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Abstract: Named Entity Recognition (NER) on Clinical Electronic Medical Records (CEMR) is a
fundamental step in extracting disease knowledge by identifying specific entity terms such as
diseases, symptoms, etc. However, the state-of-the-art NER methods based on Long Short-Term
Memory (LSTM) fail to exploit GPU parallelism fully under the massive medical records. Although a
novel NER method based on Iterated Dilated CNNs (ID-CNNs) can accelerate network computing,
it tends to ignore the word-order feature and semantic information of the current word. In order to
enhance the performance of ID-CNNs-based models on NER tasks, an attention-based ID-CNNs-CRF
model, which combines the word-order feature and local context, is proposed. Firstly, position
embedding is utilized to fuse word-order information. Secondly, the ID-CNNs architecture is used to
extract global semantic information rapidly. Simultaneously, the attention mechanism is employed
to pay attention to the local context. Finally, we apply the CRF to obtain the optimal tag sequence.
Experiments conducted on two CEMR datasets show that our model outperforms traditional ones.
The F1-scores of 94.55% and 91.17% are obtained respectively on these two datasets, and both are
better than LSTM-based models.

Keywords: clinical electronic records; named entity recognition; convolutional neural network

1. Introduction

With the rapid development of the medical industry, data mining on Clinical Electronic Medical
Records (CEMR) plays an important role in precision medicine. It provides basic technology for
subsequent medical record summaries, computer auxiliary diagnosis, etc. The state-of-the-art Named
Entity Recognition (NER) methods use Long Short-Term Memory (LSTM) to extract features and then
employ the Conditional Random Field (CRF) to obtain the optimal tag sequence [1–4]. However,
the temporal structure of LSTM-based models is usually computationally expensive and inefficient,
especially when faced with massive medical records. The output of the current time of the LSTM
model depends on the output of the previous moment, which results in the inability to calculate in
parallel. The CNN model tends to have a faster prediction time than the LSTM model of the temporal
structure. People often have to make a choice between the excellent performance and low efficiency
of the LSTM model on the NLP task [5,6]. This would be very beneficial if the CNN model directly
replaces the LSTM structure and achieves similar performance to the LSTM on NLP tasks. Recent
works [7,8] attempted to apply Convolutional Neural Networks (CNN) to NER. Most of the deep
learning networks are based on the convolutional neural network (CNN) architecture because it can
make better use of the GPU and thus have a great performance in terms of speed. Nevertheless,
the performance of CNNs-based models is poorer than LSTMs-based models due to it neglecting the
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global semantic information. Recently, the Iterated Dilated CNNs (ID-CNNs) [9] were proposed to
efficiently aggregate a broad context. The comparison between the IDCNN model and the traditional
Bi-LSTM model structure can be seen in Figure 1. However, this model ignores the significance of the
word-order feature and local context in the text. As shown in Figure 1, the natural timing structure of
the traditional Bi-LSTM model enables location information to be captured. The ID-CNNs model has
no time structure. It cannot capture the relative relationship between words and ignores word-order
information. For example, swapping the positions of x1 and x2 in Figure 1 has a large impact on the
Bi-LSTM model. For the ID-CNN model, the output is not affected.

𝑥1 𝑥2 … 𝑥𝑖 … 𝑥𝑛−1 𝑥𝑛 𝑥1 𝑥2 … 𝑥𝑖 … 𝑥𝑛−1 𝑥𝑛

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻 𝐻 𝐻 𝐻 𝐻

Figure 1. The left figure shows the traditional Bi-LSTM model. The input of the current moment of the
Bi-LSTM model depends on the output of the previous moment, so at time i, the calculation must be
iterative from left to right and iteratively calculated from right to left. The figure on the right is the
Iterated Dilated (ID)-CNNs model. It is similar to the CNN structure and can be calculated in parallel.
In addition, the receptive field is expanded between layers, so that global semantic information can
be obtained.

To address these issues, we propose an attention-based ID-CNNs-CRF model. We first introduce
position embedding to capture word-order information. Then, the attention mechanism is applied
to the ID-CNNs-CRF model because of its good performance in NLP tasks, which enables the
enhancement of the influence of critical words. Finally, we apply the CRF to obtain the optimal
tag sequence. Experimental results on two CEMR datasets demonstrate that the proposed model
achieves better prediction performance with a higher F1-score than those of baseline methods.

