COVID-19-Adapted Multi-Functional Corniche Street Design Assessment Model: Applying Global Sensitivity Analysis (GSA) and Adaptability Analysis Methods
<p>Photos of Al Wakrah corniche street corresponding to the model’s criteria (Source: Authors).</p> "> Figure 2
<p>Cumulative distribution function (CDF) analysis of the Ca-MCSD model.</p> "> Figure 3
<p>Probability density function (PDF) analysis of the Ca-MCSD model.</p> "> Figure 4
<p>Parallel coordination of the Ca-MCSD model.</p> "> Figure 5
<p>Summary of the exploratory study on assessing and evaluating the multi-functional corniche streets.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exploratory Analysis
2.2. Confirmatory Analysis
References | Public Space Design Dimensions; (i) Urban Public Spaces and Values, (ii) Sociability Role of Public Spaces, (iii) Streets as Primary Public Spaces | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1. Inclusiveness | C2. Desirable Activities | C3. Comfort | C4. Safety | C5. Pleasurability | ||||||||||||||||||||||||||||||||||||||
Sc.1.1. Users of Diverse Ages | Sc.1.2. Users with Different Gender | Sc.1.3. Users with Diverse Culture | Sc.1.4. Users of Diverse Races | Sc.1.5. Users with Diverse Physical Abilities | Sc.1.6. Entrance Controlled | Sc.1.7. Diversity of Activities and Behaviors | Sc.1.8. Opening Hours | Sc.1.9. Differential Signage | Sc.1.10. Over Securitization | Sc.1.11. Openness and Accessibility | Sc.1.12. Users’ Participation in Activities within Space | Sc.2.1. Community Gathering Third Places | Sc.2.2. Range of Activities and Behaviors | Sc.2.3. Spatial Flexibility Suiting User Needs | Sc.2.4. Availability of Foods | Sc.2.5. Diversity of Businesses Offered | Sc.2.6. Suitability of Space Layout and Design | Sc.2.7. Usefulness of Businesses | Sc.3.1. Seating Areas (Public) | Sc.3.2. Seating Areas (by Business) | Sc.3.3. Street Furniture and Artifacts | Sc.3.4. Microclimate Comfort (Shade and Shelter) | Sc.3.5. Elements Discouraging Spatial Use | Sc.3.6. Appropriate Maintenance and Physical Condition | Sc.3.7. Noise Pollution | Sc.4.1. Physical/Visual Connection or Openness to Adjacent Spaces | Sc.4.2. Appropriate Maintenance and Physical Condition | Sc.4.3. Lighting Quality | Sc.4.4. Over Securitization | Sc.4.5. Safety from Crimes during the Day | Sc.4.6. Safety from Crimes after Dark | Sc.4.7. Safety from Traffic Volume | Sc.5.1. Imageability | Sc.5.2. Sense of Enclosure | Sc.5.3. Permeability of Facades to the Street Front | Sc.5.4. Personalization of Street Front and Building Front | Sc.5.5. Articulation and Variety of Architectural Features | Sc.5.6. Sensory Complexity (Density of Sidewalk Elements) | Sc.5.7. Sensory Complexity (Variety of Sidewalk Elements) | Sc.5.8. Attractiveness of Space | Sc.5.9. Interestingness of Space | |
[1] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||||||
[2] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||
[5] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||
[9] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||
[11] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||
[33] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||
[43] | ▪ | ▪ | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||||||||||
[44] | ▪ | ▪ | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||||||||||
[45] | ▪ | ▪ | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||||||||||
[46] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||||||||||||
[47] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | |||||||||||||||||||||||||
[48] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||||||
[49] | ▪ | ▪ | ||||||||||||||||||||||||||||||||||||||||
[50] | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||||||||||||||
[51] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||
[52] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||
[53] | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||||||||||||
[54] | ▪ | ▪ | ▪ | |||||||||||||||||||||||||||||||||||||||
[55] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||||||||||||
[56] | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||||||||||||||||||||||||||||||||||
Frequency | 8 | 4 | 4 | 4 | 5 | 7 | 8 | 3 | 3 | 4 | 5 | 6 | 8 | 5 | 4 | 3 | 4 | 3 | 3 | 6 | 5 | 4 | 3 | 2 | 3 | 4 | 10 | 4 | 5 | 3 | 4 | 4 | 5 | 6 | 6 | 5 | 5 | 6 | 5 | 6 | 5 | 5 |
2.3. Adaptability Analysis
2.4. Global Sensitivity Analysis (GSA)
3. Developing the MCSD Model
3.1. Exploring the MCSD Model’s Variables
3.2. Formulating the MCSD Model
4. Formulating the COVID-19-Adapted MCSD Model (CA-MCSD Model)
5. Results
