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Abstract: The growing frequency of news arrivals, partly fueled by the proliferation of data sources,
has made the assumptions of the classical probability of informed trading (PIN) model outdated.
In particular, the model’s assumption of a single type of information event no longer reflects the
complexity of modern financial markets, making the accurate detection of information types (layers)
crucial for estimating the probability of informed trading. We propose a layer detection algorithm to
accurately find the number of distinct information types within a dataset. It identifies the number of
information layers by clustering order imbalances and examining their homogeneity using properly
constructed confidence intervals for the Skellam distribution. We show that our algorithm manages
to find the number of information layers with very high accuracy both when uninformed buyer and
seller intensities are equal and when they differ from each other (i.e., between 86% and 95% accuracy
rates). We work with more than 500,000 simulations of quarterly datasets with various characteristics
and make a large set of robustness checks.

Keywords: multilayer probability of informed trading; MPIN; layer detection algorithm; cluster
analysis; information asymmetry; private information

JEL Classification: c13; c38; G14; G17

1. Introduction

The central question addressed in this paper is “how many information layers (or
types) exist in a financial dataset?”. We rely on one of the most frequently used informed
trading measures in the literature, which is the probability of informed trading (PIN) of
Easley et al. (1996). It is evident that any data (e.g., stock-quarter) in current financial
markets is likely to include various information events that may generate information
asymmetries of unequal impacts.1 This, in turn, directly challenges the main assumption
in the broadly used PIN measure: that all the information events in a dataset are of a
unique type, meaning they have a uniform impact on trading activity. The model has
two additional assumptions: (i) at most one information event occurs per day; (ii) all
the information events occur outside of trading sessions. These assumptions are also
restrictive and designed so that the aggregated impact of multiple events per day or
the partial impact of an information event on a day would contradict the assumption of
uniformity in information events’ impacts observed daily. Thus, detecting various levels
of information asymmetries in data not only spots independent information events with
different magnitudes but also incorporates partial and aggregated information effects on
each day. Therefore, knowing the number of information types in the data provides a better
understanding of information asymmetry in financial markets.

Our paper addresses the challenge of accurately detecting the number of different
information layers in financial data. We present an algorithm that analyzes financial data
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and categorizes information days into layers with distinct impacts on trading activity,
thereby determining the number of these layers. Thus, our final output is the number of
information types in data. This output is of importance for two main reasons. First, it is
a useful standalone information that can be utilized by researchers and practitioners in
the financial markets. Comparisons among individual assets or asset classes and through
different time periods or markets can add value. For example, Ghachem and Ersan (2023a)
compare the number of associated information types in small and large stocks listed in
NASDAQ Stockholm. They show that on average, quarterly data for large stocks exhibit
more types when compared to the one for small stocks. A larger number of information
types, reflecting the existence of several distinct levels of information asymmetry, implies
that the examined asset and period might be associated with a diversity of related informa-
tion events. While for datasets with a single information type, researchers and practitioners
can rely on the traditional PIN model and its estimates, they should be cautious in the case
of multiple information types. Second, our output, i.e., the number of information layers,
can also be used as a preliminary variable in estimating the probability of informed trading,
for instance, via a straightforward generalization of the PIN model that retains its main
features but allows for the presence of multiple information layers, i.e., information types
with different impacts on trading activity (See Ersan 2016).2

Ersan (2016) devises an algorithm to estimate the number of information layers in
datasets. If the rates of uninformed traders on the buy side and sell side are assumed equal
to each other, this algorithm, with no adjustment to the data, has high accuracy rates, i.e.,
up to 96% for our simulated datasets. Theoretically, it is sensible to expect similar rates of
uninformed buys and sells.3 Nevertheless, based on market conditions and overall supply
and demand, these rates may differ from each other. For example, uninformed traders may
place a larger number of sell orders due to the scarcity of funding through a credit crunch
(Lin and Ke 2011). Slightly relaxing the assumption of equal rates on the buy and sell
sides significantly reduces the estimation power of the algorithm in Ersan (2016), dropping
it to as low as 24% in our tests. Ersan (2016) suggests adjusting the data in cases where
the uninformed rates are assumed to be unequal. The suggested adjustment utilizes the
minimum levels of buys and sells (buyer-initiated and seller-initiated trades) in a dataset as
proxies for uninformed buys and sells. This relies on the assumption that the day with the
minimum number of buys (sells) should be of the type of days with no positive (negative)
events, thus a representative of uninformed buy (sell) rates. While implementing the layer
detection algorithm with the proxy-adjustment improves the layer estimation in the case of
unequal informed rates, the overall precision is not sufficient especially when the number
of layers is relatively large. More specifically, our tests reveal that the estimation accuracy
decreases monotonically with the simulated number of layers in a dataset, i.e., 99% for
one-layer datasets while around 62% (43%) for four (eight) layer datasets.

In this paper, we provide a new algorithm with two main improvements to the
algorithm of Ersan (2016), both at the level of the data adjustment and the detection
of the information layers. Our algorithm not only provides very high accuracy in the
detection of the information layers in the data, but also fares considerably well in the exact
detection of the no-information days in the data. We identify the number of information
layers correctly in more than 94% (86%) of the simulations with one (eight) layer(s) when
two uninformed rates differ from each other by up to 25%-fold. Both academicians and
practitioners can easily use our introduced algorithm and compare it to other algorithms
that detect information layers via the use of corresponding functions and arguments in the
PINstimation package of the R software.4 Researchers can also inspect the implementation
of the algorithm proposed in this paper since the code is open-source and available on the
GitHub and CRAN platforms.5

An accurate identification of the number of information layers might lead to significant
improvements in the informed trading estimates. Ersan (2016) provides three sets of
empirical evidence comparing the performances of the PIN and MPIN models. First, the
study shows that only 4% of the quarterly datasets involve a single type of information
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event, as assumed in the PIN model, while around 75% of the datasets involve two to five
layers of information with impacts of different magnitudes. This finding aligns more closely
with our perception of the recent financial markets and provides supporting evidence for
the validity of our main research question. Second, the estimation results using both
the PIN and the MPIN model indicate that the PIN model estimates all the parameters
(i.e., information event occurrence probability, bad-event probability, uninformed trading
intensities, and informed trading intensity) and the probability of informed trading with
marginal errors when there is a single information type (e.g., 0.1% mean absolute error for
PIN estimates). However, the estimation errors become substantially high when the data
contains two to eight information layers (e.g., MAE of above 4% for PIN; much larger errors
for model parameters). The large estimation errors are independent of the number of layers
implying that the PIN model performs well only in the case of a unique information type in
the data, which is in line with the model’s main assumptions. In contrast, the MPIN model
estimates the probability of informed trading as well as all the parameters with consistently
high accuracy for datasets with one to eight information layers (e.g., MAEs for PIN that is
0.1% for all types of datasets). Third, using real data on 361 stocks listed on the Turkish
stock exchange, the estimated probability of informed trading is significantly higher with
the MPIN model, reflecting the model’s added value in capturing multiple information
types in data (23.7% and 31.9% on average for the PIN and MPIN models, respectively).

The paper has the potential to contribute to two branches of literature. The first
branch consists of studies proposing the extensions and modifications of the original
PIN model. Due to concerns about the validity of the underlying assumptions, extended
models have been suggested. Duarte and Young (2009) introduce the adjusted probability
of informed trading that incorporates the probability of a liquidity shock relaxing the
assumption of attributing all the excess trading to informed trading. The paper shows that
the liquidity component, rather than the informed trading component, influences stock
returns. Brennan et al. (2018) consider the daily conditional probabilities of information
events derived from unconditional probabilities in the PIN model. Brennan et al. (2016)
further differentiate between informed trading through good and bad event days. They
show that PIN through bad events is priced while the other is not. Ersan (2016) proposes
a multi-layer probability of informed trading that relaxes the assumptions of a single
type of information event with constant impact, a single event per day, and information
events occurring only outside of trading hours. Our paper proposes a new algorithm that
assumes and accurately detects multiple information layers in trading data, and, thereby,
aims to enhance our understanding of the nature of informed trading in modern complex
trading environments.

