers: An integrated fuzzy TOPSIS-possibilistic multi-objective approach. Ann. Oper. Res. 2020, 293, 639–668. [Google Scholar] [CrossRef]
- Ghamari, R.; Mahdavi-Mazdeh, M.; Ghannadpour, S.F. Resilient and sustainable supplier selection via a new framework: A case study from the steel industry. Environ. Dev. Sustain. 2022, 24, 10403–10441. [Google Scholar] [CrossRef]
- Okwu, M.O.; Tartibu, L.K. Sustainable supplier selection in the retail industry: A TOPSIS-and ANFIS-based evaluating methodology. Int. J. Eng. Bus. Manag. 2020, 12, 1847979019899542. [Google Scholar] [CrossRef]
- Wang, H. Sustainable circular supplier selection in the power battery industry using a linguistic T-spherical fuzzy MAGDM model based on the improved ARAS method. Sustainability 2022, 14, 7816. [Google Scholar] [CrossRef]
- Afrasiabi, A.; Tavana, M.; Di Caprio, D. An extended hybrid fuzzy multi-criteria decision model for sustainable and resilient supplier selection. Environ. Sci. Pollut. Res. 2022, 29, 37291–37314. [Google Scholar] [CrossRef]
- Rabieh, M.; Rafsanjani, A.; Babaei, L.; Esmaeili, M. Sustainable supplier selection and order allocation: An integrated delphi method, fuzzy topsis, and multi-objective programming model. Sci. Iran. 2019, 26, 2524–2540. [Google Scholar] [CrossRef]
- Mohammed, A.; Setchi, R.; Filip, M.; Harris, I.; Li, X. An integrated methodology for a sustainable two-stage supplier selection and order allocation problem. J. Clean. Prod. 2018, 192, 99–114. [Google Scholar] [CrossRef]
- Tavana, M.; Shaabani, A.; Santos-Arteaga, F.J.; Valaei, N. An integrated fuzzy sustainable supplier evaluation and selection framework for green supply chains in reverse logistics. Environ. Sci. Pollut. Res. 2021, 28, 53953–53982. [Google Scholar] [CrossRef]
- Mohammed, A.; Harris, I.; Govindan, K. A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. Int. J. Prod. Econ. 2019, 217, 171–184. [Google Scholar] [CrossRef]
- Manupati, V.K.; Ramkumar, M.; Baba, V.; Agarwal, A. Selection of the best healthcare waste disposal techniques during and post COVID-19 pandemic era. J. Clean. Prod. 2021, 281, 125175. [Google Scholar] [CrossRef] [PubMed]
- Petrudi, S.; Abdi, M.; Goh, M. An integrated approach to evaluate suppliers in a sustainable supply chain. Uncertain Supply Chain. Manag. 2018, 6, 423–444. [Google Scholar] [CrossRef]
- Li, J.; Fang, H.; Song, W. Sustainable supplier selection based on SSCM practices: A rough cloud TOPSIS approach. J. Clean. Prod. 2019, 222, 606–621. [Google Scholar] [CrossRef]
- Chen, Z.; Ming, X.; Zhou, T.; Chang, Y. Sustainable supplier selection for smart supply chain considering internal and external uncertainty: An integrated rough-fuzzy approach. Appl. Soft Comput. 2020, 87, 106004. [Google Scholar] [CrossRef]
- Bai, C.; Sarkis, J. Integrating sustainability into supplier selection: A grey based TOPSIS analysis. Technol. Econ. Dev. Econ. 2018, 24, 2202–2224. [Google Scholar] [CrossRef]
- Memari, A.; Dargi, A.; Akbari Jokar, M.; Ahmad, R.; Abdul Rahim, A. Sustainable Supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. J. Manuf. Syst. 2019, 50, 9–24. [Google Scholar] [CrossRef]
- Yu, C.; Shao, Y.; Wang, K.; Zhang, L. A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Syst. Appl. 2019, 121, 1–17. [Google Scholar] [CrossRef]
- Saaty, T. The Analytical Hiyerarchy Process; McGraw-Hill: New York, NY, USA, 1980; Volume 1980. [Google Scholar]
- Omair, M.; Noor, S.; Tayyab, M.; Maqsood, S.; Ahmed, W.; Sarkar, B.; Habib, M.S. The selection of the sustainable suppliers by the development of a decision support framework based on analytical hierarchical process and fuzzy inference system. Int. J. Fuzzy Syst. 2021, 23, 1986–2003. [Google Scholar] [CrossRef]