The remainder of the paper is structured as follows: Section 2 introduces the related work.
Section 3 describes the details of the proposed method. Section 4 demonstrates the proposed
methodology with a series of experiments. Finally, the conclusions of this study are given in Section 5.

2. Related Work

Benefiting from the implementation of digital medicine, the digitization of medical records has
been promoted for many years. Named Entity Recognition (NER) of CEMR designed to identify
critical entities of interest is a basic step in medical information extraction. Traditionally, many
simple, but straightforward methods, such as rule-based and heuristic-search-based methods, have
been utilized to identify critical medical entities [10]. These methods tend to achieve a low recall
value due to the inability to cover all medical entities. Although rule-based methods seem better
than dictionary-based methods, large numbers of rules require extensive domain knowledge to be
formulated by medical professionals [11]. With the expansion of medical data, these time-consuming
and laborious original methods seem to be clumsy. However, these approaches still exist because they
can be utilized as part of other systems to achieve good performance [12,13].

NER methods based on statistical machine learning include Support Vector Machine
(SVM) [14], the Hidden Markov Model (HMM) [15,16], the Maximum Entropy Hidden Markov
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Model (MEHMM) [17], and the Conditional Random Field (CRF) [18]. Zhou et al. [16] presented an
HMM NER system to deal with the special phenomena in the biomedical domain. Suwias et al. [19]
utilized a CRF-based machine learning system named Nersuite to achieve an F-score of 88.46% on
the Gellus corpus. The CRF methods have decent performance, but rely heavily on the selection of
features. At present, the CRF-based medical named entity recognition method is the best method in
statistical machine learning because of the consideration of the transfer between tags. These methods
do not need to match a large number of medical entity dictionaries, nor do experts need to make rules
for entity boundaries, but rely heavily on feature selection. These features such as Parts-Of-Speech
(POS), lexical features, capitalization, etc., need linguists and domain experts to formulate them, which
means that feature engineering is required.

In recent years, deep learning methods have been developed for NER. LSTM architectures
that are capable of learning the long-term dependencies have been put forward [20], especially
bidirectional recurrent neural network architectures [20–22]. Lample et al. [1] utilized bidirectional
LSTMs and conditional random fields to obtain improvement in NER in multiple languages without
resorting to any language-specific knowledge. Marc-Antoine et al. [3] utilized NeuroCRF to obtain
an F1-score of 89.28% on the WikiNER dataset. Ling et al. proposed a neural network approach
named attention-based Bi-LSTM-CRF for document-level chemical NER. The approach leverages
document-level global information obtained by the attention mechanism to enforce tagging consistency
across multiple instances of the same token in a document [23]. However, they are inefficient because
of their sequential processing on sentences. To alleviate this problem, Emma et al. [7] applied the
ID-CNNs architecture to speed up the processing of the network. They proved that the test-time speed
of the ID-CNN models was 1.42-times faster than the Bi-LSTM models. However, these models tend
to ignore the word-order feature and local context compared to LSTM-based models. As shown in
Figure 1, the ID-CNN model failed to take advantage of word-order information between words,
so the model itself is more like a bag of words model. More importantly, due to the stacking structure
of ID-CNN, the output of the last layer has gained too much receptive field, so there is a lack of
perception of the local environment. On the one hand, we need to make the ID-CNN model fuse
location information. On the other hand, more context information about the current location of the
model should be considered when predicting the output of the current location, rather than global
information.

In this paper, in order to promote the performance of the ID-CNNs-CRF model, position
embedding is utilized to introduce word-order information, and the attention mechanism is applied to
focus on those critical words by assigning different weights.

3. Method

In this section, we construct a variety of features as the model input and then describe the
proposed attention-based ID-CNNs-CRF model in detail.

3.1. Pretreatment

3.1.1. Data Formatting

It is difficult to perform many preprocessing operations on the original text for NER tasks,
especially stop words, special symbols, etc., because many medical record entities may contain
connectors and other special characters. In preprocessing, we do half angle conversion and traditional
character conversion to ensure that the model vocabulary is moderate. In addition, we utilize the
uniform symbol NUM to represent Numbers, ENG to represent English words, and UNK to represent
Unknown words.
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3.1.2. Tagging Scheme

NER is a type of sequence tagging task that assigns a label to each entity that contains multiple
tokens. The IOB2 annotation [24] is the tagging scheme mainly utilized in sequence tagging to express
an entity. It uses “B”, which means “Begin”, to indicate the beginning of the entity, “I”, which means
“Inside”, to indicate the non-beginning part of the entity, and “O”, which means “Other”, to indicate
the non-entity. These IOB tags are added in front of the entity class as labels for tokens. For example,
B-Symptom means the begging of a Symptom entity.