Secondly, our paper is related to the works that focus on the challenges of the estima-
tion of PIN models using maximum likelihood estimation. These challenges fall essentially
into two categories: the floating-point exception and the convergence to a local maxi-
mum (and boundary solutions). The issue of floating-point exception is addressed mainly
through the introduction of the logarithmic factorizations of the corresponding likelihood
functions (e.g., Easley et al. 2010; Lin and Ke 2011). These logarithmic factorizations aim to
prevent overflow problems that would arise due to the large numbers in the power terms,
and it is shown that they may lead to unbiased PIN estimates. As an alternative approach,
Jackson (2013) suggests rescaling the daily trade numbers. Ke et al. (2019) show that the
use of factorization is more stable when compared to scaling. As for the issue of local
maxima, researchers address this challenge by suggesting strategies for the determination
of relevant initial parameter sets to prime the maximum likelihood estimation. Yan and
Zhang (2012) suggest the use of multiple sets derived from a grid search algorithm, aiming
to uniformly cover the parameter space. Gan et al. (2015) propose that a single initial
parameter set derived via a clustering algorithm is sufficient in estimating the PIN model.
Ersan and Alıcı (2016) suggest the use of a clustering algorithm generating a limited number
of initial sets that lead to unbiased PIN estimates in a time-efficient manner. Cheng and Lai
(2021) developed two strategies to derive initial parameter sets for the adjusted PIN model,
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namely using a grid-search algorithm and an approximation of the compound Poisson
distribution using a bivariate normal distribution. The relaxation of the assumption of
a single information type in trading data brings forth a new challenge to the maximum
likelihood estimation of the PIN model: the beforehand determination of the number of
information layers in the data.6 It follows that a correct detection of information layers in
the data is essential for an accurate estimation of informed trading. Our paper provides
an empirically robust algorithm to address this new challenge and accurately detect the
number of layers in the datasets.

Our study may also contribute to the extensive literature on informed trading that
relies on the probability of informed trading (PIN) models. These works cover diverse
topics such as PIN around news arrivals (e.g., Aktas et al. 2007; Duarte et al. 2015; Dang
et al. 2024) and pricing of PIN (Duarte and Young 2009; Lai et al. 2014; Brennan et al.
2016). By providing an accurate detection of information types, and thereby, more accurate
estimates of informed trading, our algorithm can enhance future studies within the field.
Additionally, our study relates to the broader literature that develops new measures or
proxies for informed trading for examining the recent financial markets (e.g., Berkman
et al. 2014; Roşu 2019; Yang et al. 2020; Boehmer et al. 2021; Lof and van Bommel 2023;
Bogousslavsky et al. 2024).

The relevance of our paper is more pronounced in today’s evolved financial markets.
In fact, detecting and quantifying informed trading from intraday data have become
excessively challenging due to recent developments in financial markets. Markets have
witnessed a significant increase in trade intensity, driven by the growing involvement of
high-frequency trading (HFT) as well as advancements in financial technology (fintech).
High-frequency trading, characterized by the placement of a large number of orders at
extremely high speeds, has revolutionized the market dynamics. In the last 15 years, HFT
has constituted more than half of the activity in developed markets (e.g., Brogaard 2010;
Bazzana and Collini 2020). O’Hara (2015) points out that SEC data reflects that 98% of
all orders are canceled while 23% are within 50 milliseconds. HFT activity has diverse
and dynamic effects on non-HFTrs (e.g., competition, profits, and crowding out), and on
the markets (e.g., liquidity, volatility, and price formation). Fintech advancements have
amplified these effects by enabling easier and more widespread access to financial services
through digital platforms while at the same time introducing complexity and diversity
to HFT strategies (e.g., Arifovic et al. 2019; Hendershott et al. 2021; Amnas et al. 2024).
Moreover, fintech developments such as blockchain and machine learning have further
increased the efficiency of transactions and endowed market participants with the Internet
of Things (IoT), robo-advising, and data analytics (Chen et al. 2019; El Hajj and Hammoud
2023). As a result, these recent developments led to increased financial market participation,
an excessive number of orders and trades, and complexity, namely due to more convoluted
interactions among the diverse types of market participants and trading strategies. In this
setting, it is hard to defend the assumption of a single type of information event. The
sophistication and complexity of trading activity, the high numbers of actors, and the
sensitivity of markets to news events all make the existence of multiple information types
very plausible. In this respect, our paper provides the underlying “infrastructure” for the
accurate detection of the types of information present in the data, allowing for an accurate
estimation of the probability of informed trading.

The paper is organized as follows: Section 2 reviews the layer detection concept and
describes the need for data adjustment. Section 3 details our data adjustment procedure
and improved layer detection algorithm. Section 4 provides empirical evidence for the
accuracy rates of the algorithm and the last section concludes.

2. Layer Detection and Data Adjustment

The algorithm of Ersan (2016) for finding the number of layers in trade data relies
on the distribution of absolute order imbalance. The motivation behind the choice of the
absolute order imbalance is the fact that informed trade intensity µj is common to both
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buys and sells in the same layer j. We will show here that clustering data based on absolute
order imbalance, defined as the absolute difference between buys and sells, lacks a defined
distribution when the uninformed buy and uninformed sell rates differ from each other. To
address this challenge, we show theoretically that clustering on absolute order imbalance
remains effective if the data are adjusted prior to the clustering step. We show that this data
adjustment is performed using the uninformed buy and sell rates. Since no-information
days are the days featuring only uninformed traders, the uninformed buy and sell rates are
calculated using trading data relative to these days.

We begin our theoretical investigation by defining the necessary notations. Note
that Po(λ) refers to a Poisson distribution with parameter λ, while Sk(λ1, λ2) refers to
the Skellam distribution with the parameters λ1 and λ2, which is the distribution of the
difference of two Poisson-distributed random variables with the parameters λ1 and λ2,
respectively. Recall that the Skellam distribution is the discrete probability distribution
of the difference between two independent Poisson-distributed random variables with
the means λ1 and λ2. For example, if X ∼ Po(λ1) and Y ∼ Po(λ2), then the difference
Z = X − Y follows a Skellam distribution, denoted as Z ∼ Sk(λ1, λ2). In our context, as
the number of buys B and the number of sells S are both Poisson-distributed, the order
imbalance OI, defined as the difference between buys and sells (OI = B− S), is also the
difference between two Poisson-distributed random variables. Therefore, OI is Skellam-
distributed. The distribution of the different trade intensities in the unadjusted data is
displayed in Table 1.

Table 1. Distribution of trade intensities in unadjusted data.

Layer j [Bad News] No-Info Cluster Layer j [Good News]

Buys [B] Bj− ∼ Po(εb) B0 ∼ Po(εb) Bj+ ∼ Po
(

εb + µj

)
Sells [S] Sj− ∼ Po

(
εs + µj

)
S0 ∼ Po(εs) Sj+ ∼ Po(εs)

Order Imbalance [OI]
OIj− ∼

Sk
(

εb, εs + µj

) OI0 ∼ Sk(εb, εs)
OIj+ ∼

Sk
(

εb + µj, εs

)

In the case of equal uninformed rates on the buy and sell sides (εb = εs), OIj− and OIj+

are symmetric around zero7, then
∣∣OIj−

∣∣ and
∣∣OIj+

∣∣ are identically distributed, enabling
the use of absolute order imbalances in the Skellam distribution tests (Figure 1). In contrast,
when εb ̸= εs,

∣∣OIj−
∣∣ and

∣∣OIj+
∣∣ are not identically distributed, and the absolute order

imbalance for the unadjusted data does not have a well-defined distribution (Figure 2).
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The simulations in Ersan (2016) have equal uninformed rates. Thus, the layer detection
algorithm using absolute order imbalances in the unadjusted data successfully estimates
the true number of layers in the simulated series. The paper proposes using the minimum
daily values of buys and sells as an adjustment when relaxing the assumption of a uniform
uninformed trading rate (εb = εs). This adjustment is applied when the levels of buys and
sells on no-information days, denoted as εb and εs, are assumed to be different. Theoretically,
the minimum number of buys (sells) in the data most likely belongs to a non-event day,
and can, therefore, serve as proxies to uninformed buy (sell) rate. While the minimal values
may proxy the uninformed rates, they are not necessarily precise estimates thereof. The
main reason is that the uninformed buy (sell) rate is the average of all the intensities in
all the days with no positive (negative) event. Thus, the minimal values most likely differ
from the averages. Given the model assumption that buys (or sells) in any type of day
follow a Poisson distribution, we do not expect large differences between the minimum
and the mean values, especially when the trading intensity is high. In fact, our simulation
results reveal that the accuracy rates in the use of proxy-adjustment can be as low as 60%
when the number of layers is relatively large, i.e., eight.