- Orji, I.J.; Ojadi, F. Investigating the COVID-19 pandemic’s impact on sustainable supplier selection in the Nigerian manufacturing sector. Comput. Ind. Eng. 2021, 160, 107588. [Google Scholar] [CrossRef]
- Khorasani, S.T. Green supplier evaluation by using the integrated fuzzy AHP model and fuzzy copras. Process. Integr. Optim. Sustain. 2018, 2, 17–25. [Google Scholar] [CrossRef]
- Roy, S.; Ali, S.; Kabir, G.; Enayet, R.; Suhi, S.; Haque, T.; Hasan, R. A framework for sustainable supplier selection with transportation criteria. Int. J. Sustain. Eng. 2019, 13, 77–92. [Google Scholar] [CrossRef]
- Thanh, N.V. Dynamic Decision Support System for Sustainable Supplier Selection under Fuzzy Environment. Processes 2022, 10, 1576. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, D.; Zou, Y. Sustainable supplier evaluation and selection of fresh agricultural products based on IFAHP-TODIM Model. Math. Probl. Eng. 2020, 2020, 1–15. [Google Scholar] [CrossRef]
- Dang, T.T.; Nguyen, N.A.T.; Nguyen, V.T.T.; Dang, L.T.H. A Two-Stage Multi-Criteria Supplier Selection Model for Sustainable Automotive Supply Chain Under Uncertainty. Axioms 2022, 11, 228. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Nguyen, P.H.; Pham, H.A.; Nguyen, T.G.; Nguyen, D.T.; Tran, T.H.; Le, H.C.; Phung, H.T. A Novel Integrating Data Envelopment Analysis and Spherical Fuzzy MCDM Approach for Sustainable Supplier Selection in Steel Industry. Mathematics 2022, 10, 1897. [Google Scholar] [CrossRef]
- Xu, Z.; Qin, J.; Liu, J.; Martínez, L. Sustainable supplier selection based on AHPSort II in interval type-2 fuzzy environment. Inf. Sci. 2019, 483, 273–293. [Google Scholar] [CrossRef]
- Opricovic, S. Multicriteria optimization of civil engineering systems. Fac. Civ. Eng. 1998, 2, 5–21. [Google Scholar]
- Wu, J.; Jin, Y.; Zhou, M.; Cao, M.; Liu, Y. A group consensus decision making based sustainable supplier selection method by combing DEMATEL and VIKOR. J. Intell. Fuzzy Syst. 2022, 42, 2595–2613. [Google Scholar] [CrossRef]
- Phochanikorn, P.; Tan, C. A new extension to a multi-criteria decision-making model for sustainable supplier selection under an intuitionistic fuzzy environment. Sustainability 2019, 11, 5413. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, Z. An integrated sustainable supplier selection approach based on hybrid information aggregation. Sustainability 2018, 10, 2543. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Li, Q.; Lev, B.; Ma, Y. Research on sustainable supplier selection based on the rough DEMATEL and FVIKOR methods. Sustainability 2021, 13, 88. [Google Scholar] [CrossRef]
- Zhao, P.; Ji, S.; Xue, Y. An integrated approach based on the decision-theoretic rough set for resilient-sustainable supplier selection and order allocation. Kybernetes 2021, 52, 774–808. [Google Scholar] [CrossRef]
- Kannan, D.; Mina, H.; Nosrati-Abarghooee, S.; Khosrojerdi, G. Sustainable circular supplier selection: A novel hybrid approach. Sci. Total. Environ. 2020, 722, 137936. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Zhang, J.; Chen, L.; Chen, G. Private-label sustainable supplier selection using a fuzzy entropy-VIKOR-based approach. Complex Intell. Syst. 2021, 9, 2361–2378. [Google Scholar] [CrossRef]