3.2. The Construction of Features

In order to get richer semantic features, we constructed a module for extracting word
representation. Word representation is a concatenation of word embedding, character embedding,
POS embedding, and position embedding. The extraction module of word representation is shown in
Figure 2.
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Figure 2. The extraction module of the word representation. The one on the far left is character
embedding; the middle one is word embedding; and the two on the right are part of speech embedding
and position embedding.

3.2.1. Word Embedding

Distributed representations such as Word2vec [25] and Fast-Text [26] are becoming the preferred
choice for word vector representation because they can get an abstract representation of the word.
We chose Fast-Text [26] instead of Word2vec [27] to characterize words because it is not only fast in
massive text, but also relieves the out-of-vocabulary problem. In order to obtain high-quality word



Future Internet 2019, 11, 185 5 of 15

characterization, a large amount of medical record data was crawled from the Internet [28] as a training
corpus of the word embedding. We preprocessed the corpus and used Jieba [29] to segment the words,
then utilized Fast-Text to get the word embedding.

3.2.2. Char Embedding

The quality of word embedding is affected by word segmentation, which makes the model
introduce errors of word segmentation from the beginning. To obtain a high-quality word
representation and avoid word segmentation errors, we took the character of the word as a sequence
and then obtained the character level representation through the bidirectional recurrent neural network.
For the output of the bidirectional cyclic neural network, we took the temporal average as the
final output.

3.2.3. POS Embedding

The performance of NLP tasks relies heavily on word representation, especially linguistic features.
We utilized Jieba [29] (a Chinese word segmentation tool) to segment each sentence and obtained the
parts-of-speech (such as nouns, verbs, etc). We obtained the POS representation of each part-of-speech
by random embedding and set them to be trainable for fine-tuning.

3.2.4. Position Embedding

Different from the recurrent neural networks, the ID-CNN network architecture does not have
a natural word-order structure, so it cannot capture word-order information. To obtain the position
information, we numbered each position (each position corresponds to a number) and then introduced
a certain position embedding for each word by random embedding.

3.3. Attention-Based ID-CNNs-CRF Model

Firstly, we obtained word representation according to the description in Section 3.2 and then
obtained the output at each position by utilizing iterated dilated CNNs. Secondly, the attention
mechanism was employed to pay attention to the local context. Finally, we used CRF to learn the rules
of transfer among labels. Figure 3 illustrates the proposed attention-based ID-CNNs-CRF model.
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Figure 3. Attention-based ID-CNN-CRF architecture. We stacked 4 Dilated CNN blocks, each as shown
in Figure 5. To simplify the drawing, we used Stacked Blocks to represent all the layers in the middle.
For the output bL

t at position t (the orange unit with four circles), we calculated its similarity with
all the output units and took them as weights {αt,1, ..., αt,i, ..., αt,n}. The output was multiplied by the
corresponding weight and then summed as the attention vector at. Concatenate at with bL

t , and add a
full connection layer to map it into the category space. Finally, the optimal tag sequence was obtained
by CRF.

3.3.1. Iterated Dilated CNNs

The Dilated CNN model proposed by Fisher et al. [30] is different from the normal CNN
filter. Normal CNN acts on a continuous position of the input matrix and continuously slides to do
convolution and pooling. The dilated CNN model adds a dilation width to the filter. When it acts on
the input matrix, it skips the input data in the middle of all the dilation width, and the size of the filter
matrix itself remains the same, so the filter achieves a wider input, as is shown in Figure 4.