Our strategy of the adjustment of the data aims to derive more accurate estimates
of uninformed rates as an initial step in layer detection. Let XB and XS be two Poisson-
distributed random variables such that XB ∼ Po(εb), and XS ∼ Po(εs). We construct
the adjusted buys and sells in layer j as follows: B∗j = Bj + XS and S∗j = Sj + XB. The

order imbalance for layer j of the adjusted data is OI*
j = B∗j − S∗j . We report the theoretical

distributions of the trading intensities in the adjusted data in Table 2.

Table 2. Theoretical distributions for trade intensities in adjusted data.

Layer j [Bad News] No-Information Cluster Layer j [Good News]

B* B∗j− ∼ Po(εb + εs) B∗0 ∼ Po(εb + εs) B∗j+ ∼ Po
(

εb + εs + µj

)
S* S∗j− ∼ Po

(
εb + εs + µj

)
S∗0 ∼ Po(εb + εs) S∗j+ ∼ Po(εb + εs)

OI* OI*
j− ∼ Sk

(
εb + εs, εb + εs + µj

)
OI∗0 ∼ Sk(εb + εs, εb + εs) OI∗j+ ∼ Sk

(
εb + εs + µj, εb + εs

)
E
[
OI*] −µj 0 +µj

V
[
OI*] 2εb + 2εs + µj 2εb + 2εs 2εb + 2εs + µj

Since OI∗j+ and OI∗j− are both Skellam-distributed with E
[
OI∗j+

]
= −E

[
OI∗j−

]
= +µj,

and V
[
OI∗j+

]
= V

[
OI∗j−

]
, then OI∗j+ and OI∗j− are symmetrically distributed around 0. We

show using the following two lemmas that
∣∣∣OI∗j+

∣∣∣ and
∣∣∣OI∗j−

∣∣∣ are identically distributed,
which is the distribution of AOI.

Lemma 1. Let a, b ∈ R∗+, with a > b. Let X+ ∼ Sk(a, b) with distribution function F+ and X− ∼
Sk(b, a) with distribution function F−, then F−(−x) = 1− F+(x).
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Proof. See Appendix A. □

Lemma 2. If X+ ∼ Sk(a, b), and X− ∼ Sk(b, a), then |X+|, and |X−| are identically distributed.

Proof. See Appendix A. □

Lemma 2 proves that the absolute order imbalance in cluster j
(

AOI*
j

)
follows the

distribution of
∣∣∣OI∗j+

∣∣∣, or
∣∣∣OI∗j−

∣∣∣—which are identically distributed. This was, indeed, the
reason behind the data adjustment.

Clearly, AOI* is not Skellam-distributed, since the support of the Skellam distribution
is R while the support of AOI* is [0,+∞). By taking the absolute values, the negative order
imbalances shift to the positive side. If the OI in layer j centered on +µj takes negative
values with relatively significant probability, then taking the absolute value thickens the
tail of the distribution of AOI∗ above 0, and the distribution will not behave as a Skellam
distribution in the neighborhood of zero. However, if the mean of the OI∗ observations is
sufficiently higher than zero (the probability assigned to negative values is very low), then
the distribution of AOI∗ observations can be approximated by a Skellam distribution.

From Table 2, we see that the cluster whose OI observations are closest to zero is the
no-information cluster. In the information layer j, the absolute order imbalance

(
AOI*

)
observations are centered on the corresponding excess trade intensity +µj. Therefore, as

long as the lowest informed trade intensity is sufficiently higher than zero
(

min
k

µk ≫ 0
)

,

the approximation of the distribution of the AOI observations with a Skellam distribution
is justified.

In the MPIN model, εb and εs denote the means of the Poisson-distributed buys
and sells on no-information days, as presented in Table 1. To estimate these means from
our dataset, we first identify the no-information days, referred to as the no-information
cluster. Given that the sample mean is the maximum likelihood estimator of the mean of a
distribution, we use the average number of buys and sells on these no-information days as
valid estimates for εb and εs. Our algorithm’s initial step is to identify the no-information
days. After the identification, the averages of buys and sells are computed to provide
the estimates for εb and εs, which will be utilized later for the data adjustment. In the
subsequent steps, we identify the number of information layers by successively clustering
the AOI* observations until all the observations within every cluster can be fitted in a
confidence interval of a Skellam distribution with relevant parameters—a strategy very
similar, yet not identical, to the strategy developed by Ersan (2016).

3. Precise Adjustment of Data and an Improved Detection Algorithm

The algorithm consists of three major steps, starting by finding the no-information clus-
ter, and then adjusting the data for displacement before detecting the information layers.

3.1. Finding the No-Information Cluster

As detailed above, adding to the original random variables B and S two random
Poisson variables XS and XB with the means εs and εb, respectively, leads to symmetric
Skellam distributions for OI∗j+, and OI∗j−. We will find our estimates as the average of
buys and sells from the no-information cluster.

Identifying the no-information cluster relies on its property, being the cluster with the
lowest trade intensity. To differentiate between the no-information cluster and the other
clusters with different distributions, we rely on the property that order imbalances within
each cluster (OI) follow a Skellam distribution.

For a confidence level α, we say that a cluster passes the α-Skellam test if all the OI
observations in that cluster belong to the α-confidence interval of a Skellam distribution
around the mean of the OI observations within that cluster. The average of the observa-
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tions within each cluster is used as the center of the confidence interval, as it represents
the maximum likelihood estimate of the mean for a Skellam distribution. The use of the
α-Skellam test is justified as follows: if at a high confidence level α (e.g., 0.99), all the
observations within a cluster fall within the confidence interval centered at the cluster
average, it suggests that the observations are generated by the same distribution. If some
observations fall outside this interval, it implies these observations are likely generated by
a different distribution. In practical terms, this implies that significant deviations in the
order imbalance (OI) indicate the presence of new information in the market. Therefore,
the α-Skellam test acts as a detector for new information layers with different magnitudes.
Observations within the confidence interval suggest consistent market reactions to simi-
lar information, while those outside the interval indicate responses to different types of
information, suggesting a new layer of market information impacting the buys and sells.8

The steps of the algorithm are as follows:

1. Cluster the trading days based on the OI values into
⌊ n

2
⌋

clusters9, where n is the
number of days in the dataset.10

2. Sort the clusters by increasing the trade intensity, defined as the sum of average buys
and sells within each cluster, and store them in a list S.

3. Let the no-information cluster be the cluster with the lowest trade intensity, C1 = S[1].
Initialize j: j←− 1 .

4. In each iteration,

4.1. Merge the no-information cluster with the next cluster in the list: Cj+1 =
Cj ∪ S[j + 1].

4.2. Run the α-Skellam test on the no-information cluster Cj+1.
4.3. If Cj+1 passes the α-Skellam test, then j←− j + 1 , and run step 4.1.
4.4. If Cj+1 fails the α-Skellam test, the algorithm stops, and the no-information

cluster is Cj.

The theoretical values of εb and εs are approximated by the average buys and sells
in the no-information cluster ε̂b = 1

|Cj| ∑
k∈Cj

Bk, and ε̂s =
1
|Cj| ∑

k∈Cj

Sk, where
∣∣Cj

∣∣ counts the

number of elements in the cluster Cj.

