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Abstract: How can we explain the success of cooperative networks of firms which share innovations,
such as Silicon Valley or the Open Source community? This paper shows that if innovations are
cumulative, making an invention publicly available to a network of firms may be valuable if the firm
expects to benefit from future improvements made by other firms. A cooperative equilibrium where
all innovations are made public is shown to exist under certain conditions. Furthermore, such an
equilibrium does not rest on punishment strategies being followed after a deviation: it is optimal not
to deviate regardless of another firm’s actions following a deviation. A cooperative equilibrium is
more likely to arise the greater the number of firms in the network. When R&D effort is endogenous,
cooperative equilibria are associated with strategic complementarities between firms’ research effort,
which may lead to multiple equilibria.
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1. Introduction

There are several examples of the emergence of business networks or communities where
firms exchange strategic information, or even share important innovations, with competitors.

One traditional example is Silicon Valley. Accounts of its success insist on the role of
information sharing between firms. Information sharing allows a firm to easily improve on
an innovation by another firm, thus stimulating the growth process. Employee mobility and
the low enforcement of trade secrets by courts implied that many innovations were shared
by firms in the network. While such a process does not seem to rely on a voluntary policy of
information sharing from firms, there is evidence that the culture of Silicon Valley penalizes
those entrepreneurs who do not share enough information and/or sue departing employees
for violations of trade secrets. Thus, Hyde (1998) writes that “enforceability [of trade
secrets] is limited because firms that litigate in defense of their trade secrets face substantial
informal social and economic sanction from other firms (whose cooperation is necessary to
accomplish many projects), venture capitalists, and incumbent and prospective employees”.
This suggests that while the instrument of information sharing was employee mobility
between firms, entrepreneurs recognized that they had an interest in cooperating with
other members of the network by not blocking such mobility by litigation or other means.
Another more recent example is the emergence of the “Open Source” community in the
software industry. As described by its proponents (Raymond 1999), open source software
allows very fast growth for a project, as improvements that different users implement
cumulate. This is especially true with respect to debugging, where users who have access
to the source have an interest in finding and fixing bugs, and, with enough good will, will
make their fixes public.1

This thematic is also present in the knowledge management literature, which, based
on the insights of Michael Polanyi (1962), recognizes the role of inter-organizational coop-
eration in the production of innovation.2 Similarly, Chesbrough (2003) and Chesbrough
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et al. (2014) developed the managerial concept of “open innovation” and showed that this
encompasses a variety of practices that are in no way limited to software communities
but are pervasive in manufacturing as well. Chesbrough’s insights has stimulated a vast
empirical literature which documents the existence of business networks that openly share
knowledge in a variety of sectors.3 In the 1980s, Piore and Sabel (1986) had already docu-
mented a similar knowledge-sharing and open innovation culture in the industrial districts
of SMEs in northern Italy.4

To an economist, a simple question is: why do such networks function at all? Why do
individual firms not just free-ride by using other participants’ public information while
hoarding their own valuable information? To be sure, the literature on dynamic games has
highlighted a number of cooperation mechanisms: “trigger strategies”, “reputation”, etc.5

However, these mechanisms rely on free riding being detected, which is problematic in
a context where cooperation is about information revelation, since one may well play
cooperative while having nothing valuable to reveal.

In this paper, I describe another, far more robust, cooperation mechanism which
applies to the revelation of innovations and captures part of the incentives underlying the
open source movement. I assume innovations are cumulative, i.e., an innovation opens
the door for further innovations. An individual firm then has an incentive to make its
innovations public, because this will increase the number of firms heading toward the next
step in the technological ladder. If it is expected that the next innovation will also be made
public, sharing one’s invention with other members in the network will shorten the time
until the next innovation arrives, which benefits the individual firm. As is shown below,
this benefit may outweigh the short-run cost of lower profits for the innovating firm.

This mechanism does not rely on cheating being detected nor on the sustainability
of a punishment strategy. By not revealing its information, the firm punishes itself, since
it will have to wait longer for the next innovative step. In other words, the losses from
non-cooperation are genuine and do not rely on the other players’ strategic responses to
one’s deviation. However, given that the benefits from information sharing rely on future
innovations also being public, the argument does rest on the horizon being infinite and a
“Nash” equilibrium where information is kept private always exists. Nevertheless, for a
range of parameters, a cooperative equilibrium also exists. Another interesting result is
that the cooperative equilibrium is more likely to exist the larger the number of firms in the
network. This contrasts with traditional arguments, which suggest that free-riding is more
likely the greater the number of agents. Here, more firms mean a much greater benefit of
making one’s innovation public, because a much larger number of firms will work toward
the next step.

I also show that the cooperative equilibrium has faster growth than the non-cooperative
equilibrium. In some sense, when innovations are cumulative, the case for public innova-
tions is stronger than when they are not, when it can be shown that public innovations may
reduce long-run growth on net because they depress the profitability of private innovation
(Saint-Paul 2003).

Finally, the model is extended to allow for an endogenous research and development
(R&D) effort. It is shown that the results are robust to introducing such endogeneity.
Furthermore, as the cumulative benefits of an innovation depend on improvements by
other firms, and thus on their R&D effort, research efforts by different firms are now
complementary, which may lead to multiple equilibria.