For the input sequence X = {x1, x2, ..., xt, ..., xn}, we denote the j-th dilated convolutional layer
of dilation with width δ as Dj

δ. We applied a dilation-1 convolution D0
1 to transform the input as a

representation it and took it as the beginning of the stack layers.

c(0)t = it = D(0)
1 xt (1)

Next, the stacked layers are represented as follows:

c(j)
t = r(D(j−1)

2Lc−1 c(j−1)
t ) (2)

where c(j)
t denotes the output of the j-th dilated convolutional layer of dilation, Lc denotes the layers

of dilated convolutions, and r denotes the activation function of the ReLU activation function.
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Each block had three layers of expansion convolution (excluding input), so the output of each
block was c(3)t . Figure 5 illustrates the architecture of a block. Our model stacks four blocks of the same
architectures, and each is a three-layer dilated convolution layer with the dilation width of [1, 1, 2].
We define these three layers of expansion convolution as a block B.

b(1)t = B(xt) (3)

b(k)t = B(b(k−1)
t ) (4)

Figure 4. Normal CNN (left) acts on a continuous position of the input matrix and continuously slides
to do convolution and pooling. The dilated CNN (right) adds a dilation width to the filter. When it
acts on the input matrix, it skips the input data in the middle of all the dilation width, and the size of
the filter matrix itself remains the same, so the filter achieves a wider input.

Layer 2

Layer 3

Layer 1

Input

Block

Figure 5. A dilated CNN block. The input is a sequence of texts, each of which is the word
representation of Figure 2 (for example, 15 words are entered). The circles just represent the concept of
dimensions. Layer 1 has a coefficient of expansion of 1 to obtain a receptive field of 3. Layer 2 expands
by 1 on the basis of Layer 1; although the receptive field in Layer 2 is still 3, the receptive field in the
input is 7. Take the orange unit of Layer 3 as an example: all related neurons are connected by thick
lines, and the receptive field is 15. Each unit of each layer is connected to the three units of the previous
layer; the number of parameters remains unchanged, but the receptive field increases geometrically.

3.3.2. Attention Mechanism

Our model can rapidly aggregate broad context by using iterated dilated CNNs. However,
the extracted broad context usually ignores the importance of the current word for the current tag.
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To alleviate this problem, we applied the attention mechanism to our model. The attention mechanism
has recently become popular in image processing and natural language processing. Ling et al. [23]
utilized an attention mechanism to enforce tagging consistency across multiple instances of the same
token in a document. Bharadwaj et al. [31] introduced the attention mechanism to enhance their model
performances. However, their attention mechanism focuses on which encoded elements contribute to
the generation of the current unit. Different from them, we applied the attention mechanism to focus
on the related tokens in the sequence.

In the attention layer, we calculated the attention weight by Equation (5) between the
current token and all tokens in the sequence as the projection matrix and normalized it with the
softmax function.

αt,i =
exp(sim(bL

t , bL
i ))

∑n
k=1 exp(sim(bL

t , bL
k ))

(5)

where bL
t is the final output position t in Equation (4) and sim denotes the similarity between

two vectors. The similarity between two vectors was measured by cosine similarity according to
Equation (6).

sim(bL
t , bL

i ) =
Wa(bL

t bL
i )∥∥bL

t
∥∥ ∥∥bL

i

∥∥ (6)

where Wa is a weight matrix, which is learned in the training process. We took the weight vector
computation of the unit at position bL

t as an example to explain the detailed computation process.
According to Equation (7), we can achieve the coefficient of each output in the attention layer, then we
calculate the output at under this attention coefficient.

at =
N

∑
i=1

αt,ibL
i (7)

Then, the output of the current position and the output of the attention layer are concatenated as the
output of this module.

ot = Wo[at : bL
t ] (8)

where Wo is a weight matrix that maps the output to the category space. Finally, like the general NER
method, the CRF layer is added for the final sequence labeling.

3.3.3. Linear Chain CRF

Though the deep learning-based NER method can automatically extract high-level abstract
features for each token for category judgment, the rules of transfer among labels tend to be ignored.
It has been proven that the correlations among adjacent labels can be very beneficial in sequence
tagging [1–3]. The linear chain CRF combines the advantages of the maximum entropy model and
the hidden Markov model. It considers the transfer relationships among the labels, enabling the
acquisition of the optimal label sequence in the sequence labeling.

We considered E to be the matrix of the score output by our model. The i-th column is the vector
oi obtained by Equation (8). The element Ei,yi of the matrix is the score of the tag yi of the i-th token
in the sentence. We introduced a tagging transition matrix T. The element Tyi−1,yi of the matrix is
the score of transition from tag yi−1 to yi. This transition matrix will be trained as the parameter of
our network.

