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Abstract: Over three-quarters of Taiwan’s landmass consists of mountainous slopes with steep
gradients, leading to frequent rockfall hazards that obstruct traffic and cause injuries and fatali-
ties. This study used Google Alerts to compile internet news on rockfall incidents along Taiwan’s
highway system from April 2019 to February 2024. The locations of these rockfalls were geolocated
using Google Earth and integrated with geographical, topographical, environmental, geological,
and socioeconomic variables. Employing machine learning algorithms, particularly the Random
Forest algorithm, we analyzed the potential for rockfall hazards along roadside slopes. The model
achieved an overall accuracy of 0.8514 on the test dataset, with a sensitivity of 0.8378, correctly
identifying 83.8% of rockfall locations. Shapley Additive Explanations (SHAP) analysis highlighted
that factors such as slope angle and distance to geologically sensitive areas are pivotal in determining
rockfall locations. The study underscores the utility of internet-based data collection in providing
comprehensive coverage of Taiwan’s highway system, and enabled the first broad analysis of rockfall
hazard susceptibility for the entire highway network. The consistent importance of topographical and
geographical features suggests that integrating detailed spatial data could further enhance predictive
performance. The combined use of Random Forest and SHAP analyses offers a robust framework for
understanding and improving predictive models, aiding in the development of effective strategies for
risk management and mitigation in rockfall-prone areas, ultimately contributing to safer and more
reliable transportation networks in mountainous regions.

Keywords: rockfalls; highways; machine learning; random forest; Taiwan

1. Introduction

Rockfalls are a type of geological hazard occurring in mountainous regions with
steep slopes and rock material, categorized under general landslides. Varnes [1] classified
landslides into falls, topples, slides, spreads, and flows, with rockfalls being a specific
type of fall movement involving rock rather than engineering soils. The susceptibility of
highways to rockfall hazards is a critical concern due to the potential risks to traffic safety
and infrastructure. Despite the importance of this issue, research focusing specifically on
rockfall susceptibility along highways is relatively scarce, as most studies address broader
regions and various types of slope instability rather than the specific dangers posed by
rockfalls on highways. This underscores the need for more targeted studies in this area.

Traditionally, rockfall hazards have been analyzed using rating systems. For instance,
in mainland China, many highways constructed in the western mountainous region face
significant rockfall hazards. To address this, a rockfall rating system based on an Italian
method was applied, adjusting weights for rockfall hazard factors and vehicle vulner-
ability factors to improve accuracy [2]. Additionally, another study in Italy developed
a methodology to assess rockfall hazards and associated risks along transportation net-
works [3]. This approach combines historical recurrence data, frequency-volume statistics
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from recent rockfall events, and a physically-based, spatially distributed rockfall simulation
model. By integrating this information within a Geographic Information System (GIS), the
study identifies road sections potentially at risk of rockfalls. Expanding methodological
approaches, another study in the Swiss Alps enhances regional rock-mass-failure suscepti-
bility assessment by integrating detailed slope angle analysis of recent Digital Elevation
Models (DEMs) with the Slope Angle Distribution procedure [4]. Introducing a normalized
cumulative distribution function provides quantitative slope angle weighting, improving
susceptibility assessments. Using GIS-based software Flow-R, the method also assesses
rockfall runout, enabling the creation of hazard and risk maps. In a different geographic
context, research from India examines rockfall issues on highly jointed, near-vertical rock
cut slopes, excavated without thorough geotechnical and geological investigations along a
riverbank [5]. Field inspections and kinematic analyses identified probable slope failure
zones, and the study employed 2D rockfall analysis to estimate energy loss from falling
blocks impacting the slope face and the road.

Further research in Italy used rockfall occurrence databases and thematic maps to
compute a susceptibility map using the Analytical Hierarchy Process (AHP) [6]. The results
underscore the significance of morphometric factors in rockfall phenomena. Another study
in Iran combined AHP with Weight of Evidence (WoE) and Frequency Ratio (FR) to evaluate
rockfall susceptibility mapping [7]. Data from 34 rockfall locations were compiled from
various sources, identifying eight factors influencing rockfalls. The results indicate that
the WoE method provides better prediction accuracy for rockfall susceptibility mapping
compared to the AHP and FR methods. Additionally, a study in Iran analyzed rockfall
susceptibility mapping using Artificial Neural Networks (ANN) with 15 factors and data
from 57 historical rockfalls [8]. The findings revealed that the northern part of the studied
region has a high risk of rockfall failures. Another approach emphasizes the optimization
of algorithm hyperparameters for rockfall susceptibility mapping in China [9]. The authors
constructed a geological database containing 220 historical rockfalls and 220 non-rockfall
cells. Through their analysis using recursive feature elimination, they identified 9 key
factors from a list of 23, underscoring the significance of feature selection in improving
model performance.