Since the seminal work of Schumpeter (1942), the endogenous growth literature has
paid a lot of attention to the effect of competition on innovation and growth (see Romer
(1990); Aghion and Howitt (1992); Grossman and Helpman (1993)). A subset of that litera-
ture has analyzed the value of R&D cooperation between firms when there are spillovers.
The value of technology sharing is well recognized by that literature. Hence, Baumol (1992)
writes that “in an industry with, say, ten firms similar in output and investment in R&D,
each member of a nine-firm technology cartel can expect to obtain immediate access to
nine times the number of innovations that the remaining enterprise can anticipate on the
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average” . However, to my knowledge, this is the first paper to analyze how that advantage
can be turned into a cooperation mechanism when innovation is cumulative. The literature,
instead, typically relies on traditional trigger strategy mechanisms, exogenously assumes
cooperation, or uses a cooperative game framework.6 Furthermore, most of it deals with
cooperation in setting R&D levels rather than in the decision to make an innovation public.7

For example, Cozzi (1999) analyzes the consequences for growth of switches between
cooperative and non-cooperative equilibria, but cooperation is enforced by a standard
trigger-strategy mechanism, and cooperation is about the R&D level. Another strand of the
literature (d’Aspremont and Jacquemin 1988; Leahy and Neary 1997) compares outcomes
with and without R&D cooperation when there are spillovers, but again, it does not ask the
question of how cooperation is enforced and focuses on investment rather than information.
Finally, a series of works by Scotchmer (1991, 1996, 2004) discusses conflicts over intellectual
property rights when innovation is cumulative and the efficiency properties of different
patent systems in this case.

The paper which is most related to the current one is Bessen and Maskin (2008). In that
paper, as in here, a given innovation exerts positive spillovers on further innovations.
Bessen and Maskin perform a welfare analysis of intellectual property regimes and show
that under sequential innovation, no patents may be preferable to IP protection. But, in their
paper, if IP exists, it is always privately optimal to use it. In the present paper, it is actually
an equilibrium outcome for firms to voluntarily disclose their innovation regardless of the
IP regime.

2. The Model
2.1. The Intratemporal Profit Function

We consider a specific sector of an economy, which is homogeneous enough and
where firms are large enough relative to the total size of the sector, for the economic effects
analyzed here to be relevant. Such a sector could be, say, Silicon Valley, the agroforestry
sector in Brazil, or flexible manufacturing garment firms in the Bologna area. In that sector,
there are N firms, competing with each other by producing differentiated goods. Each firm
i is characterized by a level of technological advancement captured by an integer number
ni. The profit of firm i is given by a function

πi(n1, . . . , ni, . . . nN).

We assume that technical progress in a given firm increases its profits:

∂πi
∂ni

> 0,

while technical progress in another firm decreases profits:

∂πi
∂nj

< 0, j ̸= i. (1)

Finally, the progression of all firms by one step in the technological ladder increases
the profits of any given firm:

N

∑
j=1

∂πi
∂nj

> 0.

We shall assume that if all firms other than i have the same technical level n, while
firm i has technical level n̂, then firm i’s profit can be expressed in the following way:

πi(n, . . . , n, n̂, n, . . . , n) = π(n̂, n) (2)

= An f (n̂ − n),
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where by assumption, A > 1, f (.) > 0, and

f (q + 1)/ f (q) > A. (3)

The latter inequality is needed for (1) to hold.
Equation (2) expresses the firm’s profit as an increasing function of the other firm’s

overall technological level, as captured by n, and the gap between firm i and the other
firms, as captured by n̂ − n. For competitive effects to dominate, firm i has to suffer when
other firms innovate, which will be true if the second effect is stronger than the first effect,
as captured by our assumption that f (q + 1)/ f (q) > A. In economic terms, this condition
sets a lower bound on the value of climbing the technological ladder. In Proposition 1
below, an upper bound is assumed and shown to be a sufficient condition for an “open
innovation” equilibrium to exist.

Example 1. The demand curve for firm i is isoelastic and given by yi = Yp−α(pi/p)−σ, where
σ > 1, Y is an index of demand for the whole sector and p is a sectoral price index given by

p =

(
N

∑
i=1

p1−σ
i

) 1
1−σ

.

Firm i’s unit cost is c/Bni , with B > 1; thus, each step in technical progress represents
a geometric reduction in unit costs. Firms set their price so as to maximize their profit πi =
yi(pi − c/Bni ). They neglect the impact of their decision on the sectoral price level and thus set
pi = (σ − 1)/σ · c/Bni . Thus, we find that the equilibrium πi(. . .) function is given by

πi(n1, . . . , nN) = KB(σ−1)ni

[
N

∑
i=1

B(σ−1)nj

] σ−α
1−σ

,

where K is a constant given by K = Y
[

σc
σ−1

] σ−α
1−σ c1−σ

σ−1
(

σ
σ−1

)−σ. If nj = n, j ̸= i, and ni = n̂, we
obtain

πi = KBn(α−1)
[

B(σ−1)(n̂−n)
(

N − 1 + B(σ−1)(n̂−n)
) σ−α

1−σ

]
;

thus we have
A = Bα−1

and

f (q) = K
[

B(σ−1)q
(

N − 1 + B(σ−1)q
) σ−α

1−σ

]
.