3.2. Adjusting the Data for Displacement

In the theoretical section above, we have shown that an adjustment of the data with
two Poisson-distributed random variables leads to a well-defined distribution for the AOI.
Here, we deviate from this ideal scenario by making two approximations:

[1]. First, we use the values ε̂b and ε̂s—estimated from the identified no-information
cluster in the previous step—as the reliable estimates of the theoretical εb and εs.

[2]. Second, instead of generating values from the Poisson distributions centered on ε̂b
and ε̂s, we simply add ε̂b to all the observations Si and ε̂s to all the observations Bi.
Such approximation is justified by the fact that a Poisson distribution is centered on
its mean, especially when ε̂b and ε̂s are relatively large.

3.3. Detecting the Information Layers

This step applies a slightly modified version of the algorithm of Ersan (2016). After
excluding the observations in the no-information cluster, we partition the adjusted data
based on the AOI* observations. We fix a confidence level α, and say that an AOI*-layer j
passes the α-Skellam test if all the AOI observations in that layer belong to the α-confidence
interval of a Skellam distribution around the average AOI* observations with that layer.
The initial size of the partition J = 1.

1. Cluster trading days into J layers based on the adjusted absolute order imbalance AOI*.
2. Run the α-Skellam test on all the layers:

2.1. If the test fails for one or more layers, increase the number of layers by
+1 (J ← J + 1), and run step 1.
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2.2. If all clusters pass the α-Skellam test, the algorithm stops, and the number of
layers is equal to J.

4. Empirical Evidence

In this section, we show the comparative results on the accuracy of alternative methods
in estimating the number of layers in the simulated data series. We compare the accuracy
of three methods with each other.11 These are the following:

(1) nocorr (layer detection algorithm in Ersan (2016) with no correction for any difference
between uninformed rates).

(2) E (the same algorithm with the correction that uses minimum numbers of buys and
sells in the data, as suggested in (Ersan 2016)).

(3) EG (the suggested method of this paper that refers to the modified layer detection
algorithm and the new correction).

We simulate the quarterly datasets of the daily numbers of buyer-initiated and seller-
initiated trades (buys and sells) in line with similar studies (e.g., Lin and Ke 2011; and
Ersan and Alıcı 2016), and using the function generatedata_mpin() in the PINstimation
package. The function requires two-column data of the daily numbers of buys and sells.
Additionally, we use two arguments of the function. First, the argument layers to set the
number of layers (information types) to be included in the data, and second, the eps_ratio
argument which determines the ratio of eps.s/eps.b (sell-side uninformed rate/buy-side
uninformed rate) with which the data are simulated. The numbers of buys and sells are
simulated based on the PIN and MPIN model assumptions such that buys (sells) follow
a Poisson distribution with the mean εb + µj (εs + µj) and sells (buys) follow a Poisson
distribution with the mean εs (εb) on a day with positive (negative) information layer of j.12

Initially, we examine the performance of each method in estimating the number of lay-
ers when the uninformed rates are equal to each other. We simulate 80, 000 datasets (10, 000
sets for j = 1, . . . , 8 where j is the number of layers) via the use of generatedata_mpin(
series = 80,000, layers = j, eps_ratio = 1.00).

Table 3 shows the estimated number of layers with each method. The rows (columns)
represent the number of simulated (estimated) layers. The table reports the shares of each
number in total. While the cell in the intersection of the first row and first column stands
for the share of accurately estimated cases for 1-layer simulations, the cells to its right
indicate the share of cases where the estimated number is larger than the actual number. As
demonstrated in Panel A, Ersan’s (2016) algorithm with no correction estimates the number
of layers accurately in 86% of the datasets with a single information layer (representative of
the original PIN model with a single information type).

Table 3. Estimation accuracy for simulations with εb = εs.

Real\Estimate 1 2 3 4 5 6 7 8 >8

Panel A: No correction
1 85.86 13.97 0.17 0 0 0 0 0 0
2 0.07 88.79 10.96 0.18 0 0 0 0 0
3 0 0.55 92.97 6.35 0.13 0 0 0 0
4 0 0 1.69 92.73 5.43 0.14 0.01 0 0
5 0 0 0 3.2 92.5 4.23 0.07 0 0
6 0 0 0 0.01 4.19 91.86 3.88 0.06 0
7 0 0 0 0 0.04 5.62 91.11 3.2 0.03
8 0 0 0 0 0 0.08 6.95 89.92 3.05
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Table 3. Cont.

Real\Estimate 1 2 3 4 5 6 7 8 >8

Panel B: E2016 correction
1 98.9 1.1 0 0 0 0 0 0 0
2 8.17 90.91 0.92 0 0 0 0 0 0
3 0.01 20.89 78.68 0.42 0 0 0 0 0
4 0 0.52 37.04 62.19 0.25 0 0 0 0
5 0 0.01 1.81 44.27 53.64 0.27 0 0 0
6 0 0 0.02 3.27 47.59 48.87 0.25 0 0
7 0 0 0 0.06 4.36 50.44 44.89 0.25 0
8 0 0 0 0 0.12 5.63 51.16 42.92 0.17

Panel C: EG correction
1 93.7 6.12 0.18 0 0 0 0 0 0
2 0.31 94.82 4.53 0.34 0 0 0 0 0
3 0 0.73 94.57 3.95 0.68 0.07 0 0 0
4 0 0 1.73 93.77 3.47 0.84 0.18 0.01 0
5 0 0 0.02 3.15 91.91 3.26 1.23 0.31 0.12
6 0 0 0 0.04 4.08 90.57 3.6 0.97 0.74
7 0 0 0 0 0.04 6.02 88.46 3.59 1.89
8 0 0 0 0 0 0.13 6.98 85.99 6.9

The table presents the distributions of the estimated number of information layers for the simulated datasets
with 1 to 8 layers and with the assumption of eps.b = eps.s. A total of 80,000 datasets (10,000 for each of the
layers 1 to 8) are used. The estimations are from three methods represented in Panels A to C. Panel A stands for
the estimations via the layer detection algorithm suggested in Ersan (2016) with no correction applied for any
differences between eps.b and eps.s. Panel B reports the statistics on the number of layer estimates via the use
of the suggested correction in Ersan (2016). Panel C presents the respective results for the corrected algorithm
suggested in this paper. In each panel, the row names represent the number of layers used in generating the
datasets. In each column, the share of the estimated number of layers is given in percentages. Thus, each row
sums up to one. In the last column, the share of datasets for which the estimated number of layers is larger than 8
is stated in an aggregated form. For example, the cell in the intersection of the last row and last column in Panel A
indicates that in 3.05% of the simulated datasets with 8 layers, the method has estimated more than 8 layers. The
green highlighted cells reflect the shares of the accurate estimations of the number of layers.

Moreover, the accuracy rates are slightly higher for the datasets with multiple types
of information events varying between 89% and 93%. This performance is in line with
Ersan (2016) and is an expected one since the simulated series have identical buy- and
sell-side uninformed rates. Panel B and Panel C show the results for the use of Ersan’s (2016)
correction and this paper’s suggested correction, respectively. Ersan’s (2016) correction
accurately estimates the number of layers in 99% and 91% of the datasets with one and two
layers, respectively. On the other hand, the estimation power diminishes dramatically with
the number of layers. In 62% (43%) of the data series with four (eight) layers, the algorithm
with Ersan’s (2016) correction accurately detects the number of layers. In the vast majority
of the remaining cases, the estimated number of layers is one less than the actual number.

Finally, the EG correction suggested in this paper estimates the number of layers
correctly in 94–95% of the sets with up to four layers. The rate is marginally lower at
86–92% for the datasets with five to eight layers. Next, we inquire about the estimation
power of each method after relaxing the assumption of equal uninformed rates. We simulate
80,000 datasets with one difference. We allow eps_ratio to be in the range of (0.75, 1.25). The
ratio of two uninformed trading intensities in any dataset is randomly selected from this
range. While we aim at observing the results for differing rates, we do not prefer to assign
too different values for uninformed rates which is in line with both PIN model assumptions
and the empirical evidence provided so far in PIN studies (e.g., Brennan et al. 2018; Ersan
and Alıcı 2016). Table 4 reflects the respective results.
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Table 4. Estimation accuracy for simulations with εb ̸= εs.