A study that has more data points is the mapping of landslide susceptibility along
the Karakoram Highway in Pakistan [10]. This study addresses not only rockfalls, but
also rockslides and debris flows. Since the Karakoram Highway’s completion in 1979,
frequent disruptions due to rockfalls, rockslides, and debris flows have been common,
often triggered by heavy rainfall—conditions similar to those in Taiwan. The study employs
machine learning models and a landslide inventory comprising 303 points to evaluate the
relationship between landslide events and their causative factors.

The literature review reveals that few comprehensive studies have been conducted
on rockfall hazard susceptibility, with many existing studies on rockfalls often including
broader landslide phenomena, rather than focusing exclusively on rockfalls. Additionally,
the data points in these studies are typically limited, ranging from 34 to 303, including
rockslides and debris flows. Various methods have been employed in hazard susceptibility
analysis, such as rockfall rating systems, AHP, physically-based methods, and ANN,
among others.

In contrast, the current study leverages the power of the internet and Google Alerts to
automatically collect daily news from Taiwan from April 2019 to February 2024, thereby
creating a comprehensive database exclusively focusing on rockfall events. The locations of
these events are pinpointed using Google Earth for an extensive rockfall hazard susceptibil-
ity analysis. Specifically, this research focuses on rockfall events near the highway system
caused by rainfall, excluding events on other types of roads such as farm roads, urban
roads, forest roads, or hiking trails or those caused by earthquakes. Furthermore, this study
employs advanced machine learning algorithms, particularly the Random Forest algorithm,
known for its superior performance in various applications. The primary objective is to
develop a detailed rockfall hazard susceptibility assessment for Taiwan’s roadway system.
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2. Materials and Methods

The following sections describe our methodology for leveraging the power of the
internet and Google Alerts to automatically collect daily news from Taiwan, from April
2019 to February 2024, regarding rockfalls near highways. This process enabled us to create
a comprehensive database exclusively focused on highway rockfall events. We combined
geographical, topographical, environmental, geological, and socioeconomic data, and used
machine learning to analyze rockfall hazards. During the preparation of this manuscript,
we used ChatGPT to improve readability and language. We reviewed and edited the
content as needed, and take full responsibility for the publication’s content.

2.1. Rockfall Data Collection

Taiwan is an island celebrated for its unique environment and diverse geological
landscapes. Positioned at the convergence of tectonic plates, and in the path of Pacific
typhoons, Taiwan features rugged terrain with steep slopes and high mountains, making it
highly vulnerable to natural hazards such as typhoons, floods, landslides, and earthquakes.
In 2005, a World Bank report indicated that 73% of Taiwan’s land and population are
exposed to three or more hazards, such as earthquakes, landslides, or floods, and almost
99% of its land and population are exposed to two or more hazards [11]. Taiwan may be
considered one of the most vulnerable areas to natural hazards on Earth [12,13]. Many
of these hazards have been extensively studied by various researchers. However, no one
has systematically and comprehensively studied rockfall hazards specifically on Taiwan’s
highway system or analyzed the rockfall hazard vulnerability.

Taiwan has an extensive highway system. The layout of the highways relevant to this
study is shown in Figure 1, and the lengths of the highways are presented in Table 1. The
total length is 21,839.6 km, which includes 1061.8 km of National Expressways, 5323.2 km
of Provincial Highways, 3684.1 km of City and County Highways, 11,362.7 km of District
and Rural Highways, and 407.8 km of Exclusive Highways [14].

Figure 1. The highway system in Taiwan, highlighting the locations of rockfall and non-rockfall events.
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Table 1. Summary of rockfall incidents on different types of highways in Taiwan.

Highway Type Num. Total Length
(km)

Num. of
Rockfall

Rockfall
Roads

% Rockfall
Roads Rockfall/km

National Expressway 10 1061.8 0 0 0.0% 0.0000
Provincial Highway 97 5323.2 126 24 24.7% 0.0237
City/County Highway 158 3684.1 19 13 8.2% 0.0052
District/Rural Highway 2250 11362.7 37 16 0.7% 0.0033
Exclusive Highway 35 407.8 0 0 0.0% 0.0000

Rockfall events are frequent in Taiwan, yet they often go unreported in mainstream TV
news and newspapers, unless they are particularly significant. Consequently, identifying
these occurrences frequently necessitates consulting local news reports, posing a challenge
to the comprehensive collection of rockfall events essential for hazard susceptibility analysis.
To address this, we used Google Alerts, a tool that sends notifications about new online
content based on specified keywords, to automatically search for relevant reports from a
wide range of news sources that are typically inaccessible or unnoticed. The Google Alerts
were configured to search daily for rockfall events and send pertinent news to the author.
Since April 2019, we have been employing this method, which has allowed us to gather
data until February 2024. Note that most internet news in Taiwan is only available for a
short period online. Usually, it is not possible to search and retrieve internet news that is a
few months old, let alone a few years old.