Therefore, for a sentence S = {w1, w2, w3, ..., wn}, the score of its prediction sequence
y = {y1, y2, y3, ..., yn} can be expressed as Equation (9):

s(S, y) =
n

∑
i=1

Ei,yi +
n−1

∑
i=1

Tyi−1,yi (9)
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Under the condition of the given sentence S, the probability of sequence label y is as follows:

p(y|S) = es(S,y)

∑ỹ∈YX
es(S,ỹ)

(10)

During the training process, the likelihood function of the marker sequence is:

log(p(y|S)) = s(S, y)− log( ∑
ỹ∈YX

es(S,ỹ)) (11)

where YX represents all possible sets of markers, and a valid output sequence can be obtained by the
likelihood function. The set of sequences with the highest overall probability is output by Equation (12)
when predicting the optimal label:

y∗ = arg max
ỹ∈YX

s(X, ỹ) (12)

The loss function was minimized by backpropagation during training, and the Viterbi algorithm
was applied to find the tag sequence with maximum probability during testing.

4. Experiments and Analysis

4.1. Datasets

Both CCKS2017 [32] and CCKS2018 [33] (China Conference on Knowledge Graph and Semantic
Computing) have published NER tasks for recognizing entities (such as body, symptom, etc.) on CEMR.
Table 1 lists the statistics for different categories of entities in the datasets. CCKS2017 Task 2 (Electronic
Medical Record Named Entity Recognition) provides a total of 800 real electronic medical record data
to identify five types of entities (symptom, check, treatment, disease, body), including 300 labeled data
and 500 unlabeled data. Each clinical electronic case was divided into four domains including general
items, medical history, diagnosis, and discharge. The CCKS2018 CNER Task 1 provides an annotated
corpus of 600 data as the training dataset to identify five types of entities (symptom, description,
operation, drug, body).

Table 1. Statistics on different categories of entities in the dataset. CCKS, China Conference on
Knowledge Graph and Semantic Computing.

CCKS2017 CCKS2018

Entity Count Train Test Entity Count Train Test

Symptom 7831 6846 1345 Symptom 3055 2199 856
Check 9546 7887 1659 Description 2066 1529 537
Treatment 1048 853 195 Operation 1116 924 192
Disease 722 515 207 Drug 1005 884 121
Body 10,719 8942 1777 Body 7838 6448 1390
Total 29,866 24,683 5183 Total 15,080 11,984 3096

To train and evaluate the proposed model effectively, we split the dataset into the training set and
test set by a ratio of 4:1, In addition, we collected nearly 13,496 medical records from the Internet [28]
as training corpora for word vectors.

4.2. Parameter Setting

The parameters of our model are listed in Table 2. We obtained word representation with word
embedding dimension 256, char embedding dim 64, POS embedding dim 64, and position embedding
dim 128. The filter width, numfilter, dilation, and block number of the iterated dilated CNN module
were set to 3, 256, [1,1,2] and 4, respectively. Other parameters can also be seen in Table 2.
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To compare with the traditional conditional random field model, we constructed feature templates
for the CRF as shown in Table 3. In the feature templates, U01 indicates the feature number,
and W[−1, 0] indicates the word at the previous position of the current word. Similarly, W[0, 0]
and W[1, 0] indicate the words of the current word and the next word.

Table 2. Parameter setting for the modules.

Module Parameter Name Value

Word Representation

word embedding dim 256
char embedding dim 64
POS embedding dim 64
position embedding dim 128

Iterated Dilated CNNs

filter width 3
numfilter 256
dilation [1,1,2]
block number 4

Other

learning rate 1e-3
dropout 0.5
gradient clipping 5
batch size 64
epoch 40

Table 3. Feature templates of the CRF model.

Word Feature POS Feature Description

U01:%W[−1,0] U06:%P[−1,0] previous word (POS)
U02:%W[0,0] U07:%P[0,0] current word (POS)
U03:%W[1,0] U08:%P[1,0] next word (POS)
U04:%W[0,0] %W[−1,0] U09:%P[0,0] %P[−1,0] current word and previous word (POS)
U05:%W[0,0] %W[1,0] U10:%P[0,0] %P[1,0] current word and next word (POS)

4.3. Evaluation Metrics

The accuracy (P), Recall (R), and F1 value proposed at the MUC-6 meeting were used for NER.
The specific indicators in the indicator system are as follows: The sample was divided into positive
and negative; if the sample was positive, the number predicted by the model as positive was recorded
as TP; if the sample was negative, the number predicted by the model as positive was recorded as FP;
if the sample was negative and was modeled as suchthe number predicted to be negative was denoted
as TN; the number of samples being positive and predicted by the model as negative was denoted
as FN.