Real\Estimate 1 2 3 4 5 6 7 8 >8

Panel A: No correction
1 31.5 60.93 7.42 0.15 0 0 0 0 0
2 1.06 32.82 51.64 13.84 0.63 0.01 0 0 0
3 0 2.17 34.18 46.88 15.75 1.02 0 0 0
4 0 0.02 2.67 31.63 41.39 20.93 3.21 0.15 0
5 0 0 0.1 2.99 28.97 35.27 25.02 6.92 0.73
6 0 0 0.01 0.08 3.58 26.49 30.53 25.51 13.8
7 0 0 0 0.02 0.15 3.65 24.49 25.03 46.66
8 0 0 0 0 0.01 0.19 4.33 24.43 71.04

Panel B: E2016 correction
1 98.81 1.19 0 0 0 0 0 0 0
2 7.25 91.71 1.04 0 0 0 0 0 0
3 0.01 20.41 79.11 0.46 0.01 0 0 0 0
4 0 0.73 36.63 62.13 0.51 0 0 0 0
5 0 0 2.06 44.1 53.53 0.31 0 0 0
6 0 0 0.04 3.26 46.53 49.95 0.22 0 0
7 0 0 0 0.12 4.71 50.16 44.77 0.23 0.01
8 0 0 0 0 0.14 5.83 52.35 41.54 0.14

Panel C: EG correction
1 93.9 5.94 0.16 0 0 0 0 0 0
2 0.22 94.63 4.73 0.4 0.02 0 0 0 0
3 0 0.87 94.64 3.77 0.63 0.09 0 0 0
4 0 0 1.66 93.12 3.93 0.95 0.31 0.03 0
5 0 0 0.01 2.79 92.53 3.17 0.92 0.48 0.1
6 0 0 0 0.03 3.88 91.03 3.44 1.06 0.56
7 0 0 0 0 0.08 5.21 89.39 3.62 1.7
8 0 0 0 0 0 0.13 6.94 86.25 6.68

The table presents the distributions of the estimated number of information layers for the simulated datasets with
1 to 8 layers after relaxing the assumption of eps.b = eps.s. The sell-side uninformed trader rate is assumed to be
in the range of 0.75 to 1.25 times the buy-side uninformed rate. A total of 80,000 datasets (10,000 for each of the
layers 1 to 8) are used. The estimations are from three methods represented in Panels A to C. Panel A stands for
the estimations via the layer detection algorithm suggested in Ersan (2016) with no correction applied for any
differences between eps.b and eps.s. Panel B reports the statistics on the number of layers estimates via the use of
the suggested correction in Ersan (2016). Panel C presents the respective results for the correction of the algorithm
suggested in this paper. In each panel, the row names represent the number of layers used in generating the
datasets. In each column, the share of the estimated number of layers is given in percentages. Thus, each row
sums up to one. In the last column, the share of datasets for which the estimated number of layers is larger than 8
is stated in an aggregated form. For example, the cell in the intersection of the last row and last column in Panel A
indicates that in 71.04% of the simulated datasets with 8 layers, the method has estimated more than 8 layers. The
green highlighted cells reflect the shares of the accurate estimations of the number of layers.

Panel A of Table 4 shows the poor performance of the layer detection algorithm in the
absence of any correction when uninformed rates are not identical. More specifically, the
share of accurate detections is 32% for one-layer datasets and as low as 24% for eight-layer
sets. In the vast majority of the false estimations, the estimated number of layers is larger
than the actual one. Panel B of Table 4 is qualitatively identical to Panel B of Table 3, which
implies that the layer detection with the use of the correction in Ersan (2016) leads to the
same results for both the equal and unequal uninformed rates cases. While (i) obtaining
consistent results and (ii) having a bias of at most one layer in vast majority of estimations
favors the use of the method, the substantially low rates of exact estimates especially when
there is a larger number of layers challenge its use. Panel C of Table 3 reports the estimates
of our method which uses a modified version of the algorithm with the suggested/novel
correction. As is the case for the E2016 correction method, the EG method estimations
do not depend on whether we assume identical or different uninformed rates. Panel C
of Tables 3 and 4 have qualitatively same information. In addition to the fact that the
estimation accuracy is independent of uninformed rate variation, the suggested method
has substantially higher rates of the exact detection of layers in the data. In 86% of the
10,000 series with eight information types, the method accurately detects the number as
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eight. This is around 94% when there are one to four types of information events. In the
vast majority of cases when it fails to detect the actual number accurately, the estimated
number of information types is either one above or below it.

Table A1 presents the results of a more detailed analysis. We repeat the analysis re-
ported in Table 4 with one difference. Instead of picking eps_ratio randomly from the range
(0.75, 1.25), we examine the cases of certain eps_ratio values. The alternative values as-
signed for eps_ratio are 1.00± x, where x is an element of (0, 0.001, 0.01, 0.05, 0.10, and 0.25).
For example, when x = 0.001, eps_ratio is either 0.999 or 1.001 with equal probabilities.
We simulate 120,000 datasets: 2500 for each of the 1- to 8-layer cases, and for each of the
six alternative eps_ratio values (2500× 8× 6). The table reports only the share of exact
detections for the sake of brevity. The results are in line with the ones reported in Table 4.
Panel A in Table A1 demonstrates that the no-correction method’s estimation power is high
when the uninformed rates are identical or marginally different from each other (up to 1%
difference). However, when the absolute difference between the uninformed rates increases
(higher or lower eps_ratio), the estimation accuracy is substantially low. In Panels B and C,
we do not observe remarkable differences with the altered eps_ratio values. Once again,
the fact indicates that the use of the suggested corrections results in consistent estimation
accuracy, with EG having a much higher accuracy rate.

As an additional robustness check, we repeat the analysis in Table A1 by altering the
confidence level parameter used in the layer detection algorithm of Ersan (2016) and of this
paper (α parameter as explained in Section 3). Throughout the paper, following Ghachem
and Ersan (2023a), we use the default confidence level of 0.995 in all the layer detection
methods. In order to check whether the results are special to the selected confidence level,
we replicate Table A1 for two alternative confidence levels, i.e., a stricter one (0.999) and a
looser one (0.99). The results are qualitatively similar in both cases. Thus, we do not report
them here for the sake of brevity.

To provide further evidence on the estimation precision of the EG method, we look at
the estimated number of no-event days in the data series. In case the method is good at
finding the number of no-event days (thus, also the sum of event days), it is an indicator that
the estimated number of layers is not arbitrary, but they match the day groups in the data
and their populations. Table 5 shows the bias (in number of days) in finding the number of
days in the no-event cluster. The reported results are for the simulations used in Table 4,
the ones simulated with different uninformed rates. The column in the middle stands for
the share of cases when the method exactly detects the number of no-event days. The exact
detection rate is as high as 90% for one-layer sets. It slightly and monotonically increases
to 94% for eight-layered datasets. This implies that our suggested method successfully
differentiates the no-event and event days in datasets with multiple types of information.
The numbers of missed days are much larger with the alternative two methods and are not
reported for brevity.

Table A2 shows the descriptive statistics for the simulated data series used in Table 4.13

The mean number of buys and sells is approximately identical (6149 and 6142, respectively).
The lowest and highest values for the mean number of sells are 95 and 23,046.14 This
implies a broad coverage of trading in both infrequently traded assets and actively traded
assets. The mean probability of informed trading is 20%, which is in line with the empirical
evidence provided in PIN studies. The mean alpha and delta parameters are around
75% and 50%. Delta, the probability of bad event occurrence, is, as expected, very close
to 0.5 as we assume no a priori difference between bad and good event occurrence in
simulations. Alpha, presented in the table, is the aggregate probability of observing any of
the information types in the data.
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Table 5. EG corrected estimation accuracy for the number of days with no information event.

