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Abstract: Temperature is a key factor considered in the selection of asphalt binders for asphalt
pavement construction. Currently, the asphalt binders used in some regions’ asphalt pavements
are no longer suitable for anticipated climate conditions. The reasonable selection of asphalt binder
is an important measure for asphalt pavement to adapt to climate change. This paper focuses on
the potential impact of climate change on asphalt binder selection in East China in the future. This
study is based on the performance grade (PG) system with SUPERPAVE specifications. It involved
collecting meteorological data from 109 meteorological stations in East China from 1960 to 2019 and
used the ARIMA prediction model to calculate the maximum and minimum design temperatures
for road surfaces over the next 20 years. Based on the forecasted road surface temperature data, the
impact of climate change on the choice of asphalt binder in East China was discussed. The research
findings indicate that, validated by historical data, using the ARIMA model for future temperature
prediction has proven reliability. There are some differences in different regions regarding the change
in maximum and minimum pavement design temperatures. In 2019 and 2039, there are three and four
high temperature grades in East China; these are PG52, PG58, and PG64 and PG52, PG58, and PG64,
PG70 respectively. The dominant high temperature grade in East China will remain PG64, and a total
of 23.80% of the regions in East China will experience a one-grade upward shift in high temperature
grades. PG-28, PG-22, PG-16, and PG-10 are the four low temperature grades distributed in East
China in both 2019 and 2039. Compared with 2019, the proportion of areas with grade PG-16 will
increase from 33.86% to 34.89%, and the dominant low temperature grade in East China will remain
PG-10 in 2039. In the next 20 years, low-temperature cracking issues related to asphalt pavement in
some areas of East China will intensify, but the primary challenge will still be problems caused by
high temperatures.

Keywords: climate change; asphalt binder; pavement design temperature; ARIMA model

1. Introduction

The World Meteorological Organization reported in a statement of global meteoro-
logical conditions that July 2019 is the hottest month on record on Earth [1]. The global
average temperature in this year was 1.1 ◦C higher than the pre-industrial level [2]. The
past decade has become the hottest decade on record. More than a dozen countries around
the world have reported record annual high temperatures, and the global climate will
continue to warm in the future [1,3]. This ongoing rise in temperature trends will have pro-
found impacts on infrastructure, with asphalt roads, a key part of infrastructure, receiving
special attention. From a material performance perspective, the temperature sensitivity
of asphalt binders makes asphalt pavement a highly temperature-sensitive structure [4,5].
The service performance and service life of asphalt pavement are significantly affected
by temperature conditions. Both increases in annual average temperature and seasonal
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changes in temperature may directly lead to the degradation and damage of pavement
structures [6]. In response to the impact of climate change on asphalt pavement, a series of
related studies were carried out in various regions of the world [7–10].

Asphalt binders, affected by temperature, exhibit accelerated aging [11], reduced
viscoelasticity [12], decreased viscosity [13], insufficient toughness [14], and enhanced
brittleness [15], leading to performance issues in asphalt pavements such as rutting at high
temperatures, low-temperature cracking, and fatigue damage [16–19]. Furthermore, the
improper use of asphalt binders may also pose certain threats to the environment, such
as noise pollution [20] and the release of toxic substances [21]. Given the current degree
of climate change and anticipated future trends, material selection for existing asphalt
pavements no longer meets requirements [22,23]. In a study involving 799 observation
stations in the United States, Underwood et al. [24] found that 35% of the observation
stations had chosen inappropriate materials over the past 20 years, resulting in additional
maintenance and repair costs. Research by Stone et al. [18] also indicates that, with the
ongoing progression of climate change, pavement performance is declining even under
current design standard conditions. However, these studies also suggest that, by making
informed choices about asphalt binders during the design phase, the durability and perfor-
mance of asphalt pavements can be significantly enhanced [25]. Therefore, in the context
of rising global temperatures, making a prudent selection of asphalt binders becomes
particularly critical.

Researchers, integrating future climate prediction models, have analyzed and assessed
the potential pavement issues induced by climate change. Liu et al. [26] highlighted
that, with the continual rise in global temperatures, ruts and fatigue have become major
challenges in climate change, anticipating that, by 2050, as many as 35% of road surfaces
will confront more severe thermal cracking issues. Similarly, Gudipudi and colleagues [27],
through quantitative studies, revealed the impact of climate change on U.S. pavement
performance, estimating an increase of 2–9% in fatigue cracking and 9–40% in rutting
issues over the next 20 years. Swarna et al. [28,29] evaluated asphalt concrete under future
climate conditions, finding an average increase of 24.7% in permanent deformation and
11.46% in fatigue cracking. Research focused on southern Canada has shown similar trends,
with climate change expected to intensify rutting issues, necessitating the maintenance,
repair, and reconstruction of infrastructure earlier in its designed lifespan [30], practically
implying an 8–16% advancement in the timing for pavement maintenance [17].

