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Abstract: In this study, we apply a novel approach of portfolio diversification—the robust maximum
diversified (RMD)—to a small and developing economy’s stock market. Using monthly returns
data from August 2019 to May 2024 of 18/19 stocks listed on Fiji’s South Pacific Stock Exchange
(SPX), we construct the RMD portfolio and simulate with additional constraints. To implement the
RMD portfolio, we replace the covariance matrix with a matrix comprising unexplained variations.
The RMD procedure diversifies weights, and not risks, hence we need to run a pairwise regression
between two assets (stocks) and extract the R-square to create a P-matrix. We compute each asset’s
beta using the market-weighted price index, and the CAPM to calculate market-adjusted returns.
Next, together with other benchmark portfolios (1/N, minimum variance, market portfolio, semi-
variance, maximum skewness, and the most diversified portfolio), we examine the expected returns
against the risk-free (RF) rate. From the simulations, in terms of expected return, we note that
eight portfolios perform up to the RF rate. Specifically, for returns between 4 and 5%, we find that
max. RMD with positive Sharpe and Sortino (as constraints) and the most diversified portfolio offer
comparable returns, although the latter has slightly lower standard deviation and downside volatility
and contains 94% of all the stocks. Portfolios with returns between 5% and the RF rate are the
minimum-variance, the semi-variance, and the max. RMD with positive Sharpe; the latter coincides
with the RF rate and contains the most (94%) stocks compared to the other two. An investor with a
diversification objective, some risk tolerance and return preference up to the RF rate can consider the
max. RMD with positive Sharpe. However, depending on the level of risk-averseness, the minimum-
variance or the semi-variance portfolio can be considered, with the latter having lower downside
volatility. Two portfolios offer returns above the RF rate—the market portfolio (max. Sharpe) and the
maximum Sortino. Although the latter has the highest return, this portfolio is the least diversified
and has the largest standard deviation and downside volatility. To achieve diversification and returns
above the RF rate, the market portfolio should be considered.

Keywords: portfolio allocation; robust maximum diversified and benchmark portfolios; South Pacific
Stock Exchange; small market economy; Fiji Islands

1. Introduction

Portfolio optimization is a critical component of investment management, focusing on
maximizing returns while minimizing risk through the careful selection and weighting of
assets. The primary goal of this technique is to create an investment portfolio that achieves
the best possible balance between expected returns and risk. Portfolio optimization meth-
ods, particularly the concept of mean-variance optimization, were pioneered by Markowitz
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(1952a, 1952b). His groundbreaking work laid the foundation for modern portfolio the-
ory, introducing a quantitative framework for constructing portfolios. Following Harry
Markowitz’s pioneering work in 1952, many researchers expanded upon his foundation,
developing a variety of advanced strategies for portfolio optimization, each with its own
unique approach and methodology (Ghanbari et al. 2023; Kalayci et al. 2019; Milhomem
and Dantas 2020; Righi and Borenstein 2018; Salo et al. 2024). Generally, any portfolio
strategy aims to create some level of diversification across assets and/or stocks to manage
risk. Several studies have been conducted to examine and rationalize different methods
of portfolio diversification, and their findings help investors understand the benefits and
limitations of diversification (Bielstein et al. 2023; Koumou 2020). However, as noted in
the literature, studies on portfolio diversification and investment analysis are generally
focused on large and well-developed financial markets, in developed or large emerging
economies, mainly because from an investor’s perspective, these countries have a vibrant
stock market that offers greater liquidity, hence providing the ease of trading. Moreover,
higher liquidity in the market can generate scale effects, thus reducing transaction costs, in
addition to supporting faster execution of trades (Al Janabi 2021; Andreev 2019; Baumann
and Trautmann 2013).

Markets in small economies are generally less liquid, less volatile, and have lesser
numbers of participants (listed companies, retail traders and investors, and brokers) than
developed markets. With such characteristics of a small market, the task of managing
risk and identifying suitable stocks for investment can appear straightforward. However,
fewer investors and low volumes of trade can also contribute to a lack of confidence among
potential investors to participate in the stock market. Therefore, to support the development
and progress of new and infant stock markets, it is vital to identify the nuances present
in the market and examine suitable portfolios to educate and inform potential investors.
Hence, a contribution of this study is to focus on the small island economy of Fiji’s stock
market and extend the existing analysis by incorporating newer methods of portfolio
construction that can be considered for investment.

The Sustainable Development Goal 8 (SDG 8) emphasizes the need to “improve access
to financial services. . .”, and to “strengthen the capacity of domestic financial institutions
to encourage and expand access to banking, insurance and financial services for all”.1 In
this regard, the study is relevant and important for both existing and potential investors in
small markets, with the view to enhancing financial inclusion and literacy. By focusing on
small economies, our research underscores the need for greater financial inclusion for all.

Although Fiji’s stock market (South Pacific Stock Exchange—SPX) has been in existence
for more than four decades, in a prominent local newspaper, The Fiji Times, Singh (2019)
documents that from 1979, it operated for some 17 years as Trading Post, with an exchange
officer handing trades without any regulatory body, stockbrokers, and dealers. Then, in
July 1996, a “open outcry system” or a “call market” was introduced where brokers used a
physical trading floor for trading, and later in the same year (December), the first securities
market legislation, known as the Capital Markets Development Authority Act (CMDA),
was established to formally institute investment advisors, the stock exchange, and the
brokers (Whiteside 2016). In 2000, the name of the exchange was changed to the South
Pacific Stock Exchange (Saliya 2022), and a Central Share Registry (CSR) was created in
2002. In 2010, SPX launched its electronic trading platform, and in 2016, it launched its
web-based online secured portal for shareholders and listed companies. While this progress
indicates significant efforts towards development of the stock market in Fiji, the Reserve
Bank of Fiji (RBF 2017), in its report on Financial Sector Development Plan 2016–2025 under
Pillar 10, notes that SPX aims to “become the preferred capital market center in the South
Pacific”. However, the report (RBF 2017, p. 38) also notes that

“... there are many issues besetting Fiji’s capital market. These include small retail
investor base, limited financial products, illiquid stock market, high transaction
costs, lack of awareness of the capital market and inconsistent application of
policy by regulatory agencies”.
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Against this background, we extend the earlier studies by applying a newly proposed
method—the Robust Maximum Diversified (RMD) portfolio (Bielstein et al. 2023)—and
compare the results with a set of benchmark portfolios. Moreover, we also examine the
RMD portfolio with additional constraints to generate additional insights. Noting the
results, we present alternative approaches for potential investors in small markets to
consider diversification and risk management. We analyze all portfolios based on market-
adjusted returns. This is because in less liquid markets, changes in asset prices can be
due to small volumes traded at a higher frequency, although a large amount of assets may
remain untraded for a long time. Hence, considering the responsiveness of asset prices
with respect to the market is more informative. Moreover, computing market-adjusted
returns informs investors on how the respective asset returns correlate with the overall
market performance. Therefore, analysis based on average returns can be misleading, as
the returns do not reflect an asset’s true performance (relative to the market) (Kumar and
Stauvermann 2022).

In this study, we focus on the stock market of a small island economy, Fiji, which
at the time of study, comprised 19 listed companies. Some recent studies have provided
a comprehensive background on Fiji’s stock market and considered a few conventional
approaches (Kumar et al. 2022; Kumar and Stauvermann 2022). These studies have laid
the groundwork for understanding the dynamics of Fiji’s stock market, while noting the
challenges and opportunities associated with investing in such a small and relatively less
liquid market.

Based on the share price movements, we considered 18 stocks and the stock price
data from July 2019 to May 2024. We computed monthly returns for each stock for the
period from August 2019 to May 2024 and used these data to estimate each stock’s beta.
For market return, we use the market-weighted price index published by SPX (SPX 2024a).
Using the respective asset’s beta, we computed the market-adjusted expected returns and
constructed a set of benchmark portfolios (mean-variance, minimum-variance, target ratio,
semi-variance, and most diversified portfolios). We then constructed RMD portfolios
(Bielstein et al. 2023) and compared them with the benchmark portfolios. The importance
of the RMD approach stems from its feature that it does not rely on expected returns or
volatilities, and hence it is robust to measurement errors. This is because it uses a pairwise
regression between two assets to derive the degree of variation, and then considers the
portfolio weights that maximize the unexplained variation of the portfolio.

The study contributes to the literature on small economy finance in the following ways:
it provides insights that can enhance the understanding and management of investments
in small markets; it highlights the importance of equipping investors with knowledge and
tools necessary to make informed decisions, thereby encouraging broader participation
in the stock market and other financial activities. This increased participation not only
democratizes access to financial markets but also strengthens the overall financial ecosystem.
Furthermore, our study supports the objective of promoting financial literacy (education)
and provides insights to potential investors and businesses in small markets on navigating
the complexities of investing, managing risks more effectively, and ultimately achieving
sustainable financial outcomes. Well-informed financial strategies and methods creates
greater confidence among investors, and hence support the growth of stock markets and
broader economic development goals (Voica 2017; Dash and Mohanta 2024; Kandpal 2020;
Kara et al. 2021; Ozili 2022).

The remainder of this paper is organized as follows: Section 2 presents the literature
review, providing an in-depth exploration of the investment strategies relevant to this
study. Section 3 outlines the materials and methods used in the study, detailing the
methodologies applied for portfolio construction and diversification, and introduces the
preliminary concepts and benchmarks, setting the foundation for the subsequent analysis.
Section 4 presents the analysis and results, where we compare the performance of the newly
proposed robust maximum diversified (RMD) portfolios against traditional benchmark
portfolios, highlighting key findings and statistical significance. Finally, Section 5 offers the
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conclusion, summarizing the study’s contributions, discussing the implications for small
market economies like Fiji, and suggesting potential areas for future research.