- Salimian, S.; Mousavi, S.M.; Antucheviciene, J. An Interval-Valued Intuitionistic Fuzzy Model Based on Extended VIKOR and MARCOS for Sustainable Supplier Selection in Organ Transplantation Networks for Healthcare Device. Sustainability 2022, 14, 3795. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, Y.; Lu, H.; Tsai, S.; Song, W. A fuzzy three-stage multi-attribute decision-making approach based on customer needs for sustainable supplier selection. J. Clean. Prod. 2019, 239, 118043. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Cheraghalipour, A.; Farsad, S. A bi-objective sustainable supplier selection and order allocation considering quantity discounts under disruption risks: A case study in plastic industry. Comput. Ind. Eng. 2018, 118, 237–250. [Google Scholar] [CrossRef]
- Shang, Z.; Yang, X.; Barnes, D.; Wu, C. Supplier selection in sustainable supply chains: Using the integrated BWM, fuzzy Shannon entropy, and fuzzy MULTIMOORA methods. Expert Syst. Appl. 2022, 195, 116567. [Google Scholar] [CrossRef]
- Liu, P.; Gao, H.; Fujita, H. The new extension of the MULTIMOORA method for sustainable supplier selection with intuitionistic linguistic rough numbers. Appl. Soft Comput. 2021, 99, 106893. [Google Scholar] [CrossRef]
- Li, C.; Huang, H.; Luo, Y. An integrated two-dimension linguistic intuitionistic fuzzy decision-making approach for unmanned aerial vehicle supplier selection. Sustainability 2022, 14, 11666. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D. Sustainable supplier selection: A novel integrated fuzzy best worst method (F-BWM) and fuzzy CoCoSo with Bonferroni (CoCoSo’B) multi-criteria model. J. Clean. Prod. 2020, 266, 121981. [Google Scholar] [CrossRef]
- Fallahpour, A.; Nayeri, S.; Sheikhalishahi, M.; Wong, K.Y.; Tian, G.; Fathollahi-Fard, A.M. A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: A case study of Malaysian Palm oil industry. Environ. Sci. Pollut. Res. 2021, 1–21. [Google Scholar] [CrossRef]
- ForouzeshNejad, A.A. Leagile and sustainable supplier selection problem in the Industry 4.0 era: A case study of the medical devices using hybrid multi-criteria decision making tool. Environ. Sci. Pollut. Res. 2022, 30, 13418–13437. [Google Scholar] [CrossRef]
- Ulutaş, A.; Topal, A.; Pamucar, D.; Stevic, Z.; Karabasevic, D.; Popovic, G. A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods. Sustainability 2022, 14, 16921. [Google Scholar] [CrossRef]
- Liu, H.; Quan, M.; Li, Z.; Wang, Z. A new integrated MCDM model for sustainable supplier selection under interval-valued intuitionistic uncertain linguistic environment. Inf. Sci. 2019, 486, 254–270. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Ghoushchi, S.; Milan, M.; Rezaee, M. Evaluation and selection of sustainable suppliers in supply chain using new GP-DEA model with imprecise data. J. Ind. Eng. Int. 2018, 14, 613–625. [Google Scholar] [CrossRef]
- Moheb-Alizadeh, H.; Handfield, R. An integrated chance-constrained stochastic model for efficient and sustainable supplier selection and order allocation. Int. J. Prod. Res. 2018, 56, 6890–6916. [Google Scholar] [CrossRef]
- Tavassoli, M.; Saen, R.F.; Zanjirani, D.M. Assessing sustainability of suppliers: A novel stochastic-fuzzy DEA model. Sustain. Prod. Consum. 2020, 21, 78–91. [Google Scholar] [CrossRef]
- Nasri, S.A.; Ehsani, B.; Hosseininezhad, S.J.; Safaie, N. A sustainable supplier selection method using integrated Fuzzy DEMATEL–ANP–DEA approach (case study: Petroleum Industry). Environ. Dev. Sustain. 2022, 25, 12791–12827. [Google Scholar] [CrossRef]
- Mishra, A.R.; Saha, A.; Rani, P.; Pamucar, D.; Dutta, D.; Hezam, I.M. Sustainable supplier selection using HF-DEA-FOCUM-MABAC technique: A case study in the Auto-making industry. Soft Comput. 2022, 26, 8821–8840. [Google Scholar] [CrossRef] [PubMed]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL. Battelle Geneva Res. Cent. 1972, 1, 12–14. [Google Scholar]