The properties A > 1 and ∂πi/∂nj < 0, j ̸= i hold if 1 < α < σ. One can then check that the
property f (q + 1)/ f (q) > A then holds, since

f ′(q)
f (q)

− ln A = (σ − α) ln B − (σ − α)B(σ−1)q ln B(
N − 1 + B(σ−1)q

) > 0,

which is positive if σ > α.

This example shows how a functional form like (2) can be derived from monopolistic
competition among differentiated goods. As the whole sector climbs the technological
ladder (i.e., the ni values grow), it grows in terms of output and, as long as α > 1, in terms
of profits.

Without loss of generality, we shall normalize f (0) to 1 (in the previous example, this
amounts to picking the right value of Y, so that K = N

σ−α
σ−1 ).
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Remark 1. Going back to (2), note that A is the proportional effect on a firm’s profit of an increase
in the technological level of all firms by one step provided all other firms have the same technical
level. Conversely, the effect on a firm of a unit increase of its technical level, holding that of other
firms constant, is f (n̂ + 1 − n)/ f (n̂ − n), which is greater than A. Growth in a single firm must
increase that firms’ profits by more than growth in all firms; otherwise, it would not be harmed by
growth in other firms and there would not be any coordination problem. However, in the example
we just constructed, we have

lim
q→+∞

f (q + 1)
f (q)

= Bα−1 = A. (4)

In other words, this mathematical property means that asymptotically, if a firm become
infinitely productive relative to the others, thus covering the whole market, each innovation will
increase its profits by the same factor A, which increases a firm’s profits when an innovation is
implemented by all firms. This property is quite natural: if a firm becomes infinitely productive
relative to others, it is as if one has a single firm in the market. The property should therefore hold
in any model where, asymptotically, the proportional effect of an innovation which is adopted by
all firms on profits does not depend on the number of firms. In other words, property (4) is not a
knife-edge case but should be expected to generally hold. As shown below, property (4) plays an
instrumental role in making the upper bound on individual innovation gains, that delivers the
cooperative outcome in Proposition 1, compatible with Assumption (3).

2.2. The Dynamics of Innovation

The preceding subsection has introduced the intratemporal profit function. We now
describe the dynamics of innovation.

Time is continuous; firms maximize the expected present discounted value of their
profits given by

Vi(t) = Et

∫ +∞

t
πi(n1(u), . . . , ni(u), . . . , nN(u))e−rudu, (5)

where r is the discount rate, assumed fixed and exogenous. In order for the value of a firm
to be well defined, we shall assume that r is larger than a firm’s maximum potential growth
rate. That is,

λN(A − 1) < r (6)

The technical level available to a given firm jumps from ni to ni + 1 according to
a Poisson process with arrival rate λ. At this stage of analysis, this process is assumed
exogenous, and, therefore, so is parameter λ. Despite that, growth remains endogenous
because the technical level of a given firm is transferable to other firms. Firm i has the
option of revealing its level to other firms, in which case they can jump to level ni, i.e., in
some sense, adopt its technology. Therefore, with probability λ per unit of time, a given
firm’s technology level improves by one step, which allows it to increase it from ni to ni + 1,
and it has two options:

1. Do not share its innovation with other firms, in which case they all remain at level nj.
2. Share the innovation, in which case all firms such that nj < ni + 1 can upgrade to

level ni + 1.

To fix ideas, we shall assume that an innovation can be released only at the time it
occurs and not after, although this is immaterial and only simplifies the analytics.

Thus, the only decision to be made by firms in this setting is whether or not to make
an innovation public at the time it arrives. We will relax it in Section 4, where the R&D
effort and the arrival rate of innovations are made endogenous.
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2.3. The Nash Solution

Clearly, there always exists an equilibrium where firms do not share innovations. If
I anticipate that other firms will never share their innovations with me, giving away my
innovations to them will increase their technological level forever, which reduces my own
profits, by virtue of the fact that ∂πi/∂nj < 0. Thus, it is a subgame perfect equilibrium to
never release information. In such an equilibrium, the average speed of innovation for any
given firm is λ. As in the literature on repeated games (see Fudenberg and Tirole 1991), this
subgame perfect equilibrium is the repeated Nash equilibrium of the static game where
players ignore the future consequences of current outcomes.

3. Cooperative Equilibria

We now construct an equilibrium such that it is profitable for firms to reveal their
innovations to their competitors, despite the fact that it reduces their profits upon impact.
The equilibrium concept is again the standard subgame perfect equilibrium.8

We construct an equilibrium where an innovation is shared every time it occurs. Thus,
in the equilibrium path, all firms have the same technological level. Situations with a
dispersion in technological levels only occur off the equilibrium path.

To construct such an equilibrium, we compute the value of a firm along the equilibrium
path and an upper bound of the value of deviating by not releasing information; we then
show that the former is greater than the latter for a given range of parameters. This yields
the following proposition:

Proposition 1. Assume f (.) satisfies

sup
k=0,1,...

A−k f (k) ≤ r + λN
r + λ(A − 1) + λN(2 − A)

(7)

Then, there exists a equilibrium where each innovation is instantaneously made public.