5.1. Cumulative Distribution Functions (CDF)
5.2. Probability Density Function (PDF)
5.3. Parallel Coordination
6. Discussion
744.01 < s ≤ 995: | Gold Label: Well-designed COVID-19-adapted corniche street that treats the users effectively. | ||
494.01 < s ≤ 744: | Silver Label: Well-designed COVID-19-adapted corniche street treats users effectively, but minor improvements are needed. | ||
248.01 < s ≤ 494: | Bronze Label: An acceptable COVID-19-adapted corniche street treats users effectively, but major improvements are needed. | ||
s < 248: | Not-Certified: The COVID-19-adapted corniche street does not treat the users effectively. |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gehl, J.; Gemzoe, L. New City Spaces; Danish Architectural Press: Copenhagen, Denmark, 2001. [Google Scholar]
- Stevenson, D. The City; Polity: Cambridge, UK, 2013. [Google Scholar]
- Valibeigi, M.; Ghorbani, F.; Jahanmehmani, R. Perceived Environmental Response Mechanism in Tehran Public Spaces. Soc. Indic. Res. 2019, 143, 839–858. [Google Scholar] [CrossRef]
- Budruk, M.; Phillips, R. (Eds.) Quality-of-Life Community Indicators for Parks, Recreation and Tourism Management; Springer Science+Business Media: Berlin/Heidelberg, Germany, 2010; Volume 43. [Google Scholar]
- Mehta, V. Evaluating Public Space. J. Urban Des. 2014, 19, 53–88. [Google Scholar] [CrossRef]
- Lamit, H.B.; Shafaghat, A.; Abd Majid, M.Z.; Keyvanfar, A.; Hamdan, M.; Ahmad, B.; Malik, T.A.; Zin, R.B.; Yadollahi, M. Application of the Path Walkability Index (Pawdex) model: A case study of retail walking pattern recognition in Taman University Skudai, Johor, Malaysia. Adv. Sci. Lett. 2013, 19, 3021–3024. [Google Scholar] [CrossRef]
- Keyvanfar, A.; Ferwati, M.S.; Shafaghat, A.; Lamit, H. A path walkability assessment index model for evaluating and facilitating retail walking using decision-tree-making (DTM) method. Sustainability 2018, 10, 1035. [Google Scholar] [CrossRef]
- Oldenburg, R. The Great Good Place: Cafes, Coffee Shops, Community Centers, Beauty Parlors, General Stores, Bars, Hangouts and How They Get You through the Day; Paragon House: New York, NY, USA, 1989. [Google Scholar]
- Rapoport, A. Culture and Built Form: A Reconsideration; Ashgate Publishing Company: Farnham, UK, 2000. [Google Scholar]
- Lopes, M.N.; Camanho, A.S. Public green space use and consequences on urban vitality: An assessment of European cities. Soc. Indic. Res. 2013, 113, 751–767. [Google Scholar] [CrossRef]
- Furlan, R. Liveability and Social Capital in West Bay, the New Business Precinct of Doha. Arts Soc. Sci. J. 2015, 6, 116. [Google Scholar] [CrossRef]
- Furlan, R.; Faggion, L. The Development of Vital Precincts in Doha: Urban Regeneration and Socio-Cultural Factors. Am. J. Environ. Eng. 2015, 5, 120–129. [Google Scholar]
- Keyvanfar, A.; Shafaghat, A.; Rosli, N.A.L. A Decision Support Toolkit for the Design of Children-Oriented Urban Outdoor Learning Environments. J. Urban Plan. Dev. 2022, 148, 04022034. [Google Scholar] [CrossRef]
- Rybczynski, W. The New Downtowns; Atlantic Monthly: Washington, DC, USA, 1993; Volume 271, pp. 98–106. [Google Scholar]
- Banerjee, T. The Future of Public Space: Beyond Invented Streets and Reinvented Places. J. Am. Plan. Assoc. 2001, 67, 9–24. [Google Scholar] [CrossRef]
- Talen, E. Measuring the public realm: A preliminary assessment of the link between public space and sense of community. J. Archit. Plan. Res. 2000, 17, 344–360. [Google Scholar]
- Ghasemi, M.M.; Lamit, H.; Shafaghat, A. The association between riverscape and place attachment in historical cities in Malaysia. J. Teknol. 2014, 70, 147–154. [Google Scholar] [CrossRef]
- Keyvanfar, A.; Shafaghat, A.; Lamit, H. A decision support tool for a walkable integrated neighbourhood design using a multicriteria decision-making method. Zesz. Naukowe. Transp./Politech. Śląska 2018, 100, 45–68. [Google Scholar] [CrossRef]
- Davino, C.; Gherghi, M.; Sorana, S.; Vistocco, D. Measuring Social Vulnerability in an Urban Space Through Multivariate Methods and Models. Soc. Indic. Res. 2021, 157, 1179–1201. [Google Scholar] [CrossRef] [PubMed]
- Ferwati, M.S.; Al Saeed, M.; Shafaghat, A.; Keyvanfar, A. Qatar sustainability assessment system (QSAS)-neighborhood development (ND) assessment model: Coupling green urban planning and green building design. J. Build. Eng. 2019, 22, 171–180. [Google Scholar] [CrossRef]
- UN-Habitat. Turning Spaces into Places. 2013. Available online: www.unhabi-tat-kosovo.org/repository/docs/UN-habitat_Turning_spac-es_into_places-c_478833.pdf (accessed on 20 August 2022).