- Wu, C.; Lin, Y.; Barnes, D. An integrated decision-making approach for sustainable supplier selection in the chemical industry. Expert Syst. Appl. 2021, 184, 115553. [Google Scholar] [CrossRef]
- Wang, C.; Nguyen, V.; Thai, H.; Tran, N.; Tran, T. Sustainable supplier selection process in edible oil production by a hybrid fuzzy analytical hierarchy process and green data envelopment analysis for the SMEs food processing industry. Mathematics 2018, 6, 302. [Google Scholar] [CrossRef]
- Arabsheybani, A.; Paydar, M.; Safaei, A. An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier’s risk. J. Clean. Prod. 2018, 190, 577–591. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Li, C. Optimal selection of sustainable battery supplier for battery swapping station based on Triangular fuzzy entropy-MULTIMOORA method. J. Energy Storage 2021, 34, 102013. [Google Scholar] [CrossRef]
- Xie, Z.; Tian, G.; Tao, Y. A Multi-Criteria Decision-Making Framework for Sustainable Supplier Selection in the Circular Economy and Industry 4.0 Era. Sustainability 2022, 14, 16809. [Google Scholar] [CrossRef]
- Rani, P.; Mishra, A.R.; Krishankumar, R.; Mardani, A.; Cavallaro, F.; Soundarapandian Ravichandran, K.; Balasubramanian, K. Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS). Symmetry 2020, 12, 1152. [Google Scholar] [CrossRef]
- Kannan, D. Role of multiple stakeholders and the critical success factor theory for the sustainable supplier selection process. Int. J. Prod. Econ. 2018, 195, 391–418. [Google Scholar] [CrossRef]
- Matic, B.; Jovanovic, S.; Das, D.; Zavadskas, E.; Stevic, Z.; Sremac, S.; Marinkovic, M. A new hybrid MCDM model: Sustainable supplier selection in a construction company. Symmetry 2019, 11, 353. [Google Scholar] [CrossRef]
- Molodtsov, D. Soft Set Theory-First Results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
- Maji, P.; Roy, A.; Biswas, R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
- Çağman, N.; Enginoğlu, S.; Çıtak, F. Fuzzy soft set theory and its applications. Iran. J. Fuzzy Syst. 2011, 8, 137–147. [Google Scholar]
- Çağman, N.; Çıtak, F.; Enginoğlu, S. FP-soft set theory and its applications. Ann. Fuzzy Math. Inform. 2011, 2, 219–226. [Google Scholar]
- Çağman, N.; Çıtak, F.; Enginoğlu, S. Fuzzy Parameterized Fuzzy Soft Set Theory and Its Applications. Turk. J. Fuzzy Syst. 2010, 1, 21–35. [Google Scholar]
- Selvachandran, G.; Peng, X. A modified TOPSIS method based on vague parameterized vague soft sets and its application to supplier selection problems. Neural Comput. Appl. 2019, 31, 5901–5916. [Google Scholar] [CrossRef]
- Wen, T.C.; Chang, K.H.; Lai, H.H. Integrating the 2-tuple linguistic representation and soft set to solve supplier selection problems with incomplete information. Eng. Appl. Artif. Intell. 2020, 87, 103248. [Google Scholar] [CrossRef]
- Hoş, S.; Bağcı, B. Fuzzy Soft Sets Theory for Supplier Selection. Electron. J. Soc. Sci. 2021, 20, 630–645. [Google Scholar]
- Enginoğlu, S.; Çağman, N. Fuzzy Parameterized Fuzzy Soft Matrices and Their Application in Decision-Making. TWMS J. Appl. Eng. Math. 2020, 10, 1105–1115. [Google Scholar]
- Memiş, S.; Arslan, B.; Aydın, T.; Enginoğlu, S.; Camcı, Ç. Distance and Similarity Measures of Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Applications to Data Classification in Supervised Learning. Axioms 2023, 12, 463. [Google Scholar] [CrossRef]
- Karaaslan, F. Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Sets with Applications in Decision Making. Ann. Fuzzy Math. Inform. 2016, 11, 607–619. [Google Scholar]
- Enginoğlu, S.; Arslan, B. Intuitionistic Fuzzy Parameterized Intuitionistic Fuzzy Soft Matrices and Their Application in Decision-Making. Comput. Appl. Math. 2020, 39, 325. [Google Scholar] [CrossRef]