2. Literature Review

Investors have a range of strategies at their disposal when it comes to allocating wealth
in the stock markets, each tailored to different levels of engagement and risk tolerance. One
common approach is the meticulous selection of individual companies for investment. This
strategy often requires a deep dive into fundamental analysis, which involves evaluating
a company’s financial health, performance metrics, and market position (Hilkevics and
Semakina 2019; Narkunienė and Ulbinaitė 2018). In addition to fundamental analysis,
ensuring proper diversification across different sectors and asset classes is crucial to mitigate
risk and optimize returns (Ahmed et al. 2018). Alternatively, some investors rely on
technical analysis to guide their stock selections. This method focuses on patterns in stock
price movements and trading volumes, using historical data to forecast future trends and
inform investment decisions (García et al. 2018). Another strategy is to manage a portfolio
of companies directly, where the selection of companies is performed simultaneously.
For investors interested in managing an entire portfolio rather than selecting individual
stocks, portfolio management strategies come into play. In this approach, the selection of
companies is conducted simultaneously, allowing for a more holistic view of the portfolio’s
risk and return profile. The following literature survey provides an in-depth exploration of
these investment strategies, their underlying principles, and the methodologies employed
in their execution.

Markowitz (1952a, 1952b) introduced the concept of portfolio selection based on the
trade-off between risk and return. He argued that an investor should not only focus on the
expected return of an individual asset but also consider how the asset’s return interacts
with the returns of other assets in a portfolio. Subsequently, Markowitz proposed the
mean-variance optimization framework, where the goal is to construct a portfolio that
maximizes expected return for a given level of risk or minimizes risk for a given level
of expected return. This approach leads to the identification of the “efficient frontier”, a
set of optimal portfolios that offer the highest expected return for a given level of risk.
Markowitz’s work was groundbreaking because it formalized the process of diversification,
showing that the risk of a portfolio is not just the sum of the risks of individual assets, but
also depends on the correlations between them. This insight has had a profound impact on
investment management and laid the groundwork for the development of various financial
theories and practices. Later, Markowitz (1991) addressed the foundational principles
of portfolio theory, which he originally developed, aiming to clarify how it differs from
traditional microeconomic theory. Specifically, he focused on investor behavior under
uncertainty, as opposed to the behavior of firms or consumers. The aim of the study was to
examine the evolution and refinement of these principles over time, addressing both the
practical challenges and the broader applications of portfolio theory, particularly in guiding
institutional investors. Moreover, Markowitz (1991) delved into the ongoing relevance of
mean-variance analysis in approximating expected utility, while underscoring the need
for further research and refinement to enhance the theory’s effectiveness in contemporary
financial settings. Sharpe (1994) revisited the performance measure he originally introduced
in Sharpe (1996), known as the “reward-to-variability ratio” and now widely referred to
as the Sharpe ratio, emphasizing its utility in assessing the risk-adjusted performance of
mutual funds and other investment portfolios. By acknowledging the measure’s evolution
and varied terminology over the years, the paper reinforced the Sharpe ratio’s position as
an essential tool in modern portfolio management.

Elton and Gruber (1997) offered a comprehensive review of the development and
evolution of modern portfolio theory from the 1950s to the late 1990s. The authors trace
the origins of portfolio theory to Markowitz’s (1952a, 1952b) groundbreaking work of
the early 1950s, highlighting the introduction of mean-variance optimization, the efficient
frontier, and the core principles of portfolio selection. They also discuss the key inputs



J. Risk Financial Manag. 2024, 17, 388 5 of 30

necessary for portfolio optimization, such as the estimation of expected returns, variances,
and covariances, while addressing the challenges in accurately estimating these parameters.
The paper further explored the application of portfolio theory within financial institutions,
particularly the complexities of incorporating liabilities and institutional constraints into
the analysis, the importance of risk-adjusted returns and the continued relevance of metrics
like the Sharpe ratio. The authors concluded that further research is needed to refine the
application of portfolio theory in more complex financial environments.

De Athayde and Flôres (2004) addressed the problem of portfolio selection by consid-
ering not just the mean and variance of asset returns but also the skewness. The goal of
this study was to develop a general methodology for constructing an efficient portfolio set
that accounts for the first three moments of asset returns—mean, variance, and skewness.
The authors present analytical formulas for determining the efficient surface in a three-
dimensional space defined by these moments and explore the geometric properties of this
surface. The methodology allows for the computation of optimal portfolio weights, even
in cases where the investor is willing to trade off negative skewness for higher expected
returns. By expanding on traditional mean-variance analysis, the paper provides a more
comprehensive framework for portfolio optimization, addressing situations where asset
returns are not normally distributed. The authors also introduced a duality result that plays
a crucial role in solving the optimization problem, particularly in cases where the solution
may involve multiple local optima.

Markowitz (2010) reflected on the foundational concepts of modern portfolio theory,
revisiting key assumptions and their applications in contemporary finance. He discussed
the practical use of mean-variance analysis, emphasizing that he never assumed return
distributions to be Gaussian or investors’ utility functions to be quadratic. Markowitz
explored the conditions under which mean-variance analysis is applicable and extended
his analysis to newer risk measures like Value at Risk (VaR) and Conditional Value at Risk
(CVaR). He also revisits the hypothesis he proposed in 1952 regarding the coexistence of
behaviors like buying lottery tickets and insurance by the same economic agents, comparing
his utility function to that of prospect theory. Additionally, Markowitz discusses the
Capital Asset Pricing Model (CAPM) and critiques some of its foundational assumptions,
particularly the unrealistic representation of short positions. Overall, the paper serves as a
retrospective and an update on Markowitz’s views on portfolio theory, offering insights
into both its historical foundations and its relevance to current financial practices.

Maillard et al. (2010) explored an alternative approach to portfolio construction known
as the Equally Weighted Risk Contribution portfolio. They analyzed the theoretical proper-
ties and practical performance of Equally Weighted Risk Contribution portfolios, which aim
to balance the risk contribution of each asset in the portfolio rather than simply equalizing
the weights. The Equally Weighted Risk Contribution approach is positioned as a middle
ground between the minimum-variance portfolio, which can suffer from concentration
issues, and the equally weighted portfolio, which may lack proper risk diversification. The
authors delve into the mathematical foundations of Equally Weighted Risk Contribution
portfolios, providing both theoretical insights and empirical evidence to support their effec-
tiveness. They compare the Equally Weighted Risk Contribution portfolios with strategies
like the 1/n and minimum-variance portfolios, through numerical examples and empirical
simulations. The study concluded that Equally Weighted Risk Contribution portfolios
offer a more balanced risk profile while maintaining competitive performance, making
them a valuable tool for investors seeking robust portfolio diversification without excessive
concentration in a few assets.

Clarke et al. (2011) focused on the construction and analysis of minimum-variance
portfolios, which aim to achieve the lowest possible risk for a given set of assets. They
explored the composition of minimum-variance portfolios, particularly under long-only
constraints (where no short-selling is allowed). The authors provide an analytic solution
for determining the optimal security weights within these portfolios, emphasizing that
such portfolios are primarily composed of stocks with lower market betas. The paper also
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highlights how high idiosyncratic risk reduces a security’s weight but does not eliminate
it from the portfolio unless the market beta is high. Furthermore, the study compares
these analytic results with empirical data, and finds that the optimization of minimum-
variance portfolios often leads to portfolios dominated by low-beta stocks. This finding
aligns with the longstanding critique of the Capital Asset Pricing Model (CAPM), which
suggests that low-beta stocks can yield returns similar to or even higher than those from
high-beta stocks. The authors conclude that minimum-variance portfolio strategies are
effective in reducing risk while potentially offering high returns, making them a valuable
tool in portfolio management, especially considering the observed anomalies in traditional
risk–return relationships.

Boasson et al. (2011) explored the use of a semi-variance framework as an alternative
to the traditional mean-variance approach in portfolio optimization. They demonstrated
how a semi-variance approach can more effectively measure downside risk in portfolio
selection, compared to the traditional mean-variance framework. The authors argued that
semi-variance, which only considers return dispersions below the expected value, aligns
better with investors’ intuitive perceptions of risk, focusing on minimizing losses rather
than overall volatility. The study used a sample of exchange-traded index funds (ETFs) to
compare portfolios constructed using the mean-semi-variance model with those created
using the traditional mean-variance model. The results indicate that portfolios optimized
under the mean-semi-variance framework offer potential benefits, such as maintaining or
improving expected returns while minimizing downside risk exposure. The findings have
practical implications for both individual and institutional investors, particularly those in
industries like insurance, where minimizing downside risk is crucial.

Todoni (2015) explored the application of Post-Modern Portfolio Theory (PMPT) in
evaluating the risk-adjusted returns of major indices from emerging markets in Central
and Eastern Europe over the period 2008–2013. The main goal of this paper is to apply
two methods based on PMPT to assess the risk-adjusted returns of five major Central and
Eastern European market indices: Romania (BET), Hungary (BUX), Czech Republic (PX),
Bulgaria (SOFIX), and Poland (WIG). The study employed the Sortino ratio, a well-known
measure to evaluate risk-adjusted return of a portfolio considering only the downside
risk. The authors then propose an alternative method that builds on the Sortino ratio
by incorporating a “multipliers method” to calculate a global measure of risk, which
aims to provide a more nuanced assessment of risk by distinguishing between unrealized
return areas and loss areas (negative returns). The analysis was conducted over two sub-
periods, 2008–2010 and 2011–2013, highlighting how Central and Eastern European markets
responded to the financial crisis. The results show that Hungary consistently outperformed
across both methods, while Bulgaria typically exhibited the worst performance. The
study concludes by suggesting that the proposed alternative method may offer a more
refined measure of risk that better aligns with the realities of investment decision-making,
particularly in emerging markets.