Considering the dramatic changes in future climate change, premature failure or higher
maintenance costs may occur for flexible pavements [31–34]. The United States currently
requires about USD 134 billion in government funds annually for road maintenance, but
with the intensification of climate change, this cost is expected to rise by USD 785 million
by 2050 [8]. By 2070, the total maintenance cost will increase further by USD 2.18 to
USD 35.8 billion [24]. A global temperature rise of 1.5 ◦C would necessitate an additional
expenditure of USD 2.8 billion by the U.S. to maintain its road network [8]. Without actions
to adapt to climate change, South African road infrastructure could face an annual cost
of USD 116.8 to USD 228.7 million [35]. Studies indicate that climate change leads to a
reduction in the effective subgrade modulus and Hot-Mix Asphalt modulus, causing the
average lifespan of pavements to drop from 16 years to 4 years. Over the next 100 years,
with climate change taken into account, maintenance costs are projected to increase by
160%, significantly elevating pavement costs [36]. According to research based on data from
the past 20 years, a typical asphalt pavement’s design life, when factoring in the impact of
higher temperatures due to climate change, may see a reduction of approximately 6 million
in allowable traffic load repetitions, which, in practical terms, means that the service life or
design period of the pavement could be shortened by about 4 years [10].

However, once the pavement is constructed, the materials are unchanged during
service (except for repairs), while temperatures are rising and extreme events are becoming
more frequent [37,38]. Therefore, climate change should be considered in selecting materials.
This paper focuses on asphalt binder selection in East China according to the SUPERPAVE
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performance grading system in a climate change context. The meteorological observation
data of 109 meteorological stations in East China from 1960 to 2019 were employed to
calculate the related temperature parameters in 2019 and to predict them in 2039 using the
autoregressive integrated moving average model (ARIMA) [39,40]. On this basis, the trend
of pavement design temperature in East China was evaluated. The appropriate selection
of asphalt binders used in asphalt pavements in East China in the next two decades was
discussed to achieve the purpose of reducing certain economic losses.

2. Calculation of Pavement Design Temperature
2.1. Pavement Design Temperature

Once the asphalt pavement is put into use, its performance is affected by climatic
conditions, especially by the pavement temperature. In the 1990s, the United States finished
a strategic highway research program (SHRP). One of the major contributions of SHRP
was the SUPERPAVE (superior performance asphalt pavements) specification [41,42]. The
SUPERPAVE specifications provide a comprehensive framework for the selection of asphalt
binders through its performance grade (PG) system, with a particular focus on the perfor-
mance of material under specific climatic conditions. The PG system is established based
on the performance of material at various temperatures, considering issues of pavement
softening at high temperatures and cracking at low temperatures [42–45]. Furthermore, this
system allows for the selection of asphalt based on predicted weather changes, promoting
the long-term adaptability of infrastructure [23,29]. Climate change, with its temperature
fluctuations and extreme weather events [37], poses new challenges to the performance of
pavement materials, making the selection of asphalt grades capable of functioning within
an appropriate temperature range increasingly important.

In the PG system [41,42], the maximum pavement design temperature (T20) is defined
as the maximum pavement temperature at 20 mm depth, which can be calculated according
to Equation (1).

T20 = 0.955Ts(max) − 0.8 (1)

where T20 is the maximum pavement design temperature at 20 mm depth (◦C), and Ts(max) is
the maximum temperature of the pavement (◦C), which can be calculated with Equation (2).

Ts(max) = Ta(max) − 0.00618ϕ2 + 0.2289ϕ + 24.4 (2)

where Ta(max) is the average 7-day highest air temperature (◦C), and ϕ is the latitude in
degree for a given location.

The minimum pavement design temperature (Ts) is defined as the minimum pavement
temperature on the surface, and the calculation is shown in Equation (3).

Ts = 0.859Ta(min) + 1.7(°C) (3)

where Ts is the minimum pavement design temperature (◦C), and Ta(min) is daily minimum
temperature (◦C).

Based on SUPERPAVE, both maximum and minimum pavement design temperatures
should be determined based on at least 20 years of weather records.