- Aydın, T.; Enginoğlu, S. Interval-Valued Intuitionistic Fuzzy Parameterized Interval-Valued Intuitionistic Fuzzy Soft Sets and Their Application in Decision-Making. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 1541–1558. [Google Scholar] [CrossRef]
- Aydın, T.; Enginoğlu, S. Interval-Valued Intuitionistic Fuzzy Parameterized Interval-Valued Intuitionistic Fuzzy Soft Matrices and Their Application to Performance-Based Value Assignment to Noise-Removal Filters. Comput. Appl. Math. 2022, 41, 192. [Google Scholar] [CrossRef]
- Memiş, S. Picture Fuzzy Parameterized Picture Fuzzy Soft Sets and Their Application in a Performance-Based Value Assignment Problem to Salt-and-Pepper Noise Removal Filters. Int. J. Fuzzy Syst. 2023, 25, 2860–2875. [Google Scholar] [CrossRef]
- Memiş, S. Picture Fuzzy Soft Matrices and Application of Their Distance Measures to Supervised Learning: Picture Fuzzy Soft k-Nearest Neighbor (PFS-kNN). Electronics 2023, 12, 4129. [Google Scholar] [CrossRef]
- Almasi, M.; Khoshfetrat, S.; Galankashi, M.R. Sustainable supplier selection and order allocation under risk and inflation condition. IEEE Trans. Eng. Manag. 2019, 68, 823–837. [Google Scholar] [CrossRef]
- Tayyab, M.; Sarkar, B. An interactive fuzzy programming approach for a sustainable supplier selection under textile supply chain management. Comput. Ind. Eng. 2021, 155, 107164. [Google Scholar] [CrossRef]
- Demir, L.; Akpınar, M.; Araz, C.; Ilgın, M. A green supplier evaluation system based on a new multi-criteria sorting method: VIKORSORT. Expert Syst. Appl. 2018, 114, 479–487. [Google Scholar] [CrossRef]
- Chia-Nan, W.; Chao-Fen, P.; Nguyen, V.T.; Syed Tam, H. Sustainable supplier selection model in supply chains during the COVID-19 pandemic. Comput. Mater. Contin. 2022, 70, 3005–3019. [Google Scholar]
- Dos Santos, B.; Godoy, L.; Campos, L. Performance evaluation of green suppliers using entropy-TOPSIS-F. J. Clean. Prod. 2019, 207, 498–509. [Google Scholar] [CrossRef]
- Khoshfetrat, S.; Rahiminezhad Galankashi, M.; Almasi, M. Sustainable supplier selection and order allocation: A fuzzy approach. Eng. Optim. 2019, 52, 1–14. [Google Scholar] [CrossRef]
- Barrera, F.; Segura, M.; Maroto, C. Sustainable Technology Supplier Selection in the Banking Sector. Mathematics 2022, 10, 1919. [Google Scholar] [CrossRef]
- Laosirihongthong, T.; Samaranayake, P.; Nagalingam, S. A holistic approach to supplier evaluation and order allocation towards sustainable procurement. Benchmarking Int. J. 2019, 26, 2543–2573. [Google Scholar] [CrossRef]
- Thanh, N.V.; Lan, N.T.K. A new hybrid triple bottom line metrics and fuzzy MCDM model: Sustainable supplier selection in the food-processing industry. Axioms 2022, 11, 57. [Google Scholar] [CrossRef]
- Muhammad, N.; Fang, Z.; Shah, S.A.A.; Akbar, M.A.; Alsanad, A.; Gumaei, A.; Solangi, Y.A. A hybrid multi-criteria approach for evaluation and selection of sustainable suppliers in the avionics industry of Pakistan. Sustainability 2020, 12, 4744. [Google Scholar] [CrossRef]
- Bektur, G. An integrated methodology for the selection of sustainable suppliers and order allocation problem with quantity discounts, lost sales and varying supplier availabilities. Sustain. Prod. Consum. 2020, 23, 111–127. [Google Scholar] [CrossRef]
- Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Comput. Ind. 2019, 106, 94–110. [Google Scholar] [CrossRef]
- Izadikhah, M.; Farzipoor Saen, R. Ranking sustainable suppliers by context-dependent data envelopment analysis. Ann. Oper. Res. 2020, 293, 607–637. [Google Scholar] [CrossRef]