Booth and Broussard (2016) explored the application of the Sortino ratio within the
context of asset allocation, particularly using Extreme Value Theory (EVT). They assessed the
effectiveness of the Sortino ratio, which focuses on downside risk, in optimizing portfolio
allocations. The authors compare the performance of portfolios constructed using the Sortino
ratio against those optimized with the Sharpe ratio, particularly in environments with signifi-
cant downside risks, such as during financial crises. The analysis is performed using a dataset
that includes U.S. real estate investment trusts (REITs) and the S&P 500 index. The authors
also incorporate the EVT to model the extreme returns in the left tail of the distribution, which
are crucial in assessing the downside risk more accurately. Their findings indicate that the
choice of performance measure (Sortino versus Sharpe) significantly influences the optimal
asset allocation, especially under different risk tolerances and market conditions. The results
suggest that portfolios optimized using the Sortino ratio, particularly with EVT adjustments,
might offer better protection against extreme negative events, making it a valuable tool for
investors concerned with downside risk.
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Taljaard and Maré (2021) focused on the S&P 500 since 2016 and compared the equally
weighted portfolio with the market-capitalization-weighted portfolio. The primary goal of
this study was to analyze the reasons behind the underperformance of the equally weighted
portfolio relative to the market-cap-weighted portfolio and to propose strategies to mitigate
this issue. The authors utilized stochastic portfolio theory to explore the dynamics that
contribute to this underperformance. They find that while the equally weighted portfolio
typically outperforms over the long term, it has faced significant short-term underperfor-
mance due to increased market concentration in the cap-weighted portfolio and reduced
diversification benefits. To address these challenges, the study suggested a dynamic ap-
proach that involves switching between equal-weighted and cap-weighted portfolios based
on a linear regression model that predicts relative performance. This model considers
factors such as changes in market concentration and the benefits of diversification, with the
aim of optimizing short-term performance while maintaining long-term gains. The find-
ings offer practical insights for improving the performance of equal-weighted portfolios,
particularly in volatile or momentum-driven markets.

Surtee and Alagidede (2023) explored an innovative use of the MPT by incorporating
different risk–reward ratios beyond the traditional Sharpe and Sortino ratios. They evalu-
ated the effectiveness of the Sterling and Treynor ratios as alternatives to the commonly
used Sharpe and Sortino ratios in portfolio optimization. The authors argue that while
MPT and the Sharpe ratio have been widely used, these traditional methods may not fully
capture the potential for higher returns under varying market conditions. By applying
the Sterling and Treynor ratios to MPT, the study finds that these ratios often produce
higher-performing portfolios. The paper emphasizes the statistical advantages of using
these ratios, particularly in their ability to adapt to different market environments and
provide more robust performance metrics compared to traditional methods. The study
concludes by suggesting further research into optimizing portfolio performance through
the application of these alternative ratios and exploring advanced optimization algorithms
to enhance the results.

3. Materials and Methods
3.1. RMD Portfolio

The application of the RMD portfolio is the focus of the study, hence we present
the approach as follows (Bielstein et al. 2023). The objective of the RMD portfolio is to
maximize the unexplained variation between the asset returns, enhancing diversification by
emphasizing assets that behave differently from each other. We consider an asset universe
of N assets and compute a sample return over a specific period from t = 0 to t = T, where
t = 0 is the starting point for returns, and t = T is the end point for returns. We can then
compile the correlation matrix, denoted as C, which presents the pairwise correlations
between these asset returns, as follows:

C =

 1 . . . ρ1,N
...

. . .
...

ρN,1 . . . 1

 (1)

The matrix C can be used to derive the explained variations between any two asset
returns (say asset 1 and asset 2), which are essentially the R2 values computed by squaring
the correlation coefficient, ρ1,2. We compile the R2 values in a P-matrix, as follows:

P =

 1 . . . ρ2
1,N

...
. . .

...
ρ2

N,1 . . . 1

 (2)
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Alternatively, we can directly compute the R2 values by taking two asset returns, say
assets 1 and 2, and regressing the returns of asset 1 on the returns of asset 2, to determine
the proportion of variance of asset 1 explained by asset 2.

Next, we compute the unexplained variation (denoted by the R-matrix), because a
diversified portfolio should include assets whose return variations are largely unexplained
by other assets. Since the explained variation between any two assets is denoted by R-
square values (or matrix P), where ρ2 ∈ [0, 1], the unexplained variation between any
two assets is computed by 1 − ρ2

1,2. We can construct the matrix of unexplained variations
between the respective pair of asset returns denoted by the R-matrix given below:

R =

 0 . . . 1 − ρ2
1,N

...
. . .

...
1 − ρ2

N,1 . . . 0

 (3)

This matrix R represents the unexplained variations between the asset pairs, which
the optimization function uses to determine the portfolio weights. The goal is to maximize
these unexplained variations, thereby combining assets that exhibit the least correlation
with one another. In what follows, the RMD portfolio finds the vector of weights (ω) that
maximizes these unexplained variances, subject to full investment and no-short-selling.
Hence, the optimization problem is formulated as follows:

maxωTRω

Subject to:

∑N
i=1 ωi, and ωi ≥ 0, ∀i = 1, . . . , N (4)

The term ωTRω represents the weighted sum of unexplained variations. Maximizing
this term means choosing portfolio weights that emphasize assets with minimal correlation
to each other, thus maximizing diversification. The constraint ∑ ωi = 1 ensures that the
total investment across all assets equals the total capital available for investment. The
constraint ωi ≥ 0 ensures that no asset has a negative weight, meaning no short positions
are taken in any asset.2

We can compute the R2 value in Excel® using the formula: = RSQ(µA1, µA2), where
µA1 and µA2 are the monthly returns of asset 1 and asset 2, respectively. Alternatively, we
can obtain the respective R2 by first computing the correlation between asset 1 and asset 2,
ρ1,2, and then taking the square of the correlation coefficient, i.e., ρ2

1,2. In Excel®, we can im-
plement this for each pair of assets using the formula: (= POWER(CORREL(µA1, µ2), 2) .

3.2. Benchmark Portfolios

This section is devoted to explaining the benchmark portfolios used in our study.
Benchmark portfolios serve as standards or points of reference against which the perfor-
mance and characteristics of the RMD portfolio can be compared. The following benchmark
portfolios are considered.

3.2.1. Equally Weighted (Naïve)

The equally weighted portfolio (1/N) (DeMiguel et al. 2009) allocates an equal propor-
tion of the total investment to each asset, regardless of its individual characteristics. It is
robust to estimation errors because it only relies on the number of assets in the portfolio.
The primary assumption here is that the assets are uncorrelated, meaning each asset’s
performance is independent of the others. The equally weighted portfolio can be depicted
as follows:

ωEW =
1
N

(5)

where N is the number of assets in the portfolio.
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3.2.2. Minimum Variance

The MVP (Clarke et al. 2006; Haugen and Baker 1991) aims to achieve the lowest
possible portfolio volatility by minimizing the standard deviation of returns. This approach
assumes accurate forecasts of the covariance matrix of asset returns. However, reliance on
such forecasts can introduce estimation errors, particularly in large asset universes, leading
to potential instability. Moreover, this method may result in overly concentrated portfolios,
where a few assets dominate the risk exposure. The MVP can be formulated as follows:

min
{

σp =
√

ωT
MVPΣωMVP

∣∣∣∣µp = ∑N
i=1 ωiri; ∑N

i=1 ωi = 1
}

(6)

where Σ is the N × N covariance matrix of the asset returns, and ri is the ith stock’s market-
adjusted return. Generally, the portfolio with the minimum variance can be computed
by ωmin = Σ−11

1TΣ−11
, where Σ−1 is the inverse covariance of returns matrix. A portfolio’s

beta-adjusted portfolio mean is given by µp = ω’µ, and variance is given by σp = ω’Σω,
where Σ is the covariance matrix.

3.2.3. Mean Variance (Market)

The individual stock returns are computed as rt = ln
(

pt
pt−1

)
, where pt and pt−1 are

the individual stock prices for months t and t − 1, respectively. Individual asset beta, βi,
represents the trade-off between market return against the individual asset’s return over
the sample period. Based on the CAPM framework, the annualized return for each stock
(µβ i) is computed as: µβ i = r f + βi

(
µmkt − r f

)
, where r f is the risk-free rate, assumed

equal to 0.0544 (5.44%) in the paper, and µmkt = average return of the market weighted
price index (MWPI) reported by SPX (SPX 2024a). The risk-free rate was selected based on
the 1-year government bond yield rate of May 2019.3

With insights earlier studies from on CAPM and maximizing returns with a given risk
(standard deviation) (Sharpe 1964; Merton 1972), we derive a market portfolio based on
maximizing the Sharpe (1996) ratio, SR =

(
µp−r f

σp

)
, where µp, r f and σp are the portfolio

mean, risk-free rate and portfolio standard deviation, respectively. Hence, following Bai
and Newsom (2011), we specify the programing problem as

max
{

SR =
µp−r f

σp

∣∣∣∣µp = ∑N
i=1 ωiri; σp =

√
∑N

i,j σijωiωj; ∑N
i=1 ωi = 1

}
(7)

where N is the number of stocks, and σij is the covariance between returns of stock i and
stock j, and ri is the annualized expected return of stock i, σij is the maximum risk level
specified by the investor, and ωi is the weight of stock i in the portfolio. We use the changes
in the market-weighted price index to proxy market return and derive beta-adjusted
annualized stock returns based on the CAPM framework.