2.2. Data and Methods
2.2.1. Study Area and Climate Data

As an important part of the transportation system, road transportation plays an
increasingly important role in the passenger and freight transportation market and is
inseparable from the national economy. Since the 1980s, alongside China’s rapid economic
growth, road traffic construction has also experienced unprecedented expansion. By the
end of 2022, the mileage of expressways in China had reached 177,300 km [46], with asphalt
pavement being the primary form of construction [47–49]. However, the demand for roads
varies across regions, leading to significant regional disparities in the development of
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transportation infrastructure. All major population centers in China are connected by
expressways, and most new expressways are built in densely populated areas in eastern
and southern China [50,51].

Especially in the East China region, there are significant climatic differences between
provinces within this area [52], necessitating the targeted selection of asphalt binders
to ensure optimal performance under all weather conditions. Moreover, the increase in
extreme weather events [52] poses significant challenges to road infrastructure, not only
accelerating road wear, aging, and damage [26,53,54] but also potentially leading to more
frequent road maintenance and replacements, thereby incurring substantial economic
costs [36] and social inconvenience [55]. In this context, the use of appropriate asphalt
binders becomes particularly important, as it not only reduces negative environmental
impacts but is also key to achieving regional sustainable development goals.

In this study, the part of East China that is also one of the regions with the densest
highway networks in the country was selected as the study area. The meteorological
observation data of 109 meteorological stations in East China from 1960 to 2019 were
employed, which were provided by the National Meteorological Science Data Center. The
location of the meteorological stations included is shown in Figure 1. The values of T20 and
Ts were calculated year by year.
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Given that the number of meteorological stations with complete observational data is
not entirely consistent across years and considering the need in this study to use historical
values for future predictions, with a focus on examining the changes in the PG of current
and future asphalt binders, the completeness of meteorological stations data can affect
predictions of future values, leading to biases in the analysis of PG changes. Therefore,
stations with discontinuous years of observation were excluded from this study. Finally,
109 stations were included in the analysis of pavement design temperature.

2.2.2. Prediction of Future Pavement Design Temperature Using the ARIMA Model

The T20 and Ts values of each station from 1960 through 2019 were calculated year
by year and employed to predict the values of each station in the next 20 years using the
ARIMA model. The ARIMA model [39,40] is mainly composed of the autoregressive (AR)
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model, the moving average (MA) model, and the difference model. It is one of the most
commonly used and effective time series prediction models, with a clear working principle,
relying entirely on historical data for predictions, without the need for considering other
assumptions [53]. It possesses a certain flexibility and can adapt to different time series
by adjusting its parameters. The ARIMA model is expressed as ARIMA (p, d, q), where
p, d, and q are the parameters of the AR model, the difference model, and the MA model,
respectively, representing the order of autoregressive, difference, and moving average.

The general expression of the ARIMA model is shown in Equation (4).

Yt = c + ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + µt + θ1µt−1 + θ2µt−2 + · · ·+ θqµt−q (4)

where Yt−i is the time series data, c is a constant term, t is a point in time, ϕi is the parameter
of the AR model, θi is the parameter of the MA model, and µt−i is the error term at time
point t.

The construction steps of the ARIMA model include data import; the stationarity test
and the determination of difference order; the determination of ARMA model order; the
residual test; and model prediction.

1. Import data: The T20 and Ts values of each station in 1960 through 2019 were intro-
duced, the prediction step size was determined to be 20, and the maximum value of p
and q was 5;

2. Stationarity test and determination of difference order: The stability of the T20 and
Ts value series of each station in the past 60 years was tested using the Augmented
Dickey–Fuller test (ADF) method and the Kwiatkowski–Phillips–Schmidt–Shin test
(KPSS) method. A number of less than or equal to 5 difference orders (d ≤ 5) means
the data set passes the stationarity test. If d > 5, it means that the sequence cannot be
smoothed by difference, and the operation is terminated;

3. Determine the order of the ARMA model: After the data pass the stationary test,
the order is automatically selected from the stationary signal autocorrelation coef-
ficient diagram (ACF) and the partial autocorrelation coefficient diagram (PACF)
according to Akaike Information Criterion (AIC) and the Bayesian Information Crite-
rion (BIC), and p and q are initially determined; that is, the ARIMA model order is
initially determined;

4. Residual test: The residual test is carried out based on the preliminarily determined
values of p, q, and d. Then, the model is optimized to re-determine the values of p and
q by comparing the relative errors between the actual and predicted values of T20 and
Ts at each station from 1960 to 2019;

5. Model prediction: After the ARIMA model is determined, the values of T20 and Ts for
each station in the next 20 years are predicted, and the 98% confidence interval of the
prediction results is expressed at a significance level of 0.02.