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

F1 =
2PR

P + R
(15)

Accuracy is the ratio of the number of correctly-identified named entities to the number of named
entities identified in the experiment; the recall rate is the ratio of the number of correctly-identified
named entities to the total number of named entities in the sample. The F1-value is the harmonic
average of the accuracy and recall rate.



Future Internet 2019, 11, 185 11 of 15

4.4. Comparison with Other Methods

To validate the effectiveness of our model fully, we compared our attention-based ID-CNNs-CRF
model to previous state-of-the-art methods on the two datasets described in Section 4.1.

As shown in Table 4, our attention-based ID-CNNs-CRF outperformed the prior methods for most
metrics. Compared with the ID-CNNs-CRF, our method obtained better performance (improvements
of 5.95%, 7.48%, and 7.08% in precision, recall, and F1-score, respectively). This demonstrates that
the position embedding and attention mechanism had a huge performance improvement for the
ID-CNNs model, since it could fuse word-order information and pay attention to the local context.
In addition, our model outperformed the Bi-LSTM-CRF model, showing that our attention-based
ID-CNNs-CRF was also an effective token encoder for structured inference. Nevertheless, the
attention-based ID-CNNs-CRF model we proposed was slightly higher than the Bi-LSTM-CRF model
in the F-score by 0.58% (0.73% in CCKS2018), but the precision was still inferior to the Bi-LSTM-CRF
model (CRF in CCKS2018).

Table 4. Results of different NER models on the CCKS2017 and CCKS2018 datasets.

Model
CCKS2017 CCKS2018

Precision Recall F1-score Precision Recall F1-score
% % % % % %

CRF [19] 89.18 81.60 85.11 92.67 72.10 77.58
LSTM-CRF [1] 87.73 87.00 87.24 82.61 81.70 82.08
Bi-LSTM-CRF [2] 94.73 93.29 93.97 90.43 90.49 90.44
ID-CNNs-CRF [9] 88.20 87.15 87.47 81.27 81.42 81.34

Attention-ID-CNNs-CRF(ours) 94.15 94.63 94.55 91.11 91.25 91.17

Our method was not only a better token encoder than the Bi-LSTM-CRF, but it was also faster.
Table 5 lists the test time on the test set, compared to the Bi-LSTM-CRF. Our test set contained 512 pieces
of data, and each model was tested five times for the average. The average test time for our model
and Bi-LSTM-CRF was 12.81 and 15.62, respectively. The model we proposed was 22% faster than
Bi-LSTM-CRF. Compared with ID-CNNs-CRF, the speed of our model was slightly worse, but our
model outperformed it by a wide margin.

Table 5. Comparison of the test time.

Model (512 Test Data) Time (s) Speed

Bi-LSTM-CRF [2] 15.62 1.0×
ID-CNNs-CRF [9] 11.96 1.31×
Attention-ID-CNNs-CRF (ours) 12.81 1.22×

4.5. Comparison of Entity Category

To compare the recognition capabilities in different entity categories comprehensively,
we enumerated and compared the F1-score of the three main models (Bi-LSTM-CRF, ID-CNN-CRF
without position embedding, and the attention-based ID-CNNs-CRF model we proposed) in five
categories. Detailed experimental results are shown in Table 6.
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Table 6. Comparison of the entity category on the CCKS2017 and CCKS2018 datasets.