- Zarbakhshnia, N.; Jaghdani, T. Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: A plastic case study. Int. J. Adv. Manuf. Technol. 2018, 97, 2933–2945. [Google Scholar] [CrossRef]
- Tong, L.Z.; Wang, J.; Pu, Z. Sustainable supplier selection for SMEs based on an extended PROMETHEE II approach. J. Clean. Prod. 2022, 330, 129830. [Google Scholar] [CrossRef]
- Lu, H.; Jiang, S.; Song, W.; Ming, X. A rough multi-criteria decision-making approach for sustainable supplier selection under vague environment. Sustainability 2018, 10, 2622. [Google Scholar] [CrossRef]
- Puška, A.; Nedeljković, M.; Hashemkhani Zolfani, S.; Pamučar, D. Application of interval fuzzy logic in selecting a sustainable supplier on the example of agricultural production. Symmetry 2021, 13, 774. [Google Scholar] [CrossRef]
- Hendiani, S.; Mahmoudi, A.; Liao, H. A multi-stage multi-criteria hierarchical decision-making approach for sustainable supplier selection. Appl. Soft Comput. 2020, 94, 106456. [Google Scholar] [CrossRef]
- Alavi, B.; Tavana, M.; Mina, H. A dynamic decision support system for sustainable supplier selection in circular economy. Sustain. Prod. Consum. 2021, 27, 905–920. [Google Scholar] [CrossRef]
- Kumar, A. Modelling the importance of social responsibility standards (ISO 26000: 2010) practices adoption in freight transport industry. J. Clean. Prod. 2022, 367, 132861. [Google Scholar] [CrossRef]
- Boz, E.; Çizmecioğlu, S.; Çalık, A. A Novel MDCM Approach for Sustainable Supplier Selection in Healthcare System in the Era of Logistics 4.0. Sustainability 2022, 14, 13839. [Google Scholar] [CrossRef]
- Erdoğan, H.; Tosun, N. Evaluation of sustainable supplier problem: A hybrid decision making model based on SWARA-WASPAS. LogForum 2021, 17, 465–476. [Google Scholar]
- Stevic, Z.; Durmic, E.; Gajic, M.; Pamucar, D.; Puska, A. A novel multi-criteria decision-making model: Interval rough SAW method for sustainable supplier selection. Information 2019, 10, 292. [Google Scholar] [CrossRef]
- Ayşegül, T.; ADALI, E.A. Green supplier selection based on the combination of fuzzy SWARA (SWARA-F) and fuzzy MARCOS (MARCOS-F) methods. Gazi Univ. J. Sci. 2022, 35, 1535–1554. [Google Scholar]
- Stevic, Z.; Pamucar, D.; Puska, A.; Chatterjee, P. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to Compromise solution (MARCOS). Comput. Ind. Eng. 2020, 140, 106231. [Google Scholar] [CrossRef]
- Jain, N.; Singh, A.R. Sustainable supplier selection under must-be criteria through Fuzzy inference system. J. Clean. Prod. 2020, 248, 119275. [Google Scholar] [CrossRef]
- Park, K.; Okudan Kremer, G.; Ma, J. A regional information-based multiattribute and multi-objective decision-making approach for sustainable supplier selection and order allocation. J. Clean. Prod. 2018, 187, 590–604. [Google Scholar] [CrossRef]
- Jain, N.; Singh, A. Sustainable supplier selection criteria classification for Indian iron and steel industry: A fuzzy modified Kano model approach. Int. J. Sustain. Eng. 2019, 13, 17–32. [Google Scholar] [CrossRef]
- Divsalar, M.; Ahmadi, M.; Ebrahimi, E.; Ishizaka, A. A probabilistic hesitant fuzzy Choquet integral-based TODIM method for multi-attribute group decision-making. Expert Syst. Appl. 2022, 191, 116266. [Google Scholar] [CrossRef]
- Foroozesh, N.; Tavakkoli-Moghaddam, R.; Mousavi, S. Sustainable-supplier selection for manufacturing services: A failure mode and effects analysis model based on interval-valued fuzzy group decision-making. Int. J. Adv. Manuf. Technol. 2018, 95, 3609–3629. [Google Scholar] [CrossRef]
- Foroozesh, N.; Tavakkoli-Moghaddam, R.; Mousavi, S.M. An interval-valued fuzzy statistical group decision making approach with new evaluating indices for sustainable supplier selection problem. J. Intell. Fuzzy Syst. 2019, 36, 1855–1866. [Google Scholar] [CrossRef]