The prediction results of the model include three sets of data, the predicted value,
and the 98% confidence lower and upper limits. The predicted data were also interpolated
using the cokriging interpolation method with consideration of the station elevation to
generate 1 km × 1 km raster data covering East China. The raster data are the basic data
for the analysis of the PG changes in the asphalt binder.

2.2.3. PG Classification in 2019 and 2039

In this study, the T20 and Ts values at each station from 2000 through 2019 were
employed for PG classification in 2019. Those in 2020 through 2039 were employed for PG
classification in 2039. The cokriging interpolation method, considering the station elevation,
was applied to obtain the spatial distribution of each indicator in 2019 and 2039. Thus, the
PG classification results in East China for 2019 and 2039 were obtained.
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3. Results
3.1. Effectiveness of the Model

The meteorological observation data of 109 meteorological stations in East China from
1960 through 2019 were used to calculate the T20 and Ts values of each station year by
year as experimental data. Two-thirds of the data were employed for model training, and
one-third of the data were employed for model testing.

The mean absolute error (MAE) and root mean square error (RMSE) serve as metrics
for model performance, reflecting the discrepancies between observed and predicted values,
and are typically utilized to evaluate the effectiveness of a model. The MAE and RMSE can
be calculated according to Equations (5) and (6). Theoretically, the smaller their values are,
the closer the prediction is to the actual value. Utilizing the ARIMA model, the evaluation
results are shown in Figure 2: For Ts, with actual values ranging from −27.10 ◦C to 8.60 ◦C,
the MAE and RMSE did not exceed 3.30 and 3.71, respectively. For T20, where actual values
lie between 43.42 ◦C and 63.68 ◦C, neither the MAE exceeded 2.29 nor the RMSE surpassed
2.66, with the mean absolute percentage error remaining below 3.87%. The prediction
results are accepted for this study.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (5)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

where n is the number of samples, yi is the true value, and ŷi is the predicted value.
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3.2. A Calculation Example

The prediction of the maximum pavement design temperature at Rizhao Station
(33.38 N, 119.53 E, 13.8 m) in Shandong Province is taken as an example. Firstly, the data set
is imported. The prediction step size is determined to be 20. Then, the stationarity test is
carried out, and the difference order is determined to be d = 1. According to the stationary
signal autocorrelation graph (ACF) and the stationary signal partial autocorrelation graph
(PACF), the values of p and q are initially determined (as shown in Figure 3). Next, the
residual test is performed. The purpose is to further accurately determine the values of p
and q so that the data can pass the ARIMA prediction with the highest fitting degree. The
test results are shown in Figure 4. Figure 4a,b show that the model successfully captures
the characteristics of the input data without leaving significant autocorrelation and partial
autocorrelation to further determine the values of p and q. Figure 4c–e show that the
residual distribution approximately obeys the normal distribution with zero mean. The
results show that the model is appropriate. Figure 5 depicts the prediction results. Finally,
ARIMA (4,1,3) was selected as the prediction model. At a significance level of 0.02 and
a confidence level of 98%, the prediction was carried out (the 98% confidence interval
calculation of the prediction results is shown in Equation (7)).

[µ− z× σ, µ + z× σ] (7)

where µ is the sample mean, σ is the sample standard deviation, and z is the standard
normal distribution table; z = 2.33 for 98% reliability.
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3.3. Change in the Maximum Pavement Design Temperature