Proof. Along the equilibrium path which we seek to construct, all firms have the same
technological level n. Furthermore, all firms upgrade to level n + 1 with a flow probability
equal to λN, since the day any given firm innovates, its innovation spreads to the whole
sector. Consequently, the value of a firm when the whole sector is at technical level n is
determined by

VC(n) =
π(n, n) + λNVC(n + 1)

r + λN
.

The numerator is equal to the sum of the profit flow at technical level n, π(n, n), and
of the flow probability of any one firm innovating, equal to the product of the arrival rate
for innovations λ and the number of firms N, times the value of the firm when all firms
upgrade to the next level, VC(n + 1). Iterating forward allows for computing the value of a
firm along the equilibrium path:

VC(n) =
+∞

∑
i=0

(
λN

r + λN

)i π(n + i, n + i)
r + λN

,

which, using (2), is equivalent to

VC(n) =
An

r − λN(A − 1)
(8)

For this formula to be meaningful, it must be that λN(A − 1) < r, i.e., that the growth
rate of profits be lower than the interest rate; otherwise, the value of a firm would be infinite.
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Let f̄ = supk=0,1,... A−k f (k). Then:

πi(n1, . . . , ni, . . . nN) ≤ πi(0, . . . , ni, . . . 0)

= f (ni)

≤ Ani f̄ . (9)

Let n⃗ = (n1, . . . nN) denote a vector of firm’s technological advancements, and Vi (⃗n)
denote the maximum value of firm i, over all possible courses of action, if n⃗ is the current
state of technology level9.

Let
V̄i(n, p) = max

n⃗=(n1,...,nN)
ni=n

nj≤p,j ̸=i

Vi (⃗n)

Note that We define operator Tj as follows. If n⃗ = (n1, . . . , nN), then

Tj⃗n = (max(n1, nj), ., max(nk, nj) . . . , max(nN , nj)).

Operator Tj tells us how the state vector is transformed if firm j releases its technical
level: all firms with a lower technical level are lifted to level nj. We also define Uj, which
tells us how the state vector is transformed upon a shock hitting firm j, before it has decided
whether to make it public or not:

Uj⃗n = (n1, . . . , nj−1, nj + 1, nj, . . . , nN).

The value function Vi (⃗n) then obeys the following recursive condition:

Vi (⃗n) =
πi (⃗n) + λ ∑N

j=1 max(Vi(TjUj⃗n), Vi(Uj⃗n))

r + λN
.

For any n⃗ = (n1, . . . , nN) such that nj ≤ p < ni = n, j ̸= i, we have, for j ̸= i,
Vi(TjUj⃗n) ≤ V̄i(n, p + 1) and Vi(Uj⃗n) ≤ V̄i(n, p + 1), while Vi(Ui (⃗n)) ≤ V̄i(n + 1, p) and
Vi(TiUi (⃗n)) ≤ V̄i(n + 1, n + 1). This, along with (9), implies

Vi (⃗n) ≤
Ani f̄ + λ(N − 1)V̄i(n, p + 1) + λV̄i(n + 1, n + 1)

r + λN
,

consequently:

∀p < n, V̄i(n, p) ≤ An f̄ + λ(N − 1)V̄i(n, p + 1) + λV̄i(n + 1, n + 1)
r + λN

. (10)

To proceed, we now show that for n⃗ = (n1, . . . , nN) such that nj ≤ p ≤ ni = n, it must
be that

Vi (⃗n) ≤
An f̄

r − λN(A − 1)
.

To see this, write

Vi (⃗n) = max
n⃗(.)∈Φ

∫ +∞

0

∫
Ωt

πi (⃗n(ω))dF(ω, t)e−rtdt,

where ω is a state of nature representing the whole history of shocks between date 0 and
date t, n⃗(ω) is the corresponding state vector (which depends on the strategies followed
by firms), and dF(ω, t) is the probability distribution of ω at date t. Φ is the set of feasible
strategies, which is represented by a mapping defining the current state vector as a function
of the whole history of shocks. Clearly, regardless of which strategy is followed, the
most advanced firm climbs by at most one step every time a firm is hit by a shock. Thus,
if n⃗(ω) = (n1(ω), . . . , nN(ω)), then maxk nk(ω) ≤ n + S(ω), where S(ω) is the total
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number of shocks that has occurred to any firm between 0 and t. In other words, Φ ⊂
{⃗n(.), maxk nk(ω) ≤ n + S(ω)}. S(ω) follows a Poisson distribution with arrival rate

λN (that is, Pt(S(ω) = k) = (λNt)k

k! e−λNt). Consequently, we have in particular that
ni(ω) ≤ n + S(ω) so that πi (⃗n(ω)) ≤ An+S(ω) f̄ . Hence:

Vi (⃗n) ≤ An f̄
∫ +∞

0

∫
Ωt

AS(ω)dF(ω, t)e−rtdt

= An f̄
∫ +∞

0

(
+∞

∑
k=0

Ak (λNt)k

k!
e−λNt

)
e−rtdt

= An f̄
∫ +∞

0
e−(r−λN(A−1))tdt

=
An f̄

r − λN(A − 1)
.

Note that this inequality holds regardless of the strategies that are followed by firm i or
any other firms with respect to revealing their technologies upon being hit by an innovation.