- Berke, E.M.; Koepsell, T.D.; Moudon, A.V.; Hoskins, R.E.; Larson, E.B. Association of the built environment with physical activity and obesity in older persons. Am. J. Public Health 2007, 97, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Muslim, N.H.B.; Shafaghat, A.; Keyvanfar, A.; Ismail, M. Green Driver: Driving behaviors revisited on safety. Arch. Transp. 2018, 47, 49–78. [Google Scholar] [CrossRef]
- Shafaghat, A.; Keyvanfer, A.; Muslim, N.H.B. Drivers’ adaptive travel behaviors towards green transportation development: A critical review. Arch. Transp. 2016, 38, 49–70. [Google Scholar] [CrossRef]
- Shafaghat, A.; Jing, K.S.; Keyvanfar, A.; Jamshidnezhad, A.; Lamit, H.; Khorami, M. An urban river park restoration assessment model using analytical network process (ANP). J. Environ. Treat. Tech. 2019, 7, 92–102. [Google Scholar]
- Yang, S.; Chowdhury, T.U.; Ahmad Mohammadi, A.; Park, P.A. Development of a Method for Evaluating Social Distancing Situations on Urban Streets during a Pandemic. Sustainability 2020, 14, 8741. [Google Scholar] [CrossRef]
- Crossley, A.J.; Russo, A. Has the Pandemic Altered Public Perception of How Local Green Spaces Affect Quality of Life in the United Kingdom? Sustainability 2020, 14, 7946. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Rodriguez-Besteiro, S.; Cabello-Eras, J.J.; Bustamante-Sanchez, A.; Navarro-Jiménez, E.; Donoso-Gonzalez, M.; Beltrán-Velasco, A.I.; Tornero-Aguilera, J.F. Sustainable Development Goals in the COVID-19 Pandemic: A Narrative Review. Sustainability 2022, 14, 7726. [Google Scholar] [CrossRef]
- WELL, 2020a. Hundreds of Built Environment Experts Join Forces in Statement to WHO Urging Enhanced Guidance on Role of Buildings in Addressing COVID-19. Available online: https://resources.wellcertified.com/press-releases/hundreds-of-built-environment-experts-join-forces-in-statement-to-who-urging-enhanced-guidance-on-role-of-buildings-in-addressing-covid-19/ (accessed on 22 August 2022).
- WELL. The Built Environment Has a Huge Role to Play in Improving Health and Wellbeing. 2020. Available online: https://resources.wellcertified.com/articles/the-built-environment-has-a-huge-role-to-play-in-improving-health-and-wellbeing/ (accessed on 22 August 2022).
- WELL. Universal Design: A Tool for Creating Equitable Spaces after COVID-19. 2022. Available online: https://resources.wellcertified.com/articles/universal-design-a-tool-for-creating-equitable-spaces-after-covid-19/ (accessed on 22 August 2022).
- Androulaki, M.; Frangedaki, E.; Antoniadis, P. Optimization of public spaces through network potentials of communities. Procedia Manuf. 2020, 44, 294–301. [Google Scholar] [CrossRef]
- Granell, C.; Bhattacharya, D.; Casteleyn, S.; Degbelo, A.; Gould, M.; Kray, C.; Painho, M.; Trilles, S. Geo-C: Enabling Open Cities and The Open City Toolkit. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Varna, G. Measuring Public Space: The Star Model; Routledge: London, UK, 2016. [Google Scholar]
- Francis, J.; Giles-Corti, B.; Wood, L.; Knuiman, M. Creating sense of community: The role of public space. J. Environ. Psychol. 2012, 32, 401–409. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, P.; Pathan, S.K.; Sharma, K.P. Urban Neighborhood Green Index—A measure of green spaces in urban areas. Landsc. Urban Plan. 2012, 105, 325–335. [Google Scholar] [CrossRef]
- Talen, E.; Allen, E.; Bosse, A.; Ahmann, J.; Koschinsky, J.; Wentz, E.; Anselin, L. LEED-ND as an urban metric. Landsc. Urban Plan. 2013, 119, 20–34. [Google Scholar] [CrossRef]
- Japan Sustainable Building Consortium. Comprehensive Assessment System for Built Environment Efficiency. Japan Sustainable Building Consortium—[Viewed on 20 January 2011]. 2006. Available online: http://www.ibec.or.jp/CASBEE/english/theassessment-method-employed-by-casbee (accessed on 24 August 2022).
- Liu, H.C.; Chen, X.Q.; Duan, C.Y.; Wang, Y.M. Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review. Comput. Ind. Eng. 2019, 135, 881–897. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An introduction to Its Methodology; Sage Publications: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Chan, L.M.; Zeng, M.L. Metadata interoperability and standardization—A study of methodology part I. D-Lib Mag. 2006, 12, 1082–9873. [Google Scholar] [CrossRef]
- Mitchell, D. Right to the City: Social Justice and the Fight for Public Space; Guilford Press: New York, NY, USA, 2003. [Google Scholar]
- Loukaitou-Sideris, A.; Ehrenfeucht, R. Sidewalks: Conflict and Negotiation over Public Space; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- McMillan, D.W.; Chavis, D.M. Sense of Community: A Definition and Theory. J. Community Psychol. 1986, 14, 6–23. [Google Scholar] [CrossRef]
- Johnston, C. What Is Social Value? Teaching Heritage. WWW Page. 2005. Available online: http://www.teachingheritage.nsw.edu.au/1views/w1v_johnston.html (accessed on 20 August 2022).