Layers\Missed Days ≤−5 −4 −3 −2 −1 0 1 2 3 4 ≥5
1 5.15 0.12 0.19 0.37 0.81 89.6 3.18 0.42 0.1 0.03 0.03
2 3.27 0.08 0.18 0.16 0.75 91.49 3.23 0.5 0.19 0.06 0.09
3 2.05 0.09 0.1 0.19 0.49 92.53 3.55 0.62 0.26 0.07 0.05
4 1.67 0.1 0.16 0.12 0.26 92.5 3.78 0.84 0.32 0.05 0.2
5 1.32 0.05 0.07 0.06 0.54 92.94 3.71 0.77 0.32 0.12 0.1
6 1.03 0.08 0.05 0.06 0.34 93.6 3.27 0.91 0.4 0.1 0.16
7 0.57 0.07 0.07 0.08 0.32 94.06 3.48 0.83 0.29 0.09 0.14
8 0.7 0.03 0.08 0.06 0.52 93.55 3.36 0.91 0.42 0.2 0.17

The table presents the distributions of the estimated number of no-event days for the simulated datasets with 1 to
8 layers after relaxing the assumption of eps.b = eps.s. A total of 80,000 datasets (10,000 for each of the layers
1 to 8) are the ones used in the main table, Table 4. The estimations are from the layer detection algorithm in
(Ersan 2016) with the suggested correction in this paper. The row names represent the number of layers used
in generating the datasets. In each column, the share of the day biases is given in percentages. Day bias is the
difference between the estimated number of days and the actual number of days with no information event for
each dataset. Each row sums up to one. In the first (last) column, the share of datasets for which the estimated
number of no-event days is smaller (larger) than or equal to –5 (5) is stated in an aggregated form. The green
highlighted cells reflect the shares of the accurate estimations of the number of no-event days.

Table A3 presents the descriptive statistics of the running times of the modified layer
detection algorithm via the use of our suggested correction. The mean running time of the
method for the simulated series used in Table 4 is substantially small. More specifically,
it is 0.24 s. (0.17 s.) for one-layer (eight-layer) sets. The main reason for the longer time it
takes in the case of a smaller number of layers is that the clustering procedure starts from
n/2 (number of datapoints, or days) clusters and runs towards one, ending earlier for the
datasets with more layers (clusters).

Above, we have discussed the overall accuracy of the EG algorithm in estimating
the number of layers in the data. This accuracy, however, does depend on the accurate
estimation of the uninformed trading rates, as these are used for data adjustment. We
could think that the inaccurate estimates of these rates can lead to further inaccuracy in the
estimation of the number of layers. Therefore, we also independently test the accuracy of
the first step of our algorithm: the estimation of the uninformed trading rates. We simulate
10.000 datasets and calculate the percentage deviation of the estimated uninformed trading
rates from the rates empirically observed in the data. We find that the derivation of our
estimates from the theoretical values of both εb and εs exceed 5% (10%) in less than 1%
(0.1%) of the datasets. We do not report the results, but they are available upon request.

For the main analyses in the paper, we simulate a total of 280,000 datasets. The results
for the first 80,000 sets are reported in Table 3; the results for the next 80,000 sets are reported
in Tables 4 and 5; and the results for the final 120,000 sets are reported in Table A1. An
additional 240,000 datasets are generated for unreported robustness checks for the analyses
reported in Table A1. The number of simulated datasets significantly exceeds those in
the previous studies: 2500 in Lin and Ke (2011); 8000 in Yan and Zhang (2014); 1000 in
Gan et al. (2015); 5000 in Ersan and Alıcı (2016); and 8000 in Ersan (2016). Our analyses
proceed with various settings and data types to ensure consistent and robust results across
different data characteristics and model specifications. As Table A2 presents, through the
use of a significantly large number of datasets, we thoroughly cover the parameter spaces
pertaining to model parameters such as total trade intensity (between around 200 and
40,000), positive and negative order imbalances (between around −12,500 and 9200), and
negative and positive information event occurrence probabilities (between 0 and 1). We
conduct the analyses with various settings. The initial analyses assume equal uninformed
buyer and seller trading intensities, which are then varied between 0.75 and 1.25 times
the other. We subsequently examine datasets of six types each with different uninformed
buy and sell intensities before varying the confidence level in our algorithm for robustness
checks. All these analyses are performed for eight types of datasets as we simulate datasets
with one to eight layers of information each time. The high reliability achieved by a very
large number of simulations and the utilization of various alternative settings in our paper
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is possible, partly because the layer detection stage that we focus on is computationally
fast when compared to the overall estimation of the models. This enables us to simulate a
large number of datasets with various settings. As Table A3 reflects, the layer detection
task via our suggested algorithm ends in around 0.2 s per dataset, while this is on average
1.3 s for the estimation of the PIN model and 50 s for the estimation of the MPIN model in
Ghachem and Ersan (2023a).

The overall accuracy of our algorithm is between 86% and 95% in our analyses con-
ducted with the abovementioned diverse set of conditions. The estimation errors reported
for the use of various settings and a large range of data characteristics demonstrate high
stability for our algorithm’s performance. Namely, the algorithm’s accuracy rates are stable
both in the case of equal and unequal rates of uninformed buyers and sellers, and robust
to the altered amounts of inequalities. These remain robust for any of the data types with
one to eight layers. Second, using a substantially large number of datasets (more than
half a million when compared to a few thousand in similar studies) ensures that the re-
ported results are not special to limited data with narrow representativeness but consistent
through data types. Third, a striking result that reflects the stability of our algorithm is the
amount of error when the algorithm fails to detect the number of layers correctly. As both
Tables 3 and 4 show, in the vast majority of cases when the algorithm fails to detect the
number of information layers correctly, the error is only one layer. This is consistent in all
the examined data types with one to eight layers. For example, the algorithm detects the
number of layers exactly in 93.12% of the datasets with four layers. In an additional 5.59%
of the datasets, the estimated number of layers is either three or five, leaving only 1.29%
of the datasets with more than one (2–4) layer error. Additionally, the algorithm detects
the number of days with no information event with very high accuracy and low variability.
As Table 5 reports, the algorithm detects the exact number of no-event days in 90% to 94%
of the datasets with one to eight layers. This provides additional support for the accurate
identification of days with and without information layers.

5. Conclusions

In this paper, we propose a new algorithm that detects the number of information
layers (types) in financial datasets. Our model of reference is the broadly used PIN model
of Easley et al. (1996). This model, however, assumes that all the information events
occurring in a dataset (e.g., affecting the trading activity in a quarter-stock pair) have a
uniform impact. This does not align with the current state of financial markets where
multiple sources of information asymmetries can operate each day. Ersan (2016) proposes
a generalized form of the PIN model, multi-layer PIN, which estimates informed trading
through extending the PIN model to a j-layer version, supplemented with an algorithm for
detecting the number of layers.

We develop here a new algorithm that applies a data adjustment procedure and a
priori step of estimating uninformed trading rates. We obtain substantially high rates of
accuracy in information layer detection. We identify the number of layers correctly in
86% to 95% of the datasets with various settings. In almost all the remaining sets, the
algorithm estimates the number of layers as one above or below the actual number of layers.
In addition to the accurate estimation of the number of layers, the number of no-event
days (thus the number of event days as well) is exactly identified in 90% to 94% of the
simulations with one up to eight layers.

Uninformed buy and sell rates may differ from each other depending on the market
conditions and the overall supply and demand. The precise identification of the number
of different information layers in any data is essential in fully capturing informed trading.
Therefore, through developing the necessary remedial solutions, this paper contributes to
the more accurate estimation of informed trading. The main focus of this study is to handle
the layer detection issue in estimating the probability of informed trading. This issue arises
when we aim at capturing multiple layers of information events with different magnitudes,
which is highly in line with today’s financial markets. The core outcome of our study is
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the proposed algorithm which detects the number of distinct information layers in a data.
This not only provides useful standalone information that can be utilized by researchers
and practitioners in financial markets, but also it is to be used as a preliminary variable in
estimating the probability of informed trading.