A corollary is that

V̄i(n, p) ≤ An f̄
r − λN(A − 1)

for p ≤ n. (11)

Substituting that inequality into the second term in the numerator of the right-hand
side (RHS) of (10) (which we can do since in (10) one assumes p < n), we obtain:

V̄i(n, p) ≤
An f̄ + λ(N − 1) An f̄

r−λN(A−1) + λ max An+1 f̄
r−λN(A−1)

r + λN
. (12)

Rearranging, we get that

V̄i(n, p) ≤ An f̄
r − λN(A − 1)

r − λNA + 2λN − λ + Aλ

(r + λN)
.

Now, if inequality (7) holds, then V̄i(n, p) ≤ Vi(n, . . . , n) = VC(n) = An

r−λN(A−1) .
Consequently, releasing innovation always dominates hoarding it when other firms are
expected to follow the equilibrium path, which shows that it is indeed an equilibrium.

An important aspect of proposition 1 is that a cooperative equilibrium is more likely to
exist the greater the number of firms participating in the network (holding the f () function
invariant). This effect runs counter to the usual analysis of free rider problems, where
cooperation is made more difficult by a greater number of players. Here, the greater the
number of players, the quicker one will be paid back for sharing one’s innovations with
others, as the next technological step is discovered by one participant.

Since A > 1, it is also clear that the RHS of (7) is an increasing function of λ: the
greater the frequency of innovations, the more likely it is that a cooperative equilibrium
exists. Clearly, a greater arrival rate of innovations brings ahead in time the benefits of
further innovations from other firms. Perhaps this explains why open innovation plays an
important role in infant industries with a steep learning curve such as electric vehicles (see
Purificato 2014; Cabigiosu 2023).

Note also that the proof relies on using an upper bound for the value of deviating for
any response of other players to the deviation. Consequently, cooperation is not sustained
by a trigger punishment strategy, as deviation is deterred even in the case where all other
firms continue to release their innovations at all nodes following the deviation. The loss
from other firms being one step backwards relative to cooperation is enough to deter
opportunistic behavior. In some sense, the feedback effects of benefitting from other’s
future improvements on one’s innovation generates gains from cooperation that are more
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robust—in that a firm contemplating deviations can ignore what others would do following
its deviation—than those coming from punishment strategies. Thus, even if for some reason
a deviation was undetected10, incentives to cooperate would still remain.

Note that for inequality (7) to hold and be compatible with the restriction that
f (q+1)/ f (q) > A11, it must be that limq−→+∞ f (q + 1)/( f (q)A) = 1. Otherwise, the
left-hand side (LHS) of (7) could not be bounded and (7) would not be satisfied. How-
ever, as argued above, limq−→+∞ f (q + 1)/( f (q)A) = 1 is a rather plausible condition12;
if limq−→+∞ f (q + 1)/( f (q)A) > 1, then a single firm would grow faster than N firms for
the same arrival rate of innovation, and we are not able to put a bound on the value of
deviating from cooperation, although such a bound, and a cooperative equilibrium, may
still exist.

Going back to the isoelastic example discussed above, in that special case, we have

sup A−k f (k) = lim
k−→+∞

A−k f (k)

= lim
k−→+∞

KB(σ−α)q(N − 1 + B(σ−1)q)
σ−α
1−σ

= K

= N
σ−α
σ−1 ,

where the last equality comes from the normalization f (0) = 1.
Thus, a sufficient condition for a cooperative equilibrium to exist is

N
σ−α
σ−1 <

r + λN
r + λ(A − 1) + λN(2 − A)

. (13)

A first point to be made is that the RHS grows with N and is equal to 1 for N = 1.
Therefore, for any given N, condition (13) is always satisfied for (σ − α)/(σ − 1) to be low
enough. At face value, it seems that when N becomes large, the inequality is violated. This
suggests that taking into account the effect of N on f () may reverse the result that large
values of N favor cooperation. This is due to an additional effect: with a larger number
of differentiated firms, having an edge on the others is more valuable for a single firm,
as the effect of decreasing marginal revenues at the sector level (captured by parameter
α) is less severe. However, too large values of N are not possible, because (6) must hold.
For intermediate values of N, it is difficult to show whether or not (13) holds analytically,
but numerical computations suggest that it is more likely to hold for large, acceptable
values of N than for small values of N. A typical example is given in Table 1. Therefore,
the conclusion that larger networks make cooperation easier remains true despite the
countervailing additional effects that were ignored when f () was treated as exogenous.

Table 1. Cooperation range, A = 1.8, λ = 0.015, σ = 2, α = 1.8.

r Maximum Value of N Range over Which (13) Holds

0.04 3 2–3
0.05 4 2–4
0.06 5 2–5
0.07 5 2–5
0.08 6 4–6
0.1 8 6–8

0.13 10 9–10
0.16 13 13–13
0.18 15 –

We can also establish a necessary condition for cooperation to hold, which has similar
determinants as the sufficient one derived in Proposition 1.
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Proposition 2. A necessary condition for a cooperative equilibrium to exist is

f (1)/A ≤ r − λ(A − 1)
r − λN(A − 1)

. (14)

Proof. Assume a cooperative equilibrium exists and consider a firm which deviates by not
releasing its innovation. Assume it releases its innovation the next time it has one. Then,
this strategy yields a value given by

Ṽ(n + 1, n) =
An f (1) + λ(N − 1) An+1

r−λN(A−1) + λ An+2

r−λN(A−1)

r + λN
.