- Hester, R. Sacred Structures and Everyday Life: A Return to Manteo, North Carolina. In Dwelling Seeing and Designing: Toward a Phenomenological Ecology; Seamon, D., Ed.; State University of New York Press: Albany, NY, USA, 1993; pp. 217–298. [Google Scholar]
- Davis, M. City of Quartz: Excavating the Future in Los Angeles; Verso: London, UK, 1990. [Google Scholar]
- Craig, C.L.; Brownson, R.C.; Cragg, S.E.; Dunn, A.L. Exploring the Effect of the Environment on Physical Activity: A Study Examining Walking to Work. Am. J. Prev. Med. 2002, 23, 36–43. [Google Scholar] [CrossRef]
- Perkins, D.D.; Meeks, J.W.; Taylor, R.B. The Physical Environment of Street Blocks and Resident Perceptions of Crime and Disorder: Implications for Theory and Measurement. J. Environ. Psychol. 1992, 12, 21–34. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City, 1st ed.; The MIT Press: Cambridge, MA, USA, 1960; p. 187. [Google Scholar]
- Heath, T.; Smith, S.; Lim, B. The Complexity of Tall Building Facades. J. Archit. Plan. Res. 2000, 17, 206–220. [Google Scholar]
- Stevens, Q.; Franck, K.A. Memorials as Spaces of Engagement: Design, Use and Meaning; Routledge: London, UK, 2015. [Google Scholar]
- Seamon, D. Place, place identity, and phenomenology: A triadic interpretation based on jg bennett’s systematics. In The Role of Place Identity in the Perception, Understanding, and Design of Built Environments; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 3–21. [Google Scholar]
- Lofland, L.H. The Public Realm: Exploring the City’s Quintessential Social Territory; Routledge: London, UK, 2017. [Google Scholar]
- Tsai, Y.P.; Hung, S.H.; Huang, T.R.; Sullivan, W.C.; Tang, S.A.; Chang, C.Y. What part of the brain is involved in graphic design thinking in landscape architecture? PLoS ONE 2021, 16, e0258413. [Google Scholar] [CrossRef]
- Ranger, N.; Reeder, T.; Lowe, J. Addressing ‘deep’ uncertainty over long-term climate in major infrastructure projects: Four innovations of the Thames Estuary 2100 Project. EURO J. Decis. Processes 2013, 1, 233–262. [Google Scholar] [CrossRef] [Green Version]
- Wise, R.M.; Fazey, I.; Smith, M.S.; Park, S.E.; Eakin, H.C.; Van Garderen, E.A.; Campbell, B. Reconceptualising adaptation to climate change as part of pathways of change and response. Glob. Environ. Change 2014, 28, 325–336. [Google Scholar] [CrossRef]
- Hildebrand, P.E.; Russell, J.T. Adaptability Analysis: A Method for the Design, Analysis and Interpretation of on-Farm Research-Extension; Iowa State University Press: Ames, IA, USA, 1996. [Google Scholar]
- Hinkel, J.; Bisaro, A. Methodological choices in solution-oriented adaptation research: A diagnostic framework. Reg. Environ. Change 2016, 16, 7–20. [Google Scholar] [CrossRef]
- Lyon, A.; Tracy, W.; Colley, M.; Culbert, P.; Mazourek, M.; Myers, J.; Silva, E.M. Adaptability analysis in a participatory variety trial of organic vegetable crops. Renew. Agric. Food Syst. 2019, 35, 296–312. [Google Scholar] [CrossRef]
- Saltelli, A.; D’Hombres, B. Sensitivity analysis didn’t help. A practitioner’s critique of the Stern review. Glob. Environ. Change 2010, 20, 298–302. [Google Scholar] [CrossRef]
- Noacco, V.; Sarrazin, F.; Pianosi, F.; Wagener, T. Matlab/R workflows to assess critical choices in Global Sensitivity Analysis using the SAFE toolbox. MethodsX 2019, 6, 2258–2280. [Google Scholar] [CrossRef]
- Navarrete-Hernandez, P.; Vetro, A.; Concha, P. Building safer public spaces: Exploring gender difference in the perception of safety in public space through urban design interventions. Landsc. Urban Plan. 2021, 214, 104180. [Google Scholar] [CrossRef]
- Lee, S. The safety of public space: Urban design guidelines for neighborhood park planning. J. Urban. Int. Res. Placemaking Urban Sustain. 2022, 15, 222–240. [Google Scholar] [CrossRef]
- Stratigea, A.; Kikidou, M.; Patelida, M.; Somarakis, G. Engaging citizens in planning open public space regeneration: Pedio Agora framework. J. Urban Plan. Dev. 2018, 144, 05017016. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.; Stettler, M.E.; Sukitpaneenit, M.; Xiao, D.; van Dam, K.H. Supporting an integrated transportation infrastructure and public space design: A coupled simulation method for evaluating traffic pollution and microclimate. Sustain. Cities Soc. 2020, 52, 101796. [Google Scholar] [CrossRef]