Our findings carry a range of theoretical and practical implications. Theoretically, they
challenge the traditional assumption of a single information type underlying the traditional
models of the probability of informed trading, namely the classical PIN model or the ad-
justed PIN model by Duarte and Young (2009). This information would allow researchers
to refine their understanding of the information landscape in modern financial markets and
facilitate the development of more sophisticated extensions of the abovementioned models.
Furthermore, our algorithm paves the way for a deeper exploration of information asym-
metry among markets, time periods, asset classes, or assets with different characteristics.
For example, Ghachem and Ersan (2023a), utilizing our algorithm, show that large stocks
are associated with a larger number of information types when compared to small stocks.
This distinction refines our understanding of how information asymmetry manifests across
market segments. In addition to the main outcome of our algorithm (i.e., the number
of information types in a financial dataset), our algorithm also partitions each trading
day among different information types which allows researchers to extract further insight
at the daily level. Practically, the algorithm enables investors to identify and anticipate
periods of varying information asymmetry, and this is carried out by recognizing common
features among information events of the same type. This ability is particularly useful for
distinguishing between information types with large impacts and those with lesser effects.
Investors can then leverage this insight to, among others, time their trades during periods
of lower information asymmetry, thus reducing the risk of trading against more informed
participants. Such benefits are even more pronounced for individual investors with limited
access to information and at a comparative disadvantage. Policymakers can, through a
closer inspection of the different information types and their impacts, monitor and evaluate
market conditions more effectively. For instance, rare extreme-impact information events
might reflect abnormal trading patterns, which might indicate the presence of insider
trading or market manipulation.
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Appendix A

Lemma A1. Let a, b ∈ R∗+, with a > b. Let X+ ∼ Sk(a, b) with distribution func-
tion F+ and X− ∼ Sk(b, a) with distribution function F−, then F−(−x) = 1− F+(x).



J. Risk Financial Manag. 2024, 17, 409 16 of 20

Proof. The distribution function of X+ Skellam-distributed with the parameters (a, b)

at x is given by F+(x) = ∑x
k=−∞ e−a−b( a

b
) k

2 Ik(2
√

ab), where Ik(z) is the modified Bessel
function of the first kind. Analogously, the distribution function of X− Skellam-distributed

with the parameters (b, a) at x is given by F−(x) = ∑x
k=−∞ e−a−b

(
b
a

) k
2 Ik(2

√
ab).

It follows that F−(−x) = ∑−x
k=−∞ e−a−b

(
b
a

) k
2 Ik(2

√
ab). We now make a change in

variables. We define s = −k and rewrite F−(−x). If k ∈ (−∞,−x), then s ∈ (x,+∞).

F−(−x) =
+∞

∑
s=x

e−a−b
(

b
a

)−s
2

I−s(2
√

ab) =
+∞

∑
s=x

e−a−b
( a

b

) s
2 Is(2

√
ab).

The step follows from
(

b
a

)−s
2
=

( a
b
) s

2 and that Is(z) = I−s(z) when z is an integer.

Now since F+ is a distribution function, then ∑+∞
s=−∞ e−a−b( a

b
) s

2 Is(2
√

ab) = 1, and we
have the following:

F−(−x) =
+∞

∑
s=x

e−a−b
( a

b

) s
2 Is(2

√
ab) = 1−

x

∑
s=−∞

e−a−b
( a

b

) s
2 Is

(
2
√

ab
)
= 1− F+(x).

□

Lemma A2. If X+ ∼ Sk(a, b), and X− ∼ Sk(b, a), then |X+|, and |X−| are identically
distributed.

Proof. Two random variables are identically distributed if they have the same cumulative
distribution function. To prove that |X−| and |X+| are identically distributed, we need to
prove that ∀x ∈ [0,+∞), P[|X+| < x] = P[|X−| < x].

P
[∣∣X−∣∣ < x

]
= P

[
−x < X− < x

]
= F−(x)− F−(−x) (A1)

Using Lemma 1, we obtain F−(x) = 1− F+(−x), and F−(−x) = 1− F+(x).
Using these equalities in (Equation (A1)), we obtain the following:

P[|X−| < x] = 1− F+(−x)− (1− F+(x)) = F+(x)− F+(−x) =
P[−x < X+ < x] = P[|X+| < x].

(A2)

□

Table A1. Estimation accuracy for simulations with various eps.s/eps.b ratios.

Eps Ratio-Layers 1 2 3 4 5 6 7 8

Panel A: No correction
0 84.88 88.28 93.24 92.76 92.04 92.56 91.16 89.52
0.001 86.32 89.96 93.12 92.68 92.56 91.88 91 89.92
0.01 77.08 81.2 88.2 86.96 88.68 87.84 87.92 87.16
0.05 60.44 49.16 41.6 35.24 30.24 29.44 27.8 30.36
0.1 29.72 32.32 33.12 27.48 21.24 17.96 16.44 14.72
0.25 12.2 10.04 14.04 16 15.12 13.64 12.6 10.28
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Table A1. Cont.

Eps Ratio-Layers 1 2 3 4 5 6 7 8

Panel B: E2016 correction
0 98.88 91.48 78.44 61.2 53.04 49 44.44 42.56
0.001 98.84 91.12 78.2 61.92 54.28 47.6 44.8 40.4
0.01 98.64 91.08 79.88 60 53.48 48.16 44.12 41.76
0.05 98.84 90.28 79.6 62.56 54.92 50.08 44.6 42.72
0.1 98.88 92.2 78.84 61.84 50.88 49.88 43.84 42.64
0.25 98.72 90.36 79.6 63.12 54.8 50.08 45.04 43.12

Panel C: EG correction
0 93.36 95.32 94.68 92.92 92.6 90.32 87.84 86.36
0.001 93.48 95.12 94.64 93.52 92.68 90.76 88.12 85.68
0.01 93.8 94.12 94.88 94.44 93.36 91.44 88.24 86.56
0.05 92.76 95.08 94.68 93.96 93.32 90.24 89.04 86.8
0.1 93.32 94.6 94.04 94.96 91.56 90.32 89.24 87.12
0.25 94.64 94.72 94.76 93.28 92.88 90.76 88.64 86.16

The table presents the distributions of the estimated number of information layers for the simulated datasets with
1 to 8 layers after relaxing the assumption of eps.b = eps.s. The sell-side uninformed trader rate is assumed to be
alternating multiples (1 ± x) of the buy-side uninformed rate where x is one of the set (0, 0.001, 0.01, 0.05, 0.1,
and 0.25). A total of 120,000 datasets (2500 for each of the layers 1 to 8 and for each of the six eps.s/eps.b ratios)
are used. For example, for the datasets where x = 0.25, the data are generated with either 0.75 or 1.25 eps ratio,
which are equally likely. The estimations are from three methods represented in Panels A to C. Panel A stands for
the estimations via the layer detection algorithm suggested in Ersan (2016) with no correction applied for any
differences between eps.b and eps.s. Panel B reports the statistics on the number of layers estimates via the use of
the suggested correction in Ersan (2016). Panel C presents the respective results for the correction of the algorithm
suggested in this paper. In each panel, the row names represent the number eps.s/eps.b ratio. In each column, the
share of the correctly estimated number of datasets is reported. For example, the cell in the intersection of last row
and last column in Panel A indicates that in 10.28% of the 2500 simulated datasets with 8 layers and (1 ± 0.25) of
the eps.s/eps.b ratio, the method has estimated the number of layers correctly as 8.

Table A2. Descriptive statistics of the simulated datasets.