The middle term in the numerator reflects the fact that if another firm is hit by an
innovation, it will release it, and all firms will be at technical level n + 1.

For a cooperative equilibrium to exist, this strategy must yield a lower value than
releasing the innovation, i.e., one must have

Ṽ(n + 1, n) ≤ An+1

r − λN(A − 1)
.

One can straightforwardly check that it is equivalent to (14).

Condition (14) becomes satisfied very easily as N grows. Therefore, it rules out
cooperative equilibria only for fairly low values of N. In the case of our isoelastic example,
for the parameter values of Table 1, it always holds. The following table (Table 2) shows
the range of values of N where it does not hold, for a different set of parameters, that differ
from Table 1 only in that α is lower. It confirms the general message that cooperation is
more likely with more firms.

Table 2. Non-cooperation range, A = 1.8, λ = 0.015, σ = 2, α = 1.3.

r Maximum Value of N Range over Which (14) Is
Violated

0.04 3 —
0.05 4 2–2
0.06 5 2–2
0.07 5 2–3
0.09 7 2–4
0.1 8 2–5

0.12 10 2–6
0.14 11 2–8

4. Endogenous R&D Effort: The Role of Strategic Complementarities

In the preceding analysis, the only decision made by a firm is whether or not to release
its innovation. The arrival rate of innovations λ is entirely exogenous. It is relatively
straightforward to extend the model to allow for an endogenous λ and to compute its
equilibrium value in a cooperative equilibrium. The cost is that the sufficient condition
that I am able to establish for such an equilibrium to exist is more stringent than in the
previous section.

Endogenizing λ yields two key insights. First, one may believe that the previous result
that an increase in the network’s size boosts growth and is good for sustaining cooperation
can be overturned with an endogenous λ. As N is greater and innovations arrive at a
higher rate, an individual firm might be tempted to spend less on R&D and reduce λ.
In fact, that intuition is incorrect: at a cooperative equilibrium13, an increase in N increases
λ locally. The reason is that the total arrival rate of innovations is additive in each firm’s
specific λ, so that an increase in the number of firms does not reduce the marginal gain
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from increasing one’s λ. On the contrary, a greater value of N increases the incentives
for R&D via a capitalization effect. The greater the N value, the faster the rate at which
the increments in profits from a given innovation grow, and the greater the incentives to
innovate. Or, to put it otherwise, the greater the N value, the greater the speed at which my
innovation is improved by other firms, and the greater my incentive to innovate.

Second, there exist strategic complementarities between the R and D effort of different
firms. The increase in R&D by one firm tends to increase R&D by another firm. The reason
is again the capitalization effect. If other firms increase their R&D effort, improvements on
my innovation will come faster, and my incentive to innovate is larger. As a result, there
may in principle be several cooperative equilibria with different arrival rates of innovation.

To endogenize the arrival rate of innovations, I assume that at each point in time a firm
i can choose its own value of λ at a cost equal to πic(λ), where πi is its current profit. That
the cost is proportional to πi ensures that it will not become negligible relative to benefits
as the economy grows. As cooperative equilibria are symmetrical, it is easy to compute the
equilibrium common value of λ in such an equilibrium. Denoting again the value of a firm
when all have a technical level equal to n by VC(n), the Bellman equation for an individual
firm can be written as

VC(n) = max
λ

π(n, n)(1 − c(λ)) + λ̂(N − 1)VC(n + 1) + λVC(n + 1)
r + λ + λ̂(N − 1)

,

where λ̂ is the common value of λ of other firms, which is taken as given by the firm.
We assume that c(λ) is concave, differentiable, and increasing over [λ, λ̄], with c′(λ) =
0, c(λ̄) = 1. If there is an interior solution for λ, it is given by the first-order condition:

c′(λ)π(n, n) = VC(n + 1)− VC(n). (15)

This equation has the usual straightforward interpretation. The LHS is the marginal
cost of increasing λ by one unit. The RHS is the marginal benefit, which is equal to
the capital gain made when all firms climb one step in the technological ladder. In a
symmetrical equilibrium, we have λ = λ̂, and the equivalent of Equation (8) holds, i.e.,

VC(n) =
An(1 − c(λ))

r − λN(A − 1)
. (16)

Substituting that along with (2) into (15), and normalizing again f (0) to 1, we obtain
an equation determining the equilibrium value of λ, which is denoted by λ∗ :

c′(λ∗) =
(A − 1)(1 − c(λ∗))

r − λ∗N(A − 1)
. (17)

If ( r
N(A−1) ) > 1, then this equation always has at least one solution, which is indeed

interior and satisfies (15).14

While the LHS is a increasing function of λ, the RHS may be either increasing or
decreasing. This is because a rise in λ has two conflicting effects on the capital gains from
an innovation. Because R and D costs are proportional to profits, a higher λ compresses the
difference in income flows between two consecutive technological levels: one can call that
a revenue effect. On the other hand, a higher λ increases the growth rate of that difference,
which tends to increase its expected present discounted value: this is the capitalization
effect. If the capitalization effect is strong enough, then multiple equilibria may arise, as
illustrated in Figure 1.