3.2.4. Semi-Variance

Next, we extend the analysis to examine downside risk only. First, we compute the
monthly upside risk as URt = max

(
µ − µpt , 0

)
, where µpt is the monthly portfolio return

with respect to weight, and aωi, and µ are the historical monthly returns. The monthly
downside risk is given by DRt = max

(
µpt − µ, 0

)
. Then, we compute the annualized

downside volatility, as σD =

√
∑T

i=1 max(µpt−µ,0)
2

T−1 × 12.
Hence,

min
{

σD

∣∣∣∣µp = ∑N
i=1 ωiri; σp =

√
∑N

i,j σijωiωj; ∑N
i=1 ωi = 1

}
(8)
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3.2.5. Max Target Ratio

With a target return of 6.75% (Tg = 0.0675), which was the rate of return offered by Fiji

National Provident Fund in 2019,4 we compute the Sortino ratio as Sort =
µp−Tg

σD
, where

σD is the annualized downside volatility. The program for optimization with the T-period
sample is as follows:

max

Sort =
µ − Tg

σD

∣∣∣∣∣∣µp = ∑N
i=1 ωiri; σD =

√√√√12

[
∑T

i=1 max(µT − µi, 0)2

T − 1

]
; ∑N

i=1 ωi = 1

 (9)

3.2.6. Maximum Skewness

Finally, the volatility skewness is defined as σv =
σ2

U
σ2

D
, where σ2

U and σ2
D are the

variances of upside risk and downside risk, and σ2 = σ2
U + σ2

D. Hence, 0 < σv < 1 implies
higher downside risk in the portfolio, whereas σv > 1 implies greater upside risk in the
portfolio. Hence, the program for maximum volatility skewness is specified as follows:

max

{
σv =

σ2
U

σ2
D

∣∣∣∣∣µp = ∑N
i=1 ωiri; σp =

√
∑N

i,j σijωiωj; ∑N
i=1 ωi = 1

}
(10)

3.2.7. Most Diversified Portfolio (MDP)

The MDP (Choueifaty and Coignard 2008) is calculated by comparing the weighted aver-

age volatility of the individual assets (ωMDPσ) to the total portfolio volatility (
√

ωT
MDPΣωMDP).

This method aims to spread investments across assets with varying degrees of volatility and
correlation to achieve maximum diversification benefits. The MDP can be depicted as follows:

max

MDP =
ωMDPσ√

ωT
MDPΣωMDP

∣∣∣∣∣∣µp = ∑N
i=1 ωiri; σp =

√
∑N

i,j σijωiωj; ∑N
i=1 ωi = 1

 (11)

where σ is an N × 1 vector of the asset return volatilities.

4. Results
4.1. Descriptive Statistics and Asset Betas

This section presents the analysis and results based on historical return data covering
58 months from August 2019 to May 2024.5 Table 1 presents a summary profile of the
companies listed on the stock exchange. In terms of sector composition, there are two stocks
in automotive (TTS and VBH); one each in banking (BCN), education (FBL), insurance
(FIL), retail (RBG) and tourism (PDM); three in investment (FHL, KGF and VIL), five in
manufacturing and wholesale (PBP, FMF, PGI, APP, RCF); and three in telecommunications
and media (ATH, CFL, FTV). The annualized return is calculated using the compound
method, considering the share price on the date the company was listed and the share price
on 31 May 2024. Furthermore, 13/19 companies have market capitalization below 5%: APP,
BCN, CFL, FBL, FIL, FTV, KFL, KGF, PBP, PDM, PGI, RCF and VBH (See Figure 1).
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Table 1. Profile of listed stocks on SPX.

Symbol Name Date Listed Sample End
Date

Number of
Trading Days Sector

Date Listed
Market

Closing Price

Market Closing
Price on 31
May-2024

Financial Year
End

Annualized
Return

Market
Capitalization in

Millions of FJD (%
of Market Cap.)

APP

Atlantic &
Pacific
Packaging
Company Ltd.

17-Aug-98 31-May-24 6502.98
Manufacturing
and wholesale
(Packaging)

$0.70 $3.09 30-Jun 5.75% 24.7
(0.72)

ATH
Amalgamated
Telecom
Holdings Ltd.

18-Apr-02 31-May-24 5577.83

Telecommunications
and media
(telecommunica-
tions and mobile
services)

$1.14 $2.00 30-Jun 2.54% 1029.0
(30.01)

BCN
BSP
Convertible
Notes Ltd.

11-May-10 31-May-24 3544.57
Banking
(Financial
services)

$5.25 $31.00 31-Dec 12.63% 95.0
(2.77)

CFL Communications
(Fiji) Ltd. 20-Dec-01 31-May-24 5659.99

Telecommunications
(Radio
broadcasting)

$1.15 $6.17 31-Dec 7.48% 23.4
(0.68)

FBL Free Bird
Institute Ltd. 2-Feb-17 31-May-24 1846.85 Education $2.00 $3.65 31-Dec 8.21% 8.7

(0.25)

FHL Fijian
Holdings Ltd. 20-Jan-97 31-May-24 6899.28 Investment

(investment chain) $0.18 $0.95 30-Jun 6.08% 304.6
(8.89)

FIL FijiCare
Insurance Ltd. 7-Dec-00 31-May-24 5920.96 Insurance $0.60 $17.99 31-Dec 14.48% 159.2

(4.64)

FMF FMF Foods
Ltd. 27-Jul-79 31-May-24 11308.93

Manufacturing
and wholesale
(flour and related
products)

$0.06 $1.78 30-Jun 7.56% 264.0
(7.70)
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Table 1. Cont.

Symbol Name Date Listed Sample End
Date

Number of
Trading Days Sector

Date Listed
Market

Closing Price

Market Closing
Price on 31
May-2024

Financial Year
End

Annualized
Return

Market
Capitalization in

Millions of FJD (%
of Market Cap.)

FTV Fiji Television
Ltd. 24-Apr-97 31-May-24 6834.38

Telecommunications
(Television
broadcasting)

$1.02 $2.00 30-Jun 2.48% 20.6
(0.60)

KFL Kontiki
Finance Ltd. 4-Jul-18 31-May-24 1489.91

Investment
(Financial
services)

$1.14 $1.13 30-Jun −0.15% 101.1
(2.95)

KGF
Kinetic
Growth Fund
Ltd.

16-Dec-04 31-May-24 4906.06 Investment
(investment chain) $1.05 $1.20 31-Dec 0.69% 4.6

(0.13)

PBP Pleass Global
Ltd. 4-Feb-09 31-May-24 3862.85

Manufacturing
and wholesale
(Bottled water)

$0.94 $7.95 31-Dec 13.93% 56.8
(1.66)

PDM Port Denarau
Marina 14-Aug-19 31-May-24 1209.60 Tourism (Tourism

and hospitality) $1.40 $2.30 31-Jul 10.34% 89.2
(2.60)

PGI Pacific Green
Industries 5-Jun-01 31-May-24 5796.69

Manufacturing
and wholesale
(Furniture)

$1.90 $1.08 31-Dec −2.46% 8.2
(0.24)

RBG RB Patel
Group Ltd. 17-Jul-01 31-May-24 5767.69

Retail
(Supermarket
chain)

$0.21 $3.09 30-Jun 11.75% 463.5
(13.52)

RCF
The Rice
Company of
Fiji Ltd.

20-Jan-97 31-May-24 6899.28
Manufacturing
and wholesale
(Rice)

$0.50 $9.80 30-Jun 10.87% 58.8
(1.72)

TTS
Toyota Tsusho
(South Sea)
Ltd.

7-Jun-79 31-May-24 11343.45
Automotive
(automotive
trading)

$1.95 $20.00 31-Mar 5.17% 280.6
(8.19)
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Table 1. Cont.

Symbol Name Date Listed Sample End
Date

Number of
Trading Days Sector

Date Listed
Market

Closing Price

Market Closing
Price on 31
May-2024

Financial Year
End

Annualized
Return

Market
Capitalization in

Millions of FJD (%
of Market Cap.)

VBH V B Holdings
Ltd. 1-Nov-01 31-May-24 5693.82

Automotive
(property and
fleet management)

$1.28 $6.00 31-Dec 6.84% 12.8
(0.37)

VIL
Vision
Investments
Ltd.

29-Feb-16 31-May-24 2080.90 Investment
(investment chain) $1.70 $4.09 31-Mar 10.63% 423.4

(12.35)

Notes: Number of trading days per year = 252, and total number of trading days from the day of listing to the sample end date is computed using Excel formula: =
((

DAYS(D3,C3)
365

)
∗ 252

)
,

where D3 = Sample end date and C3 = date the respective company was listed. Annualized return is computed as: =
(( H3

G3

)( 1
E3 ) − 1

)
∗ 252, where H3 is the market closing price on 31

May 2024, G3 = market closing price on the day of listing, and E3 = number of trading days per year. Sun Insurance Company (SUN) was listed on 15 August 2024, hence excluded
from the sample. At the time of listing, SUN’s market cap was FJD 144 million (4.03%). All the companies are based in and operating in Fiji. Source: authors’ own computation and
compilation based on data from SPX (2024a; 2024b, p. 3).