- Peng, Y.; Peng, Z.; Feng, T.; Zhong, C.; Wang, W. Assessing comfort in urban public spaces: A structural equation model involving environmental attitude and perception. Int. J. Environ. Res. Public Health 2021, 18, 1287. [Google Scholar] [CrossRef]
- Siu, K.W.M. Pleasurable products: Public space furniture with userfitness. J. Eng. Des. 2005, 16, 545–555. [Google Scholar] [CrossRef]
- Ferwati, M.S.; Keyvanfar, A.; Shafaghat, A.; Ferwati, O. A Quality Assessment Directory for Evaluating Multi-functional Public Spaces. Rigas Teh. Univ. Zinat. Raksti 2021, 17, 136–151. [Google Scholar] [CrossRef]
- Bertassello, L.E.; Rao, P.S.C.; Jawitz, J.W.; Aubeneau, A.F.; Botter, G. Wetlandscape hydrologic dynamics driven by shallow groundwater and landscape topography. Hydrol. Processes 2020, 34, 1460–1474. [Google Scholar] [CrossRef]
- Ahmed, T.; Singh, D. Probability density functions based classification of MODIS NDVI time series data and monitoring of vegetation growth cycle. Adv. Space Res. 2020, 66, 873–886. [Google Scholar] [CrossRef]
- Lan, T.; Lin, K.; Xu, C.Y.; Chen, X. A framework for visualizing the convergence performance of global optimization algorithms for hydrological models. In Proceedings of the EGU General Assembly Conference Abstracts, Online, 4–8 May 2020; p. 1792. [Google Scholar]
- Hochschild, V.; Braun, A.; Sommer, C.; Warth, G.; Omran, A. Visualizing landscapes by geospatial techniques. In Modern Approaches to the Visualization of Landscapes; Springer: Wiesbaden, Germany, 2020; pp. 47–78. [Google Scholar]
- Lamit, H.; Shafaghat, A.; Abd Majid, M.Z.; Keyvanfar, A.; Ahmad, M.H.B.; Malik, T.A. Grounded group decision making (GGDM) model. Adv. Sci. Lett. 2013, 19, 3077–3080. [Google Scholar] [CrossRef]
- Morabito, M.; Messeri, A.; Crisci, A.; Pratali, L.; Bonafede, M.; Marinaccio, A. Heat warning and public and workers’ health at the time of COVID-19 pandemic. Sci. Total Environ. 2020, 738, 140347. [Google Scholar] [CrossRef]
- Low, S.; Smart, A. Thoughts about public space during COVID-19 pandemic. City Soc. 2020, 32, 1–5. [Google Scholar] [CrossRef]
- Honey-Rosés, J.; Anguelovski, I.; Chireh, V.K.; Daher, C.; Konijnendijk van den Bosch, C.; Litt, J.S.; Mawani, V.; McCall, M.K.; Orellana, A.; Oscilowicz, E.; et al. The impact of COVID-19 on public space: An early review of the emerging questions–design, perceptions and inequities. Cities Health 2021, 5 (Suppl. S1), S263–S279. [Google Scholar] [CrossRef]
Criteria | Sub-Criteria | Frequency * | Normalization (N) of Network | Absolute Standardization (S) of Network | Integrated N*S | Sub-Criteria Adjusted Integrated Value | Criteria Adjusted Integrated Value | |
---|---|---|---|---|---|---|---|---|
x-Min = A | A/(Max-Min) | |||||||
C1. | Sc.1.1 | 8 | 6 | 0.75 | 1.52765 | 1.146 | 0.307 | 0.833 |
Sc.1.2 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.291 | ||
Sc.1.3 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.291 | ||
Sc.1.4 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.291 | ||
Sc.1.5 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.141 | ||
Sc.1.6 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.092 | ||
Sc.1.7 | 7 | 5 | 0.625 | 1.40783 | 0.880 | 0.081 | ||
Sc.1.8 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 0.935 | ||
Sc.1.9 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 0.935 | ||
Sc.1.10 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.291 | ||
Sc.1.11 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.141 | ||
Sc.1.12 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.092 | ||
C2. | Sc.2.1 | 8 | 6 | 0.75 | 2.03686 | 1.528 | 0.344 | 1.429 |
Sc.2.2 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.242 | ||
Sc.2.3 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
Sc.2.4 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 1.603 | ||
Sc.2.5 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
Sc.2.6 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 1.603 | ||
Sc.2.7 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 1.603 | ||
C3. | Sc.3.1 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.158 | 1.429 |
Sc.3.2 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.242 | ||