In such a case, as in the general analysis of Cooper and John (1988), multiple equilibria
come from a strategic complementarity between a firm’s research effort and the effort of
other firms, as discussed above. Following Cooper and John, we can check that equilibria
are Pareto rankable from the point of view of the firms15. Consider two equilibria, denoted
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by subscripts 0 and 1, such that λ∗
1 > λ∗

0 . Using the value function (16), we see that
Equilibrium 1 dominates if

(1 − c(λ∗
1))

r − λ∗
1 N(A − 1)

>
(1 − c(λ∗

0))

r − λ∗
0 N(A − 1)

.

Substituting the first-order condition (17), we see that this is equivalent to c′(λ∗
1) >

c′(λ0), which clearly holds. Equilibria with higher R&D effort clearly dominate.
The preceding discussion does not tell us, however, whether a cooperative equilibrium

exists. But, as shown in Appendix A, Proposition 1 can be extended and a non-empty
sufficient condition for a cooperative equilibrium can be established, although this condition
is much less tractable than the one derived in Proposition 1.

λ

LHS=Marginal Cost

RHS=Marginal Benefit

Figure 1

λ λ-

Figure 1. Multiple equilibrium R&D effort.

5. Conclusions

We hope the present paper has shed some light on the viability of public innovation
when technical progress has a cumulative dimension. We have shown the existence of a “co-
operative” equilibrium in which it is a subgame perfect strategy for firms in a given industry
to share their innovations with others, because they expect to benefit from the incremental
innovations that other firms will make, building on its own knowledge. Meanwhile, as in
the literature on cooperation in dynamic games, there also exists a non-cooperative equi-
librium in which innovation is not shared; here, the cooperative equilibrium is somewhat
more robust than generally in that literature. Cooperation does not rely on other players
coordinating on a punishment trajectory following deviation by a given player. Instead,
the deviator punishes itself by foregoing the benefits of the future incremental innovations
that its contribution would have generated among its competitors if it had been made
public. Our theoretical analysis sheds light on the pervasiveness of “open innovation", as
theorized by Chesbrough, and predicts that open innovation is enhanced when the number
of innovative firms in the relevant industry goes up.

Further research could focus on more specific aspects. For example, in Silicon Valley,
worker mobility has been an important vector of innovation sharing. It could be valuable to
further analyze the role of the labor market in the diffusion of knowledge, which has been
a largely untouched topic until now.16 In principle, such research avenues could deliver
insights as to why Silicon Valley emerged in an economy with a flexible labor market as
opposed to a European country where collective bargaining and labor regulation hamper
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labor mobility. Another potential avenue of further research would be the analysis of an
incomplete information network in which firms would release innovations only to a subset
of firms to which it is ‘connected’: the incentive for a firm to make its innovations public
would then depend on its position in a network.
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Appendix A

Proposition A1. Assume λ remains between bounds λ and λ̄, such that c(λ) = 0, c(λ̄) =
+∞. Let

α = f̄

[
1

r + Nλ
+

(N − 1)λ̄(
r + (N − 1)λ̄ + λ

)(
r − λ̄N(A − 1)

)];

β =
λ̄

r + (N − 1)λ + λ̄
.

Assume the following inequality holds:

α + β
A f̄

r − λ̄N(A − 1)
) ≤ 1 − c(λ∗)

r − λ∗N(A − 1)
,

then there exists a cooperative equilibrium where all firms constantly set λ = λ∗ and make all
innovations public.

We follow the same steps as in the proof of Proposition 1. At each conceivable point
in time, there exists a vector of n⃗ = (n1, . . . , nN) of technological levels and a vector
λ⃗ = (λ1, . . . , λN) of R&D efforts. Assume we restrict λi to be a sole function of the state
vector n⃗, λi = λi (⃗n). That is, we only consider “Markov strategies” that depend on the
current vector of state variables. Clearly, if all agents consider that along any path Markov
strategies are followed, it is indeed optimal for them to follow such a strategy. Then, the
value of a firm i can be recursively written as

Vi (⃗n) =
πi (⃗n)(1 − c(λi (⃗n))) + ∑N

j=1 λj (⃗n)
[
max(Vi(TjUj⃗n), Vi(Uj⃗n))

]
r + ∑N

j=1 λj (⃗n)

Defining, as previously,

V̄i(n, p) = max
n⃗=(n1,...,nN)

ni=n
nj≤p,j ̸=i

Vi (⃗n),

we again have the property that for any n⃗ = (n1, . . . , nN) such that nj ≤ p < ni = n, j ̸= i,

Vi (⃗n) ≤
An f̄ (1 − c(λi (⃗n))) + ∑j ̸=i λj (⃗n)V̄i(n, p + 1) + λi (⃗n), V̄i(n + 1, n + 1))

r + ∑N
j=1 λj (⃗n)

. (A1)
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We can again prove that for n = max(ni),

Vi (⃗n) ≤
An f̄

r − λ̄N(A − 1)
,

along the same lines as in the proof of Proposition 1. An implication is that for p ≤ n

Vi(n, p) ≤ An f̄
r − λ̄N(A − 1)

(A2)

Plugging into (A1) yields

Vi (⃗n) ≤
An f̄ (1 − c(λi (⃗n))) +

(
∑j ̸=i λj (⃗n)

)
An f̄

r−λ̄N(A−1) + λi (⃗n)
An f̄

r−λ̄N(A−1)

r + ∑N
j=1 λj (⃗n)

. (A3)

Then, observe that the following inequalities hold:

∑j ̸=i λj (⃗n)

r + ∑N
j=1 λj (⃗n)

≤ (N − 1)λ̄
r + (N − 1)λ̄ + λ

.