In 2019, East China included three high temperature grades, PG52, PG58, and PG64,
according to the range of T20. Figure 6 depicts the spatial distribution of each high temper-
ature grade in 2019. As shown in Figure 6, the high temperature grade PG52 was mainly
distributed in high-altitude areas. The proportion of areas with grade PG52 was only
about 1.00%, which was mainly distributed in mountains such as Mount Tai in Shandong
Province, Mount Huangshan in Anhui Province, and Jiu Xian Mountain in Fujian Province.
The main high temperature grades in East China were PG58 and PG64 in 2019. The areas
with grades PG58 and PG64 occupied 37.77% and 61.23% of the area in East China, respec-
tively. The areas with grade PG58 were mainly distributed in the north of East China, and
grade PG64 possessed a wider area in the central and southern parts of East China.
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Figure 7 shows the spatial distribution of areas with each high temperature grade in
East China in 2039. In 2039, East China will be classified into four high temperature grades,
PG52, PG58, PG64, and PG70, according to the time series prediction results, but the area
ratio of each grade will change. The areas with grades PG52 and PG58 will decrease in
proportion, which will account for 0.42% and 15.34%, respectively, in 2039. Grade PG64
will remain the dominant grade. The areas with that grade will expand northward and
account for 84.04%. The areas with a new high temperature grade, PG70, will be mainly
distributed in Zhejiang Province, which will account for 0.21%.
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The percentages of areas with each high temperature grade in East China in 2019 and
2039 were calculated according to the spatial distribution of T20 in 2019 and 2039 and are
listed in Table 1. For the maximum pavement design temperature, the area with grade
PG64 in the next 20 years will be more extensive compared with 2019. The dominant high
temperature grade in East China will remain unchanged in the future.

Table 1. The percentages of areas with each high temperature grade in East China.

T20 PG52 PG58 PG64 PG70

2019 1.00 37.77 61.23 —
2039 0.42 15.34 84.04 0.21

Figure 8 depicts the changes in high temperature grades from 2019 to 2039 in East
China, where 0 means no grade change, and +1 means an upward change in one grade:
an upgrade change. As shown in Figure 8, the distribution of high temperature grades
will change significantly in the next 20 years. Nearly 23.80% of areas in East China will
shift one grade upward, which will be mainly distributed in the northern and southern
parts of East China and the junction of Anhui Province and Jiangxi Province. In the future,
these regions should be more considered regarding the permanent deformation of asphalt
pavement given the increase in the maximum pavement design temperature.

3.4. Change in the Minimum Pavement Design Temperature

In 2019, East China included four low temperature grades, PG-28, PG-22, PG-16, and
PG-10, according to the range of Ts. Figure 9 depicts the spatial distribution of each low
temperature grade in 2019. As shown in Figure 9, the low temperature grades showed a
downward trend with an increase in latitude and altitude. The areas with grade PG-28 were
mainly distributed around Mount Tai in the north, which occupied 0.35% of the area. The
areas with grade PG-22 were distributed in Shandong Province and Huangshan Mountain
in Anhui Province, which occupy 15.88% of the area. The proportion of areas with grade
PG-16 was about 33.86%, which was mainly distributed around Jiu Xian Mountain in Fujian
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Province and the central part of East China. Furthermore, the dominant low temperature
grade was PG-10 in East China in 2019, and the areas with grade PG-10 were distributed in
the southern part of East China and occupied 49.90% of the area.
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Figure 10 shows the spatial distribution of areas with each low temperature grade
in East China in 2039. In 2039, East China will maintain the same four low temperature
grades, PG-28, PG-22, PG-16, and PG-10, but the percentage of areas with each grade
will change compared with 2019. The areas with grade PG-28 will remain at Mount Tai,
and the proportion will decrease to 0.28%. The boundary between PG-22 and PG-16 will
shift to areas further north, which will result in the proportion of areas with grade PG-22
decreasing to 14.89% and the proportion of areas with grade PG-16 expanding to 34.89% in
East China. The dominant low temperature grade in East China will remain PG-10, which
accounts for 49.94% of areas in East China.
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The percentages of areas with each low temperature grade in East China in 2019 and
2039 were calculated according to the spatial distribution of Ts in 2019 and 2039 and are
listed in Table 2. Compared with 2019, the percentage of areas with grade PG-22 will
decrease significantly, and the percentage of areas with grade PG-16 will increase. The
dominant low temperature grade in East China will remain PG-10 in 2039.

Table 2. The percentages of areas with each low temperature grade in East China.

Ts PG-28 PG-22 PG-16 PG-10

2019 0.35 15.88 33.86 49.90
2039 0.28 14.89 34.89 49.94

Figure 11 depicts the changes in low temperature grades from 2019 to 2039 in East
China, where 0 and +1 maintain the same meaning as in Figure 8, and −1 means a down-
ward change of one grade. As shown in Figure 11, most areas in East China will maintain
the same low temperature grades in the future as in 2019. However, nearly 6.30% of areas of
East China will experience changes in their low temperature grades. The areas shifting one
grade upward account for 3.75%, which are mainly distributed around Mount Tai; Mount
Huangshan; Mount Jiu Xian; the coastal areas of Shandong Province; and the junction of
Anhui Province, Jiangsu Province, and Zhejiang Province. Furthermore, some areas in East
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China will experience a downward change of one grade, accounting for 2.55%, which are
mainly distributed in the central and northern parts of East China. In the future, these
regions should be considered more often regarding the low-temperature cracking of asphalt
pavement due to decreases in the minimum pavement design temperature.
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3.5. Alteration of Asphalt Binder Performance Grades in the Next 20 Years