Sc.3.3 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
Sc.3.4 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 1.603 | ||
Sc.3.5 | 2 | 1 | 0.125 | 1.73732 | 0.217 | 2.614 | ||
Sc.3.6 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 1.603 | ||
Sc.3.7 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
C4. | Sc.4.1 | 10 | 8 | 1 | 3.29492 | 3.295 | 1.429 | 1.429 |
Sc.4.2 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
Sc.4.3 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.242 | ||
Sc.4.4 | 3 | 1 | 0.125 | 1.10829 | 0.139 | 1.603 | ||
Sc.4.5 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
Sc.4.6 | 4 | 2 | 0.25 | 0.47926 | 0.120 | 0.499 | ||
Sc.4.7 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.242 | ||
C5. | Sc.5.1 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.123 | 1.111 |
Sc.5.2 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.123 | ||
Sc.5.3 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.188 | ||
Sc.5.4 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.188 | ||
Sc.5.5 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.123 | ||
Sc.5.6 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.188 | ||
Sc.5.7 | 6 | 4 | 0.5 | 0.77880 | 0.389 | 0.123 | ||
Sc.5.8 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.188 | ||
Sc.5.9 | 5 | 3 | 0.375 | 0.14977 | 0.056 | 0.188 |
Criteria Adjusted Integrated Value | Sub-Criteria Adjusted Integrated Value | Sub-Criteria Rating Range | Sub-Criteria Assessment Method | Sub-Criteria Assessment Range | Sub-Criteria Final Adjusted Integrated Assessment Range | Sub-Criteria Average Adjusted Integrated Assessment Range | |
---|---|---|---|---|---|---|---|
C1.: 0.833 | Sc.1.1 | 0.307 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting) | 0.4–1.2 | 0.1228–0.3684 | 0.1228 |
Sc.1.2 | 0.291 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting) | 0.4–1.2 | 0.1228–0.3492 | 0.1132 | |
Sc.1.3 | 0.291 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting) | 0.4–1.2 | 0.1228–0.3492 | 0.1132 | |
Sc.1.4 | 0.291 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting) | 0.4–1.2 | 0.1228–0.3492 | 0.1132 | |
Sc.1.5 | 0.141 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting) | 0.4–1.2 | 0.1228–0.1692 | 0.0232 | |
Sc.1.6 | 0.092 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting) | 1.0–3.0 | 0.092–0.276 | 0.0920 | |
Sc.1.7 | 0.081 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Counting activities, behaviors, and postures) | 1.0–3.0 | 0.081–0.243 | 0.0810 | |
Sc.1.8 | 0.935 | 0 =< 10 hrs; 1 = At least 10 hrs; 2 = Most 10 hrs; 3 = No restriction | Observation | 1.0–3.0 | 0.935–2.805 | 0.9350 | |
Sc.1.9 | 0.935 | 3 = None; 2 = Somewhat; 1 = Moderately; 0 = Very much | Observation (determined by signs, location, size, etc.) | 1.0–3.0 | 0.935–2.805 | 0.9350 | |
Sc.1.10 | 0.291 | 3 = Not at all; 2 = Somewhat; 1 = Moderately; 0 = Very much | Users’ subjective rating | 1.0–3.0 | 0.291–0.873 | 0.2910 | |
Sc.1.11 | 0.141 | 0 = Not at all; 1 = Some part/time; 2 = Mostly; 3 = Completely | Users’ subjective rating | 2.0–6.0 | 0.282–0.846 | 0.2820 | |
Sc.1.12 | 0.092 | 0 = cannot; 1 = only in some/ at some time; 2 = in many; 3 = in almost all | Users’ subjective rating | 1.0–3.0 | 0.092–0.276 | 0.0920 | |
Criteria-Total Index Score | 10.0–30.0 | - | - | ||||
C2.:1.429 | Sc.2.1 | 0.344 | 0 = None; 1 = One; 2= Two; 3 = Few | Observation (determined by businesses, community gathering places) | 2.0–6.0 | 0.688–4.128 | 1.7200 |
Sc.2.2 | 0.242 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation (Count of activities, behaviors, and postures) | 1.0–3.0 | 0.242–0.726 | 0.2420 | |
Sc.2.3 | 0.499 | 0 = None; 1 = Somewhat; 2 = Moderately; 3 = Very flexible | Observation (determined by modifications made by users) | 1.0–3.0 | 0.499–1.497 | 0.4990 | |
Sc.2.4 | 1.603 | 0 = None; 1 = One; 2 = Two; 3 = Several | Observation (Counting) | 2.0–6.0 | 3.206–19.236 | 8.0150 | |
Sc.2.5 | 0.499 | 0 = None; 1 = Very little; 2 = Moderate; 3 = High | Observation (Counting) | 1.0–3.0 | 0.499–1.497 | 0.4990 | |
Sc.2.6 | 1.603 | 0 = Not suitable; 1 = Somewhat; 2 = Moderately; 3 = Very suitable | Users’ subjective rating | 2.0 -6.0 | 3.206–19.236 | 8.0150 | |