λi (⃗n)
r + ∑N

j=1 λj (⃗n)
≤ λ̄

r + (N − 1)λ + λ̄
.

Therefore, we have that

Vi (⃗n) ≤ An f̄
r + Nλ

+
(N − 1)λ̄

r + (N − 1)λ̄ + λ

An f̄
r − λ̄N(A − 1)

(A4)

+
λ̄

r + (N − 1)λ + λ̄

An+1 f̄
r − λ̄N(A − 1)

.

Since this holds for all vectors such that nj ≤ p < ni = n, j ̸= i, we have, for p < n:

V̄i(n, p) ≤ An f̄
r + Nλ

+
(N − 1)λ̄

r + (N − 1)λ̄ + λ

An f̄
r − λ̄N(A − 1)

+
λ̄

r + (N − 1)λ + λ̄

An+1 f̄
r − λ̄N(A − 1)

(A5)

= An(α + β
A f̄

r − λ̄N(A − 1)
)

where

α = f̄

[
1

r + Nλ
+

(N − 1)λ̄(
r + (N − 1)λ̄ + λ

)(
r − λ̄N(A − 1)

)];

β =
λ̄

r + (N − 1)λ + λ̄
.

Note that if we can prove that V̄i(n, n − 1) ≤ VC(n) regardless of the strategies
followed in a deviation, then clearly there exists a cooperative equilibrium. Given (A5)
and that

VC(n) =
An(1 − c(λ∗))

r − λ∗N(A − 1)
,
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a sufficient condition is

α + β
A f̄

r − λ̄N(A − 1)
) ≤ 1 − c(λ∗)

r − λ∗N(A − 1)
, (A6)

where λ∗ is the equilibrium value of λ in a cooperative equilibrium, that is any solution
to (17).

The condition in Proposition A1 is non-empty, since it collapses to that in Proposition 1
for λ̄ = λ = λ and c(.) = 0. By continuity, one can then construct examples where
both sides of that inequality are arbitrarily close to the corresponding expressions in
Proposition 1.

Notes
1 See also Curley and Salmelin (2017) for a survey of the innovative culture of the software industry.
2 See Nonaka and Nishiguchi (2001); Nonaka et al. (2001), and, in that same volume, the case studies of Nishiguchi (2001);

Nishiguchi and Caspary (2001); Lincoln and Ahmadjian (2000), and de Michelis (2001).
3 See, for example, Carvalho Vieira et al. (2021); Hitchen et al. (2017); Rexhepi et al. (2019), and Seyfettinoglu et al. (2020).
4 On the other hand, obviously, many firms avoid making their innovations open and rely instead on patents or even trade secrets.

A famous example is the Coca-Cola beverage formula (see Crittenden et al. 2015). Clearly, revealing such a secret would be of little
interest to the firm, as it is likely to lead to imitation instead of cumulative process innovation (see Morikawa 2014 for a discussion
of the effect of trade secrets on product vs. process innovation). Another famous example is the Google search algorithm. Here,
the explanation is likely to be different. While revealing that algorithm is likely to lead to a wave of improvements that Google
could benefit from, provided they were made public, the firm’s market share is so big that it loses too much in the short term
by making its algorithm public. In terms of the model, this is similar to a case where the number of firms is too small for the
cooperative equilibrium to exist.

5 See Tirole (1990) for a survey.
6 This is the option in Aloysius (1999). See also Brod and Shivakumar (1997). Petit and Tolwinski (1999) assume away any problem

in enforcing cooperation.
7 An interesting paper by Dutta and Seabrigh (2002) looks at the impact of the extent to which knowledge is explicit on growth and

at its cross-impact with competition. However, the degree of explicitness of knowledge is exogenous, whereas it can be viewed as
endogenous in the current paper. Katz and Ordover (1990) discuss informally how improvements in intellectual property rights
may enhance incentives to share information by licensing. Licensing is not considered in the present paper.

8 We can simply assume that firms do observe whether one competitor is struck by an innovation even though they need not
benefit from the innovation. Thus, there is no asymmetry of information as far as the structure of the game is concerned. The
asymmetry of information with respect to the contents of the innovation are summarized by the payoffs and play no further role
in the determination of the equilibrium strategies.

9 One has to check that Vi exists, i.e., is finite. That is actually an implication of the derivations that follow.
10 In the model’s setting, a deviation would be detected as other firms would observe a fall in profits without an innovation being

released, but that would change if profits were subject to shocks.
11 This restriction implies that A−k f (k) goes up with k, so that limk−→+∞ A−k f (k) = sup A−k f (k).
12 It is slightly weaker than (4).
13 Note that we rule out any cooperation on λ, which may be unobservable, and continue to focus on the incentive to make one’s

innovation public.
14 Furthermore, this restriction prevents degenerate solutions where the growth rate is greater than the interest rate.
15 The model is clearly silent about consumer surplus. One may conceive of innovations that reduce the elasticity of demand and

may thus harm consumers.
16 Lerner and Tirole (2002), though, deal with the role of career concerns in the development of open source software.
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