Table 2. Descriptive statistics (monthly return data from August 2019 to May 2024).

Statistics APP ATH BCN CFL FBL FHL FIL FMF FTV KFL KGF PBP PDM RBG RCF TTS VBH VIL DMCWPI

Mean
Return 0.013 −0.006 0.006 0.002 0.008 −0.003 0.038 0.002 −0.009 0.004 0.001 0.022 0.011 −0.008 0.004 0.010 −0.003 0.001 −0.001

Standard
Error 0.007 0.008 0.006 0.002 0.009 0.017 0.008 0.015 0.012 0.008 0.001 0.010 0.008 0.013 0.006 0.008 0.004 0.010 0.004

Sample
Variance 0.003 0.003 0.002 0.000 0.004 0.018 0.003 0.014 0.009 0.004 0.000 0.006 0.004 0.010 0.002 0.003 0.001 0.006 0.001

Kurtosis 15.004 2.511 4.218 26.266 12.000 1.942 2.142 35.988 14.730 2.524 41.424 17.674 4.544 39.718 30.123 10.773 6.453 10.173 3.140

Skewness 2.792 −0.030 0.708 4.005 1.427 0.730 1.333 4.791 1.561 0.897 6.234 3.702 1.905 −5.520 4.680 2.632 −0.365 1.584 0.324

Range 0.387 0.363 0.294 0.130 0.547 0.740 0.308 1.122 0.810 0.350 0.045 0.565 0.323 0.892 0.384 0.390 0.194 0.563 0.195

Minimum −0.088 −0.178 −0.136 −0.034 −0.243 −0.322 −0.069 −0.340 −0.325 −0.168 0.000 −0.121 −0.089 −0.679 −0.095 −0.104 −0.111 −0.245 −0.096

Maximum 0.299 0.185 0.158 0.095 0.304 0.418 0.239 0.782 0.485 0.182 0.045 0.443 0.234 0.213 0.289 0.286 0.083 0.318 0.099

N (Months) 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58

Source: authors’ own computation based on data from SPX (2024a).
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For analysis, we considered 18/19 companies listed on SPX at the time of study.
We excluded one stock because it had no variability in its share price. Table 2 provides
the descriptive statistics (mean returns, standard errors, variances, kurtosis, skewness,
range, minimum and maximum returns) for the 18 stocks included in our analysis, and the
market-weighted price index (MWPI) published by the South Pacific Stock Exchange (SPX).
These data are sourced from SPX (2024a), and they form the basis for understanding the
performance and risk characteristics of the assets in our portfolio.

Table 3 presents the beta coefficient and the respective p-values, the expected return,
standard deviation, and market-adjusted return using the Capital Asset Pricing Model
(CAPM). The beta values indicate the sensitivity of each asset’s returns to market move-
ments. The statistically significant values of stock beta (denoted by ***, **, *) highlight the
strength of the asset’s movement with respect to the overall market.

Table 3. Asset return–risk (annualized), adjusted return and trade profile.

Symbol Beta p-Value Expected
Return E(ri)

Standard
Deviation

Market
(CAPM)—Adj.

Return,
¯
r i,m

Number of
Trades (Jul

2019–May 2024)

Consideration—
FJD

[Volume Traded]

APP 0.021 0.928 0.152 0.183 0.053 93 $201,269
[99,619]

ATH 1.258 *** <0.001 −0.076 0.205 −0.022 817 $4,198,696
[2,079,256]

BCN 0.379 ** 0.053 0.074 0.156 0.031 307 $3,381,869
[123,836]

CFL 0.118 * 0.072 0.022 0.052 0.047 88 $482,651
[75,774]

FBL −0.043 0.881 0.095 0.228 0.057 93 $803,486
[266,528]

FHL 1.983 *** <0.001 −0.031 0.459 −0.063 7016 $8,286,653
[8,244,432]
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Table 3. Cont.

Symbol Beta p-Value Expected
Return E(ri)

Standard
Deviation

Market
(CAPM)—Adj.

Return,
¯
r i,m

Number of
Trades (Jul

2019–May 2024)

Consideration—
FJD

[Volume Traded]

FIL −0.012 0.963 0.452 0.202 0.055 439 $4,346,235
[598,217]

FMF 1.591 *** 0.001 0.024 0.407 −0.041 166 $4,019,393
[2,178,942]

FTV 0.715 * 0.084 −0.110 0.329 0.010 119 $1,485,997
[363,014]

KFL 0.387 0.160 0.044 0.218 0.030 820 $10,015,865
[10,190,076]

KGF 0.007 0.808 0.015 0.022 0.054 23 $90,111.80
[78,481]

PBP −0.073 0.827 0.262 0.262 0.059 103 $440,551
[139,544]

PDM −0.032 0.903 0.136 0.205 0.056 1273 $36,812,195
[23,808,791]

RBG −1.131
*** 0.007 −0.095 0.341 0.127 862 $9,167,304

[2,723,851]

RCF −0.068 0.731 0.052 0.154 0.059 257 $761,443
[76,842]

TTS 0.036 0.888 0.124 0.199 0.052 85 $8,616,426
[605,629]

VBH −0.101 0.412 −0.036 0.097 0.061 41 $280,397
[42,590]

VIL 0.996 *** 0.002 0.012 0.267 −0.006 295 $30,855,896
[7,530,672]

Notes: Average per month market return (change in MWPI) over the sample period is rm = −0.055%; risk-free

rate, r f = 5.44% p.a; hence, the monthly rate based on r f j12
=

{(
1 + r f

) 1
12 − 1

}
= 0.004424081; monthly market

adjusted return is ri,m =
{

r f j12
+ βi

(
rm − r f j12

)}
, and this is annualized as ri,m =

{
(1 + ri,m)

12 − 1
}

; ***, **, and *
indicates significance at 1%, 5% and 10% level, based on p-values. Source: authors’ own computation based on
data from SPX (2024a).

For example, assets with β > 1 (ATH—telecommunications and media, FHL—investment,
and FMF—manufacturing and wholesale) perform better (worse) than the market if the market
moves positively (negatively). Similarly, assets with 0.5 < β < 1 are FTV (telecommunications
and media) and VIL (investment), which perform similarly to the market, although propor-
tionately lower than the market. Other stocks with beta 0.1 < β < 0.5 are BCN (banking),
CFL (telecommunications and media), KFL (finance), and TTS (automotive), and others are
positive but with a small beta (0 < β ≤ 0.1) (APP—manufacturing and wholesale, KGF—
investment, and TTS—automotive). On the other hand, just one stock was noted to have
β < −1, which was RBG (retail). Therefore, beta-adjusted annualized returns can provide
deeper insight into a stock’s performance against its risk profile for potential investors.
Subsequently, using beta-adjusted returns can facilitate robust portfolio construction.

Considering the returns, we note that APP has a low beta (0.021), although its an-
nualized average return is 15.2%, with a relatively high volatility (18.3%). Noting the
stock’s performance against the market, we find that the market-adjusted return is just
1.3%, which is significantly lower than the expected return based on monthly price changes.
Examining a few other stocks, we note that some stocks are highly positively correlated
with the market (examples: ATH, FHL, FMF), and their market-adjusted returns are higher
(in absolute terms) relative to the expected returns. Another observation we make is that
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one of the stocks (i.e., PBP—manufacturing and wholesale sector) has a positive average
return, but since its beta is negative (β = −0.07), the market-adjusted return is negative
(−0.8%). Interestingly, some stocks with negative beta, such as RBG (retail business) with a
β = −1.13 and VBH (automotive sector) with a β = −0.10, have negative average returns
of −9.5% and −3.6%, respectively. However, the respective annualized market-adjusted
returns are positive, with RBG’s return of 12.9% and VBH’s of 1.5%. Moreover, stocks like
FBL (education) and FIL (insurance) have β = −0.043 and β = −0.012, respectively. Their
respective annualized average returns are 9.5% and 45.2%. However, their market-adjusted
returns are 0.6% and 0.5%, respectively.

Furthermore, we note that stocks with betas +/− 0.1 range included APP ( β = 0.021),
CFL (β = 0.12), FBL (β = −0.043), FIL (β = −0.012), KGF (β = −0.007), PBP (β = −0.073),
PDM (β = −0.032), RCF (β = −0.068), TTS (β = 0.036) and VBH (β = −0.10) (Table 3). We
note that the p-values of these betas are above the 10% level, hence they are not statistically
significant within the 1–10 percent level. Nevertheless, some observations are in order. We
note that some of the stocks with low betas have comparatively low numbers of trading
over the sample period, and most of them are low-cap stocks with less than 5% over the
market capitalization (Table 1). For example (Table 3), the total numbers of trades over the
sample period for stocks like APP, CFL, FBL, KGF, TTS and VBH were 93, 88, 93, 23, 85,
and 41, respectively. Moreover, some of these stocks have relatively low percentages of
market capitalization (below 1%) (APP, CFL, FBL and KGF) (Table 1). Moreover, stocks
like FIL, PDM and RCF have small and negative betas, indicating that these stocks’ prices
tend to move opposite to the market. Moreover, although these stocks (FIL, PDM and
RCF) have relatively high numbers of trades (439, 1273 and 257, respectively) and slightly
higher percentages of market capitalization (4.64%, 2.60% and 1.72%), we note that for
stocks like RCF, the volume traded (76,842) and considerations (FJD 761,443) remain low
compared to high beta stocks; and for FIL and PDM, the stocks are traded in large amounts,
but infrequently. In any case, a small beta is indicative that the stock prices are not highly
sensitive to the overall market.