- Yazdani, M.; Torkayesh, A.E.; Stevic, Z.; Chatterjee, P.; Ahari, S.A.; Hernandez, V.D. An interval valued neutrosophic decision-making structure for sustainable supplier selection. Expert Syst. Appl. 2021, 183, 115354. [Google Scholar] [CrossRef]
- Hoseini, A.R.; Ghannadpour, S.F.; Ghamari, R. Sustainable supplier selection by a new possibilistic hierarchical model in the context of Z-information. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4827–4853. [Google Scholar] [CrossRef]
- Hendiani, S.; Liao, H.; Ren, R.; Lev, B. A likelihood-based multi-criteria sustainable supplier selection approach with complex preference information. Inf. Sci. 2020, 536, 135–155. [Google Scholar] [CrossRef]
- Ning, B.; Wei, G.; Lin, R.; Guo, Y. A novel MADM technique based on extended power generalized Maclaurin symmetric mean operators under probabilistic dual hesitant fuzzy setting and its application to sustainable suppliers selection. Expert Syst. Appl. 2022, 204, 117419. [Google Scholar] [CrossRef]
Journal | Access | Index | Rank | Impact Factor | CiteScore | Subject |
---|---|---|---|---|---|---|
Journal of Cleaner Production | Subscription Open Access | SCIE | Q1 | 11.072 | 15.8 | “Engineering”, “Environmental Sciences” “Green & Sustainable Science & Technology” |
Sustainability | Open Access | SCIE SSCI | Q2 | 3889 | 5 | “Environmental Sciences” “Environmental Studies” “Green & Sustainable Science & Technology” |
Expert Systems with Application | Subscription Open Access | SCIE | Q1 | 8.665 | 12.2 | “Current Contents Engineering, Computing & Technology” “Essential Science Indicators” |
Computers Industrial Engineering | Subscription Open Access | SCIE | Q1 | 7.18 | 9.7 | “Computer Science”, “Interdisciplinary Applications” “Engineering”, “Industrial” |
Environmental Science and Pollution Research | Subscription Open Access | SCIE | Q2 | 5.190 | 5.5 | “Environmental Sciences” |
Mathematics | Open Access | SCIE | Q1 | 2.592 | 2.9 | “Pure and Applied Mathematics” |
Sustainable Production and Consumption | Open Access | SCIE SSCI | Q1 | 8.921 | 8.1 | “Current Contents Engineering, Computing & Technology” “Current Contents Social and Behavioral Sciences” “Essential Science Indicators” |
Information Sciences | Subscription Open Access | SCIE | Q1 | 8.233 | 12.1 | “Computer Science”, “Information Systems” |
Applied Soft Computing | Subscription Open Access | SCIE | Q1 | 8.263 | 12.4 | “Computer Science”, “Interdisciplinary Applications” “Computer Science”, “Artificial Intelligence” |
Annals of Operation Research | Subscription Open Access | SCIE | Q2 | 4.820 | 5.2 | “Operations Research & Management Science” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakoç, Ö.; Memiş, S.; Sennaroglu, B. A Review of Sustainable Supplier Selection with Decision-Making Methods from 2018 to 2022. Sustainability 2024, 16, 125. https://doi.org/10.3390/su16010125
Karakoç Ö, Memiş S, Sennaroglu B. A Review of Sustainable Supplier Selection with Decision-Making Methods from 2018 to 2022. Sustainability. 2024; 16(1):125. https://doi.org/10.3390/su16010125
Chicago/Turabian StyleKarakoç, Ömer, Samet Memiş, and Bahar Sennaroglu. 2024. "A Review of Sustainable Supplier Selection with Decision-Making Methods from 2018 to 2022" Sustainability 16, no. 1: 125. https://doi.org/10.3390/su16010125
APA StyleKarakoç, Ö., Memiş, S., & Sennaroglu, B. (2024). A Review of Sustainable Supplier Selection with Decision-Making Methods from 2018 to 2022. Sustainability, 16(1), 125. https://doi.org/10.3390/su16010125