Mean sd Min Q01 Q05 Q25 Median Q75 Q95 Q99 Max

Buys 6149 3358 107 382 952 3349 6138 8835 11,476 13,469 20,793
Sells 6142 3467 95 369 931 3286 6024 8706 11,974 14,159 23,046
OI 7 1325 −12,526 −3615 −2160 −665 20 688 2136 3581 9240
AOI 2405 1879 20 143 327 985 1899 3349 6169 8359 17,037
MPIN 0.20 0.15 0.00 0.01 0.03 0.09 0.17 0.28 0.48 0.66 0.92
alpha 0.76 0.19 0.02 0.13 0.37 0.68 0.80 0.90 0.97 0.98 0.98
delta 0.50 0.20 0.00 0.03 0.17 0.37 0.50 0.63 0.83 0.97 1.00
mu 2693 2096 85 241 462 1046 2106 3791 6859 9317 19,093
eps.b 5043 2858 95 200 593 2571 5039 7515 9507 9901 10,040
eps.s 5040 2976 79 197 580 2516 4947 7342 10,088 11,436 12,476

The table presents the descriptive statistics of the 80,000 datasets used in the main table, Table 4. The buys and
sells series are the mean number of buys and sells in each dataset. OI and AOI are the mean order imbalance and
mean absolute order imbalance in each dataset. MPIN is the multi-layer probability of informed trading in each of
the simulated datasets. The five intermediate parameters are the aggregated parameters calculated in each of the
simulated datasets. Qx represents the xth quantile.
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Table A3. Descriptive statistics of the running times of layer detection with EG correction.

Mean sd Min Q25 Median Q75 Max

1 0.24 0.14 0.01 0.12 0.21 0.33 0.85
2 0.19 0.11 0.01 0.1 0.17 0.26 0.69
3 0.17 0.09 0.03 0.09 0.16 0.23 0.61
4 0.16 0.09 0.02 0.09 0.15 0.22 0.55
5 0.16 0.08 0.03 0.09 0.15 0.22 0.63
6 0.16 0.08 0.03 0.09 0.15 0.22 0.7
7 0.17 0.09 0.03 0.09 0.16 0.23 0.67
8 0.17 0.09 0.03 0.09 0.16 0.24 0.67

The table presents the descriptive statistics of the running times of layer detection with EG correction for the
80,000 datasets used in the main table, Table 4. Q25 and Q75 stand for the 25th and 75th quantiles. The running
times are in seconds and from the R statistical software PINstimation (version 0.1.2) with an İ9 10900K processor.

Notes
1 Firm-specific events such as CEO resignations, financial reports, mergers, and strategic alliances exert varying impacts on trading

activity due to the nature and significance of the information they convey. The growing frequency of information events, along
with the proliferation of data sources, has amplified their impact on market behavior, making it crucial to accurately assess their
effects on trading activity (Fang and Peress 2009; Loughran and McDonald 2016). The recent literature on information overload
document that stricter disclosure requirements in the last two decades have led to a substantial increase in the amount of data
shared in annual reports (e.g., Guay et al. 2016; Chapman et al. 2019; Impink et al. 2022). Dyer et al. (2017) examined 10-K filing
texts for more than 10,000 firms between 1996 and 2013 and found that the median text length doubled from 23,000 words in 1996
to nearly 50,000 in 2013. Boudoukh et al. (2019) employ textual analysis to identify fundamental information in public news.
They find that this information accounts for 50% of the overnight idiosyncratic volatility in stock returns and most of this large
share is due to the days with multiple news. They examine the impact of 18 event categories such as financials, ratings, earnings
factors, forecasts, and mergers and acquisitions, composing 90 subcategories, and show the differing contributions of each event
category to stock return variance. Thus, they show that stock returns and volatility vary greatly with the type of news and the
magnitude of information is not the same across days.

2 The PIN model divides trading days among three types: no-information days with solely uninformed trading intensities (εb, εs);
good-information days with uninformed trading intensities and informed buying intensity (εb + µ, εs); and bad-information days
with uninformed trading intensities and informed selling intensity (εb, εs + µ). The straightforward generalization presented in
Ersan (2016) assumes the existence of different levels of informed trading activities, i.e., instead of having a unique parameter µ,
common to all information days, information days can be divided into multiple types (or layers), where each layer j is associated
with a distinct level of informed trading intensity µj. Consequently, a good-information day of type j has the trading intensity

rates of
(

εb + µj, εs

)
, while a bad-information day of type j has the trading intensity rates of

(
εb, εs + µj

)
; Ersan (2016) has been

the only work relaxing the three assumptions in the PIN model and proposing the generalized model (MPIN). It estimates the
probability of informed trading after simultaneously accounting for multiple information layers. Both models yield identical
estimates when there is one type of information event in the data, whereas the traditional PIN model fails to provide accurate
estimates when there are multiple layers. This is a natural consequence of the PIN model’s assumption of a single-event type.

3 The PIN model presented by Easley et al. (1996) has a single uninformed rate while Easley et al. (2002) incorporate uninformed
buy and sell rates separately, reaching marginally different estimates on them. In the following literature, the mean estimates of
buy-side and sell-side uninformed rates have differed from each other while the differences are relatively low (i.e., <20%).

4 PINstimation is an R software package that is developed for the estimation of various PIN models. The package includes the
functions and arguments covering the computational improvements and extensions of the original PIN model, and it provides
extensive data simulation and data aggregation tools.

5 Please check the R code of the function detectlayers_eg() that implements the introduced algorithm in this paper and the R
code of the function detectlayers_e() for the algorithm of Ersan (2016), available at https://cran.r-project.org/web/packages/
PINstimation/index.html (accessed on 1 February 2024).

6 Ghachem and Ersan (2023b) suggest using the expectation maximization (EM) algorithm to simultaneously estimate the number
of layers and PIN parameters. However, this method requires the estimation of the model for all the possible numbers of
information layers, which is time-consuming.

7 If εb = εs = ε, then OIj− ∼ Sk
(

ε, ε + µj

)
, and OIj+ ∼ Sk

(
ε + µj, ε

)
. These are two Skellam distributions with the same

parameters but in reverse order, so they are symmetric around zero.
8 The Skellam test performed in the functions detectlayers_e and detectlayers_eg() is conducted using the function qskellam() from

the R package Skellam (Lewis et al. 2016).

https://cran.r-project.org/web/packages/PINstimation/index.html
https://cran.r-project.org/web/packages/PINstimation/index.html
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9 Theoretically, dividing the data into a sufficiently large number of clusters ensures that the order imbalance (OI) observations
within each cluster are sufficiently similar due to the clustering algorithm’s focus on similarity. We have chosen to start with
⌊n/2⌋ initial clusters. This approach only fails in very unusual datasets, such as those containing more than ⌊n/2⌋ layers. For
datasets representative of a quarter (e.g., 60 days), this would imply 30 layers, which is extremely unlikely. Ersan (2016) works
with 8190 stock-quarter datasets. The largest number of layers detected in these datasets is 16. The number of layers is less than
10 in 98% of the datasets and less than 15 in 99.96% of the datasets. Change in the computation time is marginal when increasing
the initial number of clusters; thus, we set the initial cluster number large enough to provide high confidence.

10 The actual step is slightly more complex than this but is equivalent to the described step in almost all the cases. It clusters
trading days based on OI into q clusters where q ∈

[⌊ n
2
⌋
− 2,

⌊ n
2
⌋]

, then runs the α-Skellam test on all the clusters. Among all the
configurations with q clusters for which all the clusters pass the Skellam test, the clustering configuration that has the largest
cluster with minimum trading intensity is selected as the clustering used in step 2. This modification aims to reduce the running
time of the algorithm but does not alter its essence.

11 As our suggested algorithm specifically targets detecting the information layers in a dataset, the three compared methods involve
the algorithm in our paper as well as the only two alternative layer detection methods that are available in the literature. Other
comparisons among the overall estimation accuracy of the various PIN models are beyond the scope of our study.

12 Detailed information regarding the data simulation can be found in the PINstimation package documentation and Ghachem and
Ersan (2023a).

13 Data properties are qualitatively unchanged for the remaining simulations in this paper, i.e., the ones used in Tables 3 and A1.
Thus, we do not report them.

14 Buys and sells are the mean buys and sells in each dataset. Therefore, the mean statistic is the mean of these mean values.
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