Sc.2.7 | 1.603 | 0 = Not at all; 1 = Somewhat; 2 = Moderately; 3 = Very much | Users’ subjective rating | 1.0–3.0 | 1.603–4.809 | 1.6030 | |
Criteria-Total Index Score | 10.0–30.0 | - | - | ||||
C3.: 1.429 | Sc.3.1 | 0.158 | 0 = None; 1 = Few; 2 = in some parts; 3 = in many parts | Observation (Counting) | 2.0–6.0 | 0.316–1.896 | 0.7900 |
Sc.3.2 | 0.242 | 0 = None; 1 = Few; 2 = in some parts; 3 = in many parts | Observation (Counting) | 1.0–3.0 | 0.242–0.726 | 0.2420 | |
Sc.3.3 | 0.499 | 0 = None; 1 = Few; 2 = in some parts; 3 = in many parts | Observation (Counting) | 1.0–3.0 | 0.499–1.497 | 0.4990 | |
Sc.3.4 | 1.603 | 0 = Not comfortable; 1 = Somewhat comfortable in some parts; 2 = Comfortable in some parts; 3 = Comfortable in most parts | Observation (Counting) | 2.0–6.0 | 3.206–19.236 | 8.0150 | |
Sc.3.5 | 2.614 | 3 = None; 2 = One or Two; 1 = Few; 0 = Several | Observation (Counting) | 1.0–3.0 | 2.614–7.842 | 2.6140 | |
Sc.3.6 | 1.603 | 0 = Not at all; 1 = Somewhat; 2 = Mostly; 3 = Very much | Users’ subjective rating | 2.0–6.0 | 3.206–19.236 | 8.0150 | |
Sc.3.7 | 0.499 | 0 = None; 1 = Very little; 2 = Moderate; 3 = High | Users’ subjective rating | 1.0–3.0 | 0.499–1.497 | 0.4990 | |
Criteria-Total Index Score | 10.0–30.0 | - | - | ||||
C4.: 1.429 | Sc.4.1 | 1.429 | 0 = None; 1 = One; 2 = Two; 3 = Few | Observation | 1.0–3.0 | 1.429–4.287 | 1.4290 |
Sc.4.2 | 0.499 | 0 = Limited; 1 = Low; 2 = Medium; 3 = High | Observation | 1.0–3.0 | 0.499–1.497 | 0.4990 | |
Sc.4.3 | 0.242 | 0 = None; 1 = Somewhat; 2 = Moderately; 3 = Very flexible | Observation | 1.0–3.0 | 0.242–0.726 | 0.2420 | |
Sc.4.4 | 1.603 | 3 = Very much; 2 = Some safety; 1 = Not at all; 0 = Unsafe | Users’ subjective rating | 1.0–3.0 | 1.603–4.809 | 1.6030 | |
Sc.4.5 | 0.499 | 0 = Not safe; 1 = Somewhat unsafe; 2 = Mostly safe; 3 = Very safe | Users’ subjective rating | 2.0–6.0 | 0.998–5.988 | 2.4950 | |
Sc.4.6 | 0.499 | 0 = Not safe; 1 = Somewhat unsafe; 2 = Mostly safe; 3 = Very safe | Users’ subjective rating | 2.0–6.0 | 0.998–5.988 | 2.4950 | |
Sc.4.7 | 0.242 | 0 = Not safe; 1 = Somewhat unsafe; 2 = Mostly safe; 3 = Very safe | Users’ subjective rating | 2.0–6.0 | 0.484–2.904 | 1.2100 | |
Criteria-Total Index Score | 10.0–30.0 | - | - | ||||
C5. 1.111 | Sc.5.1 | 0.123 | 0 = None; 1 = Very few; 2 = Moderate; 3 = Several | Observation | 1.0–3.0 | 0.123–0.369 | 0.1230 |
Sc.5.2 | 0.123 | 0 = Very poor; 1 = Moderate; 2 = Good; 3 = Very good | Observation | 1.0–3.0 | 0.123–0.369 | 0.1230 | |
Sc.5.3 | 0.188 | 0 = Not at all; 1 = Somewhat permeable; 2 = Moderately permeable; 3 = Very permeable | Observation | 1.0–3.0 | 0.188–0.564 | 0.1880 | |
Sc.5.4 | 0.188 | 0 = Not at all; 1 = Somewhat personalized; 2 = Moderately personalized; 3 = Very personalized | Observation | 1.0–3.0 | 0.188–0.564 | 0.1880 | |
Sc.5.5 | 0.123 | 0 = Poor articulation; 1 = Somewhat articulated; 2 = Moderate articulation; 3 = Very well articulated | Observation | 1.0–3.0 | 0.123–0.369 | 0.1230 | |
Sc.5.6 | 0.188 | 0 = None; 1 = Few; 2 = Moderate; 3 = High | Observation (Counting) | 1.0–3.0 | 0.188–0.564 | 0.1880 | |
Sc.5.7 | 0.123 | 0 = None; 1 = Very little; 2 = Moderate; 3 = High | Observation (Counting) | 1.0–3.0 | 0.123–0.369 | 0.1230 | |
Sc.5.8 | 0.188 | 0 = Not at all; 1 = Somewhat; 2 = Moderate; 3 = Very much | Users’ subjective rating | 2.0–6.0 | 0.376–2.256 | 0.9400 | |
Sc.5.9 | 0.188 | 0 = Not at all; 1 = Somewhat; 2 = Moderate; 3 = Very much | Users’ subjective rating | 1.0–3.0 | 0.188–0.564 | 0.1880 | |
Criteria-Total Index Score | 10.0–30.0 | - | - | ||||
Total Index rating (Out of 150) | 50.0–150.0 | - | - |
Criteria Adjusted Integrated Value * | Sub-Criteria Adjusted Integrated Value ** | Sub-Criteria Assessment Value Range | Sub-Criteria Final Assessment Value Range | Sub-Criteria Assessment Value *** | Sub-Criteria Final Assessment Value through the Case Study | Stochastic Error (SE) | |
---|---|---|---|---|---|---|---|
C1.: 0.833 | Sc.1.1 | 0.307 | 0.4–1.2 | 0.1228–0.3684 | 1.200 | 0.368 | 0.042 |
Sc.1.2 | 0.291 | 0.4–1.2 | 0.1228–0.3492 | 1.021 | 0.297 | −0.122 | |
Sc.1.3 | 0.291 | 0.4–1.2 | 0.1228–0.3492 | 1.112 | 0.324 | 0.051 | |
Sc.1.4 | 0.291 | 0.4–1.2 | 0.1228–0.3492 | 0.600 | 0.175 | 0.051 | |
Sc.1.5 | 0.141 | 0.4–1.2 | 0.1228–0.1692 | 0.754 | 0.106 | −0.009 | |