Table 3 lists the percentages of areas with each asphalt binder performance grade in
East China. The percentages are calculated in accordance with the spatial distributions of
the high temperature and low temperature grades shown in Figures 6, 7, 9, and 10. In the
future, the dominant asphalt binder grade will remain PG64-10 in East China. In addition,
the proportion of grades PG64-22 and PG64-16 will significantly increase, and a new asphalt
binder grade, PG70-10, will emerge. The areas with grades PG58-22, PG58-16, and PG58-10
will shrink in 2039 compared with 2019. The shift to higher grades of asphalt binder in the
future means that distress due to high temperatures will worsen for the existing asphalt
pavement, while distress due to low temperatures will be alleviated.

Table 3. The percentages of areas with each asphalt binder performance grade in East China.

Year
PG52 PG58 PG64 PG70

PG-28 PG-22 PG-16 PG-10 PG-28 PG-22 PG-16 PG-10 PG-22 PG-16 PG-10 PG-10

2019 0.35 0.36 0.26 0.02 — 15.12 14.71 7.94 0.41 18.89 41.94 —
2039 0.26 0.09 0.07 <0.01 0.02 6.34 6.28 2.70 8.46 28.54 47.04 0.21

This viewpoint has also been corroborated by other researchers. Miao et al. [56]
evaluated the impact of climate change on the performance of asphalt pavements in China,
noting that, with temperature rises of 1.5 ◦C and 2 ◦C, the permanent deformation of asphalt
pavements increased by 18.63% and 36.71% respectively, though issues of low-temperature
cracking were mitigated. A study from Canada predicts that, over the next 50 years, low-
temperature cracks will decrease, and the freezing period will shorten, but rutting issues
under high temperatures may become more severe [30]. Similarly, Liu et al. [26] highlight
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that, while low-temperature cracking may intensify in certain regions of China in the future,
the primary concerns remain rutting and fatigue cracking caused by high temperatures.
Choosing harder bitumen can effectively alleviate rutting issues but might also increase
stress caused by low-temperature shrinkage, leading to cracking [25]. Therefore, when
selecting the type of asphalt for actual engineering applications, it is necessary to consider
various factors such as regional climate, traffic load, and expected road lifespan.

4. Conclusions

In this research, the potential impact of climate change on asphalt binder selection in
East China was investigated according to the SUPERPAVE PG system. The meteorological
data from 109 meteorological stations in East China from 1960 to 2019, provided by the
National Meteorological Science Data Center, were employed to calculate the maximum and
minimum design temperatures of asphalt pavement in 2019 and to predict the parameters
in 2039 using the ARIMA prediction model. Some findings can be determined as follows
according to the comparison between the results in 2019 and 2039.

1. The change in the maximum pavement design temperature from 2019 to 2039 is
different between regions. There were three and four high temperature grades in East
China in 2019 and 2039; those were PG52, PG58, and PG64 and PG52, PG58, PG64,
and PG70 respectively. In 2039, the dominant high temperature grade in East China
will remain PG64, which accounts for 84.04% of areas in East China. By 2039, the areas
with high temperature grades shifting one grade upward will account for 23.80%.

2. In both 2019 and 2039, there are four low temperature grades in East China, PG-28,
PG-22, PG-16, and PG-10. Compared with 2019, the boundary between grade PG-22
and grade PG-16 will shift to areas further north in 2039. The proportion of areas
with grade PG-16 will increase from 33.86% to 34.89%. In 2039, the dominant low
temperature grade in East China will remain PG-10, which accounts for 49.94% of
areas in East China. The areas with low temperature grades shifting one grade upward
will account for 3.75% by 2039.

3. We found that the suitable grades of asphalt binders in some regions in East China
will change in the next 20 years. Although the dominant asphalt binder grade in East
China will remain PG64-10 by 2039, its proportion will significantly increase. Similarly,
the proportion of areas with grades PG64-22 and PG64-16 will significantly increase
too. The shift to higher grades of asphalt binders in the future means that distress due
to high temperatures will worsen for the existing asphalt pavement, while distress
due to low temperatures will be alleviated.
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