CCKS2017
Model Body Check Disease Signs Treatment Average

Bi-LSTM-CRF [2] 94.81 96.40 87.79 95.82 88.10 93.97
ID-CNNs-CRF [9] 90.89 88.28 79.67 91.04 81.27 87.47
Attention-ID-CNNs-CRF (ours) 95.38 97.79 86.55 96.91 87.64 94.55

CCKS2018
Model Body Symptom Operation Drug Description Average

Bi-LSTM-CRF [2] 92.59 93.12 87.43 82.86 86.33 90.44
ID-CNNs-CRF [9] 84.37 85.81 76.59 80.42 84.61 81.34
Attention-ID-CNNs-CRF (ours) 95.18 94.47 85.86 80.06 91.99 91.17

As shown in Table 6, the average F1-score of our model was improved by 0.58% (0.73% in
CCKS2018) compared to the Bi-LSTM-CRF while maintaining a 1.22× (Table 5) faster test time
speed. The performance of the ID-CNNs-CRF was worse than the other two models in each category.
The F-score ranged from 87.79% to 96.40% (from 82.86% to 93.12% in CCKS2018) in different categorized
entities when it was computed on our attention-based ID-CNNs-CRF model, whereas the range was
from 86.55% to 97.79% (from 80.06% to 95.18%) when it was computed from the Bi-LSTM-CRF
model. For most categories, the model we proposed was significantly better than the Bi-LSTM-CRF.
For example, it had a slightly high F1-score (2.59% on body and 5.66% on description in CCKS2018)
than the Bi-LSTM-CRF model. However, for a few categories, the Bi-LSTM-CRF had a higher F1-score
(1.24% on disease and 0.46% on treatment in CCKS2017) than our model. We conjecture that it might
be due to the imbalanced data distribution (the number of different entities varied greatly) because the
entity number of all these categories was small (as can be seen in Section 4.1).

4.6. Comparison of Different Parameters

On the one hand, the increase of the dimension will increase the complexity of the model, making
the model more generalized. On the other hand, the increase of the dimension will bring huge
computational cost. To optimize the network structure, we evaluated the impact of four different
embedding dimensions on the F1-score. When we evaluated different embeddings, such as word
embedding, we fixed the dimensions of other embedding (such as char embedding, etc.) as relatively
optimal results. We tried different test embedding dimensions, increasing from 64 to 512 with a step
size of 2n.

From the result shown in Figure 6, the dimension of word embedding had a large impact on
the F1-score of the model. The F1-score was 89.56% using 64 dimensions of word embedding and
was increased to 93.98% using 256 dimensions of word embedding (CCKS2017). Although the
512-dimensional word embedding was 0.13% higher than the 256-dimensional word embedding
F1-score, it doubled the computing resources. The dimensions of char embedding and POS embedding
had little effect on the F1-score. In order to have lower computational complexity, we selected 64 as
their best dimension number. Position embedding also had an impact on the model performance.
We found that the larger the dimension of position embedding, the better the performance of the
model. However, the larger the dimension, the weaker it was. To balance model performance and
computational cost, we chose a dimension of 256.
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Figure 6. The chart on the left shows the effect of changes in the different embedding dimensions of
CCKS2017 on the F1-score of the model (the chart on the right is CCKS2018). The abscissa represents
different dimensions, and the ordinate represents the F1-score of the model on the test set.

5. Conclusions

In this paper, we proposed an attention-based ID-CNNs-CRF model for NER on CEMR. Firstly,
word representation combined with position embedding was used for the input of our model to
capture the word-order information. Secondly, we stacked four dilated CNN blocks to obtain
broad semantic information to make up for the shortage of the CNN-based model in the language
field. Then, the attention mechanism was applied to pay more attention to the characteristics of
the current words and increase the performance of the model. Finally, the CRF was utilized to
obtain the optimal tag sequence. The experiments on two CEMR datasets demonstrated that the
attention-based ID-CNNs-CRF was superior to state-of-the-art methods with a faster test time. As we
know, Bi-LSTM-CRF has a temporal structure, and its output at each step depends on the output of
the previous step. This temporal structure is time consuming, especially when dealing with long
text. Our model had good parallelism and could make full use of the GPU for parallel computing.
Compared with the ID-CNNs-CRF, our model obtained better performance (improvements of 5.95%,
7.48%, and 7.08% in precision, recall, and F1-score, respectively). This demonstrates that the position
embedding and attention mechanism had a huge performance improvement for the ID-CNNs model.
In addition, our model outperformed Bi-LSTM-CRF, showing that our attention-based ID-CNNs-CRF
was also an effective token encoder for structured inference. The model we proposed was 22% faster
than the Bi-LSTM-CRF. There was no significant improvement in our model in the number of entities
with fewer samples. Therefore, our future work is to study how to improve the recognition of these
entities with fewer samples.
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