Sc.1.6 | 0.092 | 1.0–3.0 | 0.092–0.276 | 2.000 | 0.184 | 0.092 | |
Sc.1.7 | 0.081 | 1.0–3.0 | 0.081–0.243 | 2.330 | 0.189 | 0.020 | |
Sc.1.8 | 0.935 | 1.0–3.0 | 0.935–2.805 | 3.000 | 2.805 | 0.000 | |
Sc.1.9 | 0.935 | 1.0–3.0 | 0.935–2.805 | 2.330 | 2.179 | −0.935 | |
Sc.1.10 | 0.291 | 1.0–3.0 | 0.291–0.873 | 1.330 | 0.387 | 0.291 | |
Sc.1.11 | 0.141 | 2.0–6.0 | 0.282–0.846 | 5.106 | 0.720 | −0.282 | |
Sc.1.12 | 0.092 | 1.0–3.0 | 0.092–0.276 | 3.000 | 0.276 | 0.092 | |
C2.:1.429 | Sc.2.1 | 0.344 | 2.0–6.0 | 0.688–4.128 | 6.000 | 0.344 | 1.376 |
Sc.2.2 | 0.242 | 1.0–3.0 | 0.242–0.726 | 2.670 | 0.242 | 0.061 | |
Sc.2.3 | 0.499 | 1.0–3.0 | 0.499–1.497 | 2.670 | 0.499 | −0.249 | |
Sc.2.4 | 1.603 | 2.0–6.0 | 3.206–19.236 | 6.000 | 1.603 | 6.412 | |
Sc.2.5 | 0.499 | 1.0–3.0 | 0.499–1.497 | 1.330 | 0.499 | 0.499 | |
Sc.2.6 | 1.603 | 2.0–6.0 | 3.206–19.236 | 5.106 | 1.603 | 9.618 | |
Sc.2.7 | 1.603 | 1.0–3.0 | 1.603–4.809 | 2.000 | 1.603 | −1.603 | |
C3.: 1.429 | Sc.3.1 | 0.158 | 2.0–6.0 | 0.316–1.896 | 3.773 | 0.596 | 0.316 |
Sc.3.2 | 0.242 | 1.0–3.0 | 0.242–0.726 | 2.670 | 0.646 | −0.242 | |
Sc.3.3 | 0.499 | 1.0–3.0 | 0.499–1.497 | 1.600 | 0.798 | −0.499 | |
Sc.3.4 | 1.603 | 2.0–6.0 | 3.206–19.236 | 7.880 | 12.632 | 0.000 | |
Sc.3.5 | 2.614 | 1.0–3.0 | 2.614–7.842 | 1.070 | 2.797 | −1.307 | |
Sc.3.6 | 1.603 | 2.0–6.0 | 3.206–19.236 | 6.000 | 9.618 | −3.200 | |
Sc.3.7 | 0.499 | 1.0–3.0 | 0.499–1.497 | 2.670 | 1.332 | 0.499 | |
C4.: 1.429 | Sc.4.1 | 1.429 | 1.0–3.0 | 1.429–4.287 | 3.000 | 4.287 | −1.429 |
Sc.4.2 | 0.499 | 1.0–3.0 | 0.499–1.497 | 3.000 | 1.497 | −0.499 | |
Sc.4.3 | 0.242 | 1.0–3.0 | 0.242–0.726 | 2.000 | 0.484 | 0.000 | |
Sc.4.4 | 1.603 | 1.0–3.0 | 1.603–4.809 | 3.000 | 4.809 | −1.603 | |
Sc.4.5 | 0.499 | 2.0–6.0 | 0.998–5.988 | 5.106 | 2.548 | −0.998 | |
Sc.4.6 | 0.499 | 2.0–6.0 | 0.998–5.988 | 5.106 | 2.548 | −0.998 | |
Sc.4.7 | 0.242 | 2.0–6.0 | 0.484–2.904 | 4.226 | 1.023 | −0.484 | |
C5. 1.111 | Sc.5.1 | 0.123 | 1.0–3.0 | 0.123–0.369 | 1.000 | 0.123 | 0.123 |
Sc.5.2 | 0.123 | 1.0–3.0 | 0.123–0.369 | 1.000 | 0.123 | 0.123 | |
Sc.5.3 | 0.188 | 1.0–3.0 | 0.188–0.564 | 1.000 | 0.188 | −0.188 | |
Sc.5.4 | 0.188 | 1.0–3.0 | 0.188–0.564 | 1.000 | 0.188 | −0.188 | |
Sc.5.5 | 0.123 | 1.0–3.0 | 0.123–0.369 | 1.000 | 0.123 | −0.123 | |
Sc.5.6 | 0.188 | 1.0–3.0 | 0.188–0.564 | 1.000 | 0.188 | 0.188 | |
Sc.5.7 | 0.123 | 1.0–3.0 | 0.123–0.369 | 1.000 | 0.123 | 1.757 | |
Sc.5.8 | 0.188 | 2.0–6.0 | 0.376–2.256 | 6.000 | 1.128 | 0.376 | |
Sc.5.9 | 0.188 | 1.0–3.0 | 0.188–0.564 | 3.000 | 0.564 | −0.188 |
Multiple R | 0.648895 | |||||
R Square | 0.421065 | |||||
Adjusted R Square | 0.406591 | |||||
Standard Error | 1.906881 | |||||
ANOVA | Df * | SS ** | MS *** | F | Significance F | |
Regression | 1 | 105.7855 | 105.7855 | 29.09234 | 3.35 × 10−6 | |
Residual | 40 | 145.4478 | 3.636196 | |||
Total | 41 | 251.2333 | ||||
Coefficients | Standard Error | t Stat | p-value | Lower 95% | Upper 95% | |
Intercept | −0.00733 | 0.405089 | −0.01809 | 0.985658 | −0.82604 | 0.811388 |
X Variable 1 | 2.63422 | 0.488385 | 5.393732 | 3.35 × 10−6 | 1.647156 | 3.621284 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafaghat, A.; Ferwati, S.; Keyvanfar, A. COVID-19-Adapted Multi-Functional Corniche Street Design Assessment Model: Applying Global Sensitivity Analysis (GSA) and Adaptability Analysis Methods. Sustainability 2022, 14, 10940. https://doi.org/10.3390/su141710940
Shafaghat A, Ferwati S, Keyvanfar A. COVID-19-Adapted Multi-Functional Corniche Street Design Assessment Model: Applying Global Sensitivity Analysis (GSA) and Adaptability Analysis Methods. Sustainability. 2022; 14(17):10940. https://doi.org/10.3390/su141710940
Chicago/Turabian StyleShafaghat, Arezou, Salim Ferwati, and Ali Keyvanfar. 2022. "COVID-19-Adapted Multi-Functional Corniche Street Design Assessment Model: Applying Global Sensitivity Analysis (GSA) and Adaptability Analysis Methods" Sustainability 14, no. 17: 10940. https://doi.org/10.3390/su141710940
APA StyleShafaghat, A., Ferwati, S., & Keyvanfar, A. (2022). COVID-19-Adapted Multi-Functional Corniche Street Design Assessment Model: Applying Global Sensitivity Analysis (GSA) and Adaptability Analysis Methods. Sustainability, 14(17), 10940. https://doi.org/10.3390/su141710940