Next, we construct a portfolio using the RMD method. As mentioned earlier, the P-
matrix contains the R-square values obtained from the pairwise regression results between
the asset returns (Table 4). Each element Pij in the matrix indicates the proportion of the
variance of asset i that is explained by asset j. For example, if we take two stocks, say ATH
and APP, then P21 represents how much of the variance of ATH is explained by APP. This
matrix is essential in understanding the interdependencies and co-movements between
different assets. The diagonal elements are 1, indicating that each asset explains its own
variance completely. The off-diagonal elements close to 0 suggest low explanatory power
between the assets, indicating the potential for diversification. For instance, the low values
of P in most of the off-diagonal elements suggest that the assets have low correlations with
each other, hence are favorable for diversification.

As discussed above, the R-matrix is derived from the P-matrix by computing 1 − ρij
2

for each pair of assets (Table 5). This matrix represents the unexplained variations between
the asset pairs, and they are crucial for the RMD optimization process. Each element Rij in
the R-matrix derived from the pairwise regression denotes the unexplained variations. High
values in the R-matrix indicate significant unexplained variation, suggesting that these
assets move independently of each other, which is ideal for maximizing diversification.
For example, in Table 5, we note that R2,1 (where the subscript 2,1 denotes asset in row 2,
column 1) is high (0.995). This implies that the relationship between the returns of ATH
and APP has a substantial amount of unexplained variation (see Table 4). Because of the
close link between correlation and variations, we further confirm this by noting the low
correlation coefficient (0.007, Table 6) between the two asset returns. Thus, including these
two assets in a portfolio could enhance diversification.
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Table 4. P-Matrix.

APP ATH BCN CFL FBL FHL FIL FMF FTV KFL KGF PBP PDM RBG RCF TTS VBH VIL

APP 1.000

ATH 0.005 1.000

BCN 0.028 0.000 1.000

CFL 0.398 0.064 0.001 1.000

FBL 0.133 0.034 0.003 0.013 1.000

FHL 0.001 0.002 0.011 0.048 0.072 1.000

FIL 0.006 0.006 0.003 0.002 0.003 0.001 1.000

FMF 0.013 0.009 0.003 0.001 0.072 0.033 0.019 1.000

FTV 0.010 0.016 0.005 0.025 0.004 0.000 0.028 0.000 1.000

KFL 0.000 0.001 0.060 0.001 0.000 0.034 0.022 0.011 0.040 1.000

KGF 0.001 0.003 0.001 0.009 0.000 0.000 0.000 0.000 0.002 0.001 1.000

PBP 0.029 0.001 0.001 0.000 0.003 0.001 0.001 0.005 0.001 0.000 0.165 1.000

PDM 0.000 0.016 0.003 0.004 0.000 0.000 0.015 0.000 0.006 0.016 0.004 0.003 1.000

RBG 0.000 0.054 0.032 0.005 0.009 0.005 0.003 0.000 0.039 0.000 0.000 0.000 0.020 1.000

RCF 0.004 0.010 0.000 0.001 0.002 0.000 0.004 0.000 0.007 0.002 0.001 0.001 0.000 0.006 1.000

TTS 0.001 0.002 0.001 0.000 0.003 0.001 0.000 0.002 0.002 0.054 0.001 0.000 0.021 0.002 0.005 1.000

VBH 0.006 0.000 0.001 0.002 0.000 0.046 0.006 0.000 0.008 0.015 0.000 0.000 0.001 0.003 0.219 0.009 1.000

VIL 0.001 0.012 0.003 0.000 0.007 0.000 0.003 0.000 0.015 0.099 0.000 0.000 0.006 0.001 0.023 0.105 0.001 1.000

Source: Authors’ own computation based on data from SPX (2024a).

Table 5. R-Matrix.

APP ATH BCN CFL FBL FHL FIL FMF FTV KFL KGF PBP PDM RBG RCF TTS VBH VIL

APP 0.000

ATH 0.995 0.000

BCN 0.972 1.000 0.000

CFL 0.602 0.936 0.999 0.000

FBL 0.867 0.966 0.997 0.987 0.000

FHL 0.999 0.998 0.989 0.952 0.928 0.000

FIL 0.994 0.994 0.997 0.998 0.997 0.999 0.000

FMF 0.987 0.991 0.997 0.999 0.928 0.967 0.981 0.000

FTV 0.990 0.984 0.995 0.975 0.996 1.000 0.972 1.000 0.000

KFL 1.000 0.999 0.940 0.999 1.000 0.966 0.978 0.989 0.960 0.000

KGF 0.999 0.997 0.999 0.991 1.000 1.000 1.000 1.000 0.998 0.999 0.000

PBP 0.971 0.999 0.999 1.000 0.997 0.999 0.999 0.995 0.999 1.000 0.835 0.000

PDM 1.000 0.984 0.997 0.996 1.000 1.000 0.985 1.000 0.994 0.984 0.996 0.997 0.000

RBG 1.000 0.946 0.968 0.995 0.991 0.995 0.997 1.000 0.961 1.000 1.000 1.000 0.980 0.000

RCF 0.996 0.990 1.000 0.999 0.998 1.000 0.996 1.000 0.993 0.998 0.999 0.999 1.000 0.994 0.000

TTS 0.999 0.998 0.999 1.000 0.997 0.999 1.000 0.998 0.998 0.946 0.999 1.000 0.979 0.998 0.995 0.000

VBH 0.994 1.000 0.999 0.998 1.000 0.954 0.994 1.000 0.992 0.985 1.000 1.000 0.999 0.997 0.781 0.991 0.000

VIL 0.999 0.988 0.997 1.000 0.993 1.000 0.997 1.000 0.985 0.901 1.000 1.000 0.994 0.999 0.977 0.895 0.999 0.000

Source: Authors’ own computation based on data from SPX (2024a).
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Table 6. Correlation (C-matrix).

APP ATH BCN CFL FBL FHL FIL FMF FTV KFL KGF PBP PDM RBG RCF TTS VBH VIL MCWPI

APP 1.000

ATH 0.070 1.000

BCN 0.167 0.021 1.000

CFL 0.631 0.253 −0.035 1.000

FBL 0.365 0.185 −0.053 0.112 1.000

FHL −0.033 −0.042 0.106 0.218 −0.269 1.000

FIL −0.078 −0.075 −0.050 −0.041 −0.052 0.023 1.000

FMF −0.113 0.094 0.053 0.024 −0.268 0.181 0.139 1.000

FTV −0.099 0.127 0.074 0.159 0.060 −0.009 −0.167 −0.021 1.000

KFL 0.003 0.024 0.245 −0.037 −0.003 0.183 −0.149 0.103 0.201 1.000

KGF −0.029 0.052 −0.027 −0.096 −0.018 0.006 −0.016 −0.006 −0.043 −0.025 1.000

PBP 0.170 −0.034 −0.025 0.006 0.055 −0.031 −0.025 −0.070 −0.032 0.008 0.406 1.000

PDM −0.015 −0.127 0.056 0.067 0.018 0.021 −0.123 −0.020 0.075 0.128 −0.063 −0.052 1.000

RBG 0.004 −0.232 −0.180 −0.068 0.094 −0.071 −0.052 −0.020 −0.198 0.015 0.007 0.017 0.141 1.000

RCF 0.061 −0.099 0.014 −0.031 −0.047 0.005 0.062 0.018 0.083 0.039 −0.028 −0.030 −0.007 0.080 1.000

TTS 0.039 −0.047 0.036 0.009 0.051 −0.022 −0.006 0.041 0.050 0.231 −0.035 −0.012 0.145 −0.049 0.071 1.000

VBH 0.075 0.012 −0.035 0.042 0.010 −0.214 −0.076 −0.019 0.088 0.121 0.021 0.016 −0.027 −0.052 −0.468 −0.095 1.000

VIL 0.034 0.110 0.057 0.018 0.081 0.018 −0.057 −0.011 0.123 −0.315 0.005 −0.008 −0.075 −0.038 −0.151 −0.325 −0.024 1.000

MCWPI 0.012 0.648 0.256 0.238 −0.020 0.455 −0.006 0.411 0.229 0.187 0.033 −0.029 −0.016 −0.350 −0.046 0.019 −0.110 0.394 1.000

Source: Authors’ own computation based on data from SPX (2024a).

In Tables 6 and 7, we also present the correlation (C-matrix) and the covariance matrices,
respectively. The correlation matrix (Table 6) displays the correlation coefficients (ρij), indi-
cating how (the direction) the returns of two assets move relative to each other, with values
ranging from −1 to 1. Low correlation values suggest that combining these assets could
enhance diversification. In Table 7, we present the covariances (σij) between asset returns,
which measure the degree to which two assets’ returns change together. These matrices form
the foundation for constructing mean-variance type portfolios, including the RMD portfolio.

Table 7. Covariance Matrix.