The highway types targeted for this study are those listed in Table 1, which does not
include farm roads, urban roads, forest roads, or hiking trails. Each rockfall event reported
in the news was manually verified and geolocated using Google Earth by referencing
kilometer markers and road names/numbers and utilizing street view. This meticulous
process enabled us to compile a primary dataset essential for our rockfall hazard analysis.
The dataset not only provides a comprehensive record of rockfall incidents, but also offers
valuable insights into the spatial distribution and frequency of rockfalls across Taiwan,
facilitating a more accurate and detailed hazard susceptibility assessment. In total, we
identified 126 rockfall events along the Provincial Highways, 19 rockfall events along the
City and County Highways, and 37 rockfall events along the District and Rural Highways.
There were no rockfalls along the National Expressways and the Exclusive Highways. The
rockfall locations are also shown in Figure 1 as red dots. Overall, 24.7% of the Provincial
Highways experienced rockfalls, 8.2% of the City and County Highways experienced
rockfalls, and 0.7% of the District and Rural Highways experienced rockfalls. In terms of
the number of rockfalls per kilometer, the Provincial Highways have the highest frequency,
followed by the City and County Highways, and finally the District and Rural Highways.
These statistics highlight the Provincial Highways as experiencing the highest frequency of
rockfall incidents and the most significant impact.

The primary objective of this study is to predict the occurrence of rockfalls along
highways, with the model’s target outcome being binary—either the occurrence or non-
occurrence of a rockfall. To build a robust predictive model, we used the 182 known
rockfall locations (positive samples), and supplemented them with 182 randomly generated
non-rockfall locations (negative samples) along the highways, as shown in Figure 1.

Given that different types of highways have varying design requirements and ser-
vice levels—such as minimum lane widths, turning radius, pavement thickness, signage,
lighting, and bridge design—the selection of negative samples needed to reflect the char-
acteristics of the positive samples across different highway types. To achieve this, we
maintained the same proportion of negative samples as positive samples within each type
of highway. This was performed by generating a 20-m buffer around the roads and employ-
ing stratified random sampling within each highway category. Specifically, 126 negative
samples were created along Provincial Highways, 19 along City and County Highways, and
37 along District and Rural Highways, resulting in a total of 364 data points for analysis.
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2.2. Independent Variables for Rockfall Analysis

To use machine learning for analyzing the rockfall hazard of Taiwan’s highway sys-
tem, it is essential to collect independent variables related to rockfall occurrences. These
variables, known as features or predictors, improve the accuracy of predictions. Gathering
a diverse set of predictors helps in capturing the complex interactions between various
factors influencing rockfall events, thereby enhancing the model’s predictive power.

In this study, we drew on our extensive experience with machine learning on soil
erosion depths [15], cover management factors [16], and global vegetation growth [17] to
compile a comprehensive list of 28 predictive variables. These variables are categorized into
five groups: geographical, topographical, environmental, geological, and socioeconomic,
as shown in Table 2. This categorization allows for a structured approach in analyzing the
impact of different types of variables on rockfall occurrences.

Table 2. Independent variables for analyzing rockfall occurrences.

No. Variable Description

Geographical Variables
1 twd97_y The northing coordinate in the TWD97 coordinate system (also known as the

1997 Taiwan Datum), which is used for mapping and surveying in Taiwan.
2 twd97_x The easting coordinate in the TWD97 coordinate system.
3 dist_river Distance to the nearest river (meters).
4 dist_fault Distance to the nearest fault line (meters).
5 dist_urban Distance to the urban boundary (meters).
6 dist_geo_sens_area Distance to the geologically sensitive area boundary (meters).
7 dist_debris_flow_stream Distance to the potential debris flow stream (meters).
8 dist_debris_flow_watershed Distance to the potential debris flow stream watershed boundary (meters).
9 dist_debris_flow_influence Distance to the potential debris flow stream influence area boundary (meters).

Topographical Variables
10 elev Elevation from 20 m resolution DEM (meters).
11 slope_deg Slope measured in degrees.
12 slope_asp Slope aspect.
13 curvature Slope curvature.
14 twi Topographic Wetness Index.
15 spi Stream Power Index.
16 tri Terrain Ruggedness Index.
17 river_density River density (km/km2).

Environmental Variables
18 avg_yr_rainfall Average yearly rainfall from 2020 