APP ATH BCN CFL FBL FHL FIL FMF FTV KFL KGF PBP PDM RBG RCF TTS VBH VIL

APP 0.033

ATH 0.003 0.042

BCN 0.005 0.001 0.024

CFL 0.006 0.003 0.000 0.003

FBL 0.015 0.009 −0.002 0.001 0.052

FHL −0.003 −0.004 0.008 0.005 −0.028 0.211

FIL −0.003 −0.003 −0.002 0.000 −0.002 0.002 0.041

FMF −0.008 0.008 0.003 0.001 −0.025 0.034 0.011 0.166

FTV −0.006 0.009 0.004 0.003 0.004 −0.001 −0.011 −0.003 0.108

KFL 0.000 0.001 0.008 0.000 0.000 0.018 −0.007 0.009 0.014 0.047

KGF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

PBP 0.008 −0.002 −0.001 0.000 0.003 −0.004 −0.001 −0.007 −0.003 0.000 0.002 0.069

PDM −0.001 −0.005 0.002 0.001 0.001 0.002 −0.005 −0.002 0.005 0.006 0.000 −0.003 0.042

RBG 0.000 −0.016 −0.010 −0.001 0.007 −0.011 −0.004 −0.003 −0.022 0.001 0.000 0.002 0.010 0.116

RCF 0.002 −0.003 0.000 0.000 −0.002 0.000 0.002 0.001 0.004 0.001 0.000 −0.001 0.000 0.004 0.024

TTS 0.001 −0.002 0.001 0.000 0.002 −0.002 0.000 0.003 0.003 0.010 0.000 −0.001 0.006 −0.003 0.002 0.040

VBH 0.001 0.000 −0.001 0.000 0.000 −0.010 −0.001 −0.001 0.003 0.003 0.000 0.000 −0.001 −0.002 −0.007 −0.002 0.009

VIL 0.002 0.006 0.002 0.000 0.005 0.002 −0.003 −0.001 0.011 −0.018 0.000 −0.001 −0.004 −0.003 −0.006 −0.017 −0.001 0.071

Source: Authors’ own computation based on data from SPX (2024a).
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In Table 8, we present 10 different portfolios. These include equally weighted (1/N)
(column I), minimum variance (column II), market portfolio (column III), semi-variance
(column IV), maximum Sortino (based on target return of 6.75%) (column V), and maximum
volatility skewness (column VI). In column VII, we present the newly proposed maximum
RMD portfolio (column VII) and its variations, i.e., RMD portfolio with positive Sharpe
(column VIII), and RMD portfolio with Sharpe and Sortino ratios exceeding the risk-free
rate and target rate, respectively (column IX); and in column IX, we present the most
diversified portfolio.

Table 8. Portfolios under different methods and scenarios.

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X)

Statistics
1/N

(Equally
Weighted)

Minimum
Variance

Max
Sharpe

(CAPM)

Semi-
Variance

(min.
Downside)

Max
Sortino
(CAPM)

Max. Vol
Skewness

(U/D)
Max.
RMD

Max. RMD
with

Positive
Sharpe

Max. RMD
with Positive
Sharpe (≥RF)
and Sortino

(≥TR)

Most
Diversified

Portfolio

Unadjusted
return (annual) 0.0619 0.0239 −0.0075 0.0153 −0.0950 0.0394 0.0637 0.0798 0.0704 0.0443

CAPM-adjusted
return (annual)
(µp)

0.0359 0.0523 0.0786 0.0539 0.1274 0.0030 0.0341 0.0544 0.0426 0.0464

Standard
deviation (σp) 0.0589 0.0175 0.1032 0.0213 0.3406 0.2046 0.0600 0.0604 0.0551 0.0318

Sharpe ratio
(CAPM) −0.3384 −0.1011 0.2348 −0.0255 0.2144 −0.2511 −0.3393 0.0010 0.7741 1.4578

Sortino ratio
(CAPM) −0.8419 −1.8969 0.1224 −3.3462 0.1917 −0.8499 −0.8425 −0.2724 0.0675 0.2898

Downside
volatility (σp D) 47.18% 33.39% 65.02% 16.34% 69.80% 28.54% 46.90% 56.51% 50.13% 48.82%

Volatility
skewness
(Up-variance/
Down variance)

1.2538 3.9796 0.2896 26.201 0.1872 6.2719 1.2823 0.5950 0.9894 1.099

RMD coefficient 0.9295 0.4976 0.6295 0.0479 0.000 0.6246 0.9303 0.9184 0.92812 0.8558

Diversification
Ratio (Div. ratio) 3.7577 2.8710 1.7876 1.1508 1.0000 1.5505 3.7507 3.3480 3.8872 4.6486

Asset Weights

APP 0.056 0.000 0.000 0.000 0.000 0.000 0.039 0.044 0.041 0.000

ATH 0.056 0.000 0.000 0.000 0.000 0.079 0.057 0.020 0.042 0.047

BCN 0.056 0.016 0.000 0.001 0.000 0.000 0.062 0.058 0.061 0.045

CFL 0.056 0.141 0.000 0.008 0.000 0.000 0.044 0.055 0.049 0.021

FBL 0.056 0.003 0.000 0.000 0.000 0.277 0.052 0.072 0.060 0.034

FHL 0.056 0.000 0.000 0.000 0.000 0.000 0.056 0.000 0.031 0.027

FIL 0.056 0.015 0.043 0.001 0.000 0.000 0.063 0.076 0.069 0.055

FMF 0.056 0.000 0.000 0.000 0.000 0.512 0.061 0.016 0.042 0.011

FTV 0.056 0.000 0.000 0.000 0.000 0.000 0.058 0.042 0.051 0.010

KFL 0.056 0.005 0.000 0.000 0.000 0.000 0.049 0.051 0.050 0.003

KGF 0.056 0.688 0.000 0.976 0.000 0.000 0.059 0.068 0.064 0.239

PBP 0.056 0.000 0.024 0.000 0.000 0.004 0.058 0.071 0.063 0.025

PDM 0.056 0.009 0.000 0.001 0.000 0.072 0.063 0.075 0.068 0.036

RBG 0.056 0.005 0.279 0.001 1.000 0.033 0.059 0.117 0.082 0.033

RCF 0.056 0.034 0.166 0.003 0.000 0.000 0.055 0.066 0.060 0.109

TTS 0.056 0.013 0.012 0.001 0.000 0.000 0.058 0.071 0.063 0.055

VBH 0.056 0.057 0.475 0.005 0.000 0.022 0.052 0.068 0.060 0.204

VIL 0.056 0.012 0.000 0.001 0.000 0.000 0.055 0.029 0.045 0.047

Number of
stocks in
portfolio (%)

100% 72% 33% 50% 6% 39% 100% 94% 100% 94%

Source: Authors’ own computation based on specific method and data from SPX (2024a).
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From these portfolios, we observe that three portfolios comprising 100% of the stock
are the 1/N (µp = 3.6%, σp = 5.9%) (column I), max. RMD (mup = 3.4%, σp = 6.0%)
(column VII), and max. RMD with positive Sharpe and Sortino (µp = 4.26, σp = 5.5%)
(column IX), with diversification ratios of 3.58, 3.75 and 3.89, respectively. However, these
portfolios offer returns below the RF rate (of 5.44%), indicating that investing in all the
stocks (100%) in either of the two portfolios (1/N and max. RMD) is not desirable. We noted
that two portfolios—the max. Sortino (column V) and max. volatility skewness (column VI)
have high standard deviations of 34.1% and 20.5%, respectively, and the respective returns
are 12.7% and 0.3%. These two portfolios comprise 6% and 39% of the total stocks with
diversification ratios of 1.0 and 1.6, respectively.

Moreover, a negative coefficient of Sharpe ratio could indicate possible underperfor-
mance of portfolios, and a negative Sortino ratio could indicate an ‘unfair’ risk–reward
outcome. In our case, we note that when relaxing constraints on the Sharpe and Sortino
ratios, there are five portfolios with negative Sharpe ratios (1/N, minimum variance, semi-
variance, maximum volatility skewness, and max. RMD), and six portfolios with negative
Sortino ratios (1/N, minimum variance, semi-variance, max. volatility skewness, max.
RMD, and max. RMD with positive Sharpe).

Next, we analyze the portfolios against the RF rate (5.44%). We consider portfolios
that offer returns similar to the RF rate, below the RF rate and above the RF rate.

4.2. Portfolios below the RF Rate and below 4%

We find three portfolios have returns below the RF rate. These are, max. volatility
skewness (column VI), max. RMD (column VII) and 1/N (column I). The portfolio that is
farthest away from the RF rate is the max. volatility skewness (column VI), with a return
and standard deviation of 0.3% and 20.5%, respectively. This portfolio comprises 39% of all
the stocks, with a relatively large allocation in FMF and FBL, and a diversification ratio of
1.55 (see Figure 2a).
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Next is the max. RMD portfolio (column VII), which comprises 100% (all) of the stocks
and yields a return of 3.4% and standard deviation of 6.0% (Figure 2b). Compared to the
equally weighted (1/N) portfolio, we note that the max. RMD portfolio yields a marginally
lower return (column I, Figure 2c), although both portfolios’ returns are below the RF rate.

4.3. Portfolios between 4 and 5% and below RF Rate (5.44%)

Next, we examine the portfolios that offer returns closer to the RF rate. We find that
two portfolios could potentially achieve a return between 4 and 5%. These are the max.
RMD with positive Sharpe and Sortino (µp = 4.3%, σp = 5.5%) (column IX) and the most
diversified portfolio (µp = 4.6% , σp = 3.2%) (column X). As noted from the respective
figures, the max. RMD with positive Sharpe and Sortino comprises all the stocks, although
the distribution is slightly uneven (Figure 2d), whereas the most diversified portfolio
comprises 94% of all the stock, with a relatively greater proportion allocated to VBH,
KGF and RCF (Figure 2e). In both portfolios, we note positive Sharpe and Sortino ratios
(although the former is based on setting the constraints explicitly), indicating relatively
good portfolio performance and reasonable risk-reward tradeoffs.

4.4. Portfolios above 5% and below the Risk-Free Rate

We note that three portfolios yield returns above 5% p.a. These are minimum variance
(µp = 5.2%, σp = 1.8%, column II), semi-variance (µp = 5.4%, σp = 2.1%, column IV) and
max. RMD with positive Sharpe (µp = 5.4%, σp = 6.0%, column VIII). These portfolios
comprise 72%, 50% and 94% of the total stocks, respectively. Both the minimum variance
(Figure 2f) and semi-variance (Figure 2g) indicate a relatively large allocation to KGF.
Moreover, both the minimum variance and semi-variance portfolios have negative Sharpe
ratios, with returns marginally lower than the RF rate, and the latter portfolio is relatively
less diversified (Div. ratio = 1.15). The max. RMD portfolio was constrained by setting
the Sharpe ratio to be positive (column VIII). In this case, we could obtain a return of
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5.4%, which coincided with the RF rate, with a relatively high diversification ratio (Div.
ratio = 3.35) (Figure 2h). Moreover, using a positive Sharpe ratio as a guide, this portfolio
(max. RMD with positive Sharpe) performed better than seven other portfolios (1/N,
minimum variance, semi-variance, max. volatility, max. RMD, max. RMD with positive
Sharpe and Sortino, and most diversified portfolio).

4.5. Portfolios above the Risk-Free Rate (5.44%)

Next, we examine portfolios with returns higher than the risk-free rate. We find that
two portfolios meet this criterion. We note that the market portfolio (column III) offers a
return of 7.9%, with standard deviation of 10.3% (Sharpe ratio = 0.23, Sortino ratio = 0.12).
This portfolio comprises 33% of all the stocks, has downside volatility of 65.0%, and a
diversification ratio of 1.79 (see Figure 2i). The other portfolio is the max. Sortino (with
target return of 6.45%), which offers a return of 12.7%, with standard deviation of 34.0%
(column V). However, this portfolio is least diversified (Div. ratio = 1.0), comprising only
one stock (RBG) (Figure 2j). While the return is higher than that of all the other portfolios,
we note that this portfolio has the highest downside volatility (69.8%), lowest volatility
skewness (0.19), and is the least robust (RMD coefficient = 0.00).

5. Conclusions

In this study, we implemented a newly proposed method of portfolio construction
proposed by Bielstein et al. (2023), in a small country’s stock market. While earlier studies
have examined the small market using different methods, we differentiate this study in the
following ways. First, earlier studies have used lower values for the risk-free and target
rates (scenarios (see Kumar et al. 2022 and Kumar and Stauvermann 2022)). We considered
a relatively high risk-free rate (5.44% p.a.) and target rate (6.75% p.a.), based on the 1-year
government bond rate and superannuation rate of 2019 (starting period of our sample),
respectively. Second, we have illustrated the applicability of Bielstein et al.’s (2023) RMD
approach, in addition to including additional constraints like ensuring positive Sharpe and
Sortino ratios. Additionally, using the recent data (from August 2019 to May 2024), we
computed the CAPM-adjusted return for each stock based on the market-weighted price
index (MWPI), and simulated different portfolios.

To keep the analysis manageable, we have separated the portfolios into four main
categories. Considering the risk-free rate, we divided the portfolios into below 4%, between
4–5%, between 5% and the risk-free rate, and above the risk-free rate. We note that the max.
RMD and 1/N portfolios provide comparable returns (3.4–3.6%) and contain all the stocks
in the sample, although the latter is simpler to implement. To secure returns between 4 and
5%, we find that max. RMD with positive Sharpe and Sortino (as constraints) and the most
diversified portfolio offer comparable returns (4.5–4.6%), although the latter has slightly
lower standard deviation and downside volatility and contains 94% of all the stocks. Next,
for portfolios with returns between 5% and the risk-free rate, we obtained three portfolios—
the minimum variance, the semi-variance and the max. RMD with positive Sharpe; the
latter coincides with the risk-free rate and contains the largest number (94%) of the stocks
compared to the other two. Therefore, if diversification is the objective of an investor with
at most a risk-free rate of return, then max. RMD with positive Sharpe can be considered.
On the other hand, depending on the level of risk-averseness of an investor, the minimum-
variance or the semi-variance portfolio can be recommended, with the latter having the
lowest downside volatility.

We find two portfolios with returns above the risk-free rate—the market portfolio
(max. Sharpe) and the maximum Sortino. Both portfolios are comparable in terms of
the downside volatility (65–70%). Moreover, the latter portfolio (max. Sortino) yields the
highest return (12.7%), although this portfolio is the least diversified (contains just a single
stock), with the largest standard deviation and downside volatility among all the portfolios.
On the other hand, the market portfolio (max. Sharpe) offers a return of 7.9%, with a
reasonable level of diversification (contains 33% of the total stock). Therefore, investors
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with appetite for risk, diversification, and returns above the risk-free rate can consider the
market portfolio as a suitable alternative.

While the results offer interesting insights, some caveats are in order. We have used
the risk-free (1-year government bond) rate and the target return of the superannuation
fund rate for the year 2019. However, we have noted that in subsequent years, there were
significant declines in the 1-year government bond rates. The 1-year government bond rates
for the years 2019, 2020, 2021, 2022, 2023 and 2024 were 5.44%, 3.22%, 1.01%, 0.14%, 0.13%
and 0.93% (averaging around 1.74%). Furthermore, the savings rates on deposits offered
by banks were 1.32% in 2018, 1.10% in 2019, 0.54% in 2020, 0.42% in 2021, 0.39% in 2022,
0.38 in 20236 and 0.31% in 2024 (averaging around 0.64%).7 Based on the two average rates
(savings and 1-year government bond), one can consider using the average of these rates as
a relatively conservative risk-free rate. Similarly, the average of the interest rate offered by
the superannuation fund from 2019 to 2024 can be applied to the target return.8 We also
acknowledge that our stock price data are from August 2019 to May 2024, which, although
providing a substantial period for analysis, may not capture long-term market trends and
behaviors. Market conditions and economic factors can vary significantly over different
time periods, and a longer dataset might provide more robust conclusions. Although
the study’s focus on market-adjusted returns is a significant strength, it also introduces
complexity in the analysis. In computing the market-adjusted return for each stock based
on the CAPM framework, it must be noted that the returns are sensitive to the chosen
market index (i.e., how the index was selected and/constructed) and its performance, and
the choice of the risk-free rate, which could introduce biases or inconsistencies, especially
in less liquid markets where index performance can be heavily influenced by a few large
trades or specific sectors (and firms) and the government bond rates fluctuate significantly.
We also note that at the time of completing this study, SPX listed a new company (SUN
Insurance Limited—SUN) on 15 August 2024, which makes up 4.39% of the total market
capitalization. This newly listed company is not included in the sample, although it is
possible that SUN (in the insurance sector) may alter investor sentiments and behavior,
hence impacting the overall market performance. Moreover, while the study emphasizes
financial inclusion and literacy, the practical implementation of the proposed RMD portfolio
in small markets requires careful consideration of domestic investor behavior, regulatory
environments, and market infrastructure. The recommendations and findings might need
adjustments to fit the specific regulatory and operational constraints of small markets.
Noting these considerations, the portfolios presented in this study should be considered
instructive only, supporting learning and exploration of the different methods of investment
analysis. However, the results should not be treated as financial advice.

In conclusion, this study advances the understanding of portfolio optimization in
small markets and provides the degrees of diversification and risk–return outcomes from
different portfolios. Additionally, portfolios based on the RMD and RMD with additional
constraints are compared with a set of benchmark portfolios. Nevertheless, noting the
limitations of the study, further research to validate and extend the results in different
market contexts and over longer time periods will provide additional insights. Moreover,
future research could explore the feasibility and practical implications of implementing
advanced portfolio strategies in small market environments, considering local market
characteristics and investor needs.
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Notes
1 https://www.un.org/sustainabledevelopment/economic-growth/#:~:text=Goal%208%20is%20about%20promoting,global%20

economy%20under%20serious%20threat (accessed on 29 August 2024).
2 The no-short-selling assumption is highly relevant to Fiji’s stock market.
3 https://www.rbf.gov.fj/bond-pricelist-and-yield-curve-2018-2019/#1608590112383-909852ff-3554 (accessed on 29 August 2024).
4 The choice of the target ratio is based on the interest earned on superannuation fund in 2019. https://www.parliament.gov.fj/

wp-content/uploads/2019/11/Fiji-National-Provident-Fund-2019-Annual-Report.pdf (accessed on 29 August 2024).
5 Please note that SUN Insurance Company Ltd. (SUN) was listed on 15 August 2024, hence not included in the sample.
6 https://www.parliament.gov.fj/wp-content/uploads/2023/11/129-Reserve-Bank-of-Fiji-Annual-Report-August-2022%E2%8

0%93July-2023.pdf (accessed on 29 August 2024).
7 https://knoema.com/data/fiji+savings-rate#:~:text=Savings%20rate%20of%20Fiji%20fell,per%20annum%20in%20May%202024

(accessed on 29 August 2024).
8 https://www.rbf.gov.fj/category/bond-price-list-new/ (accessed on 29 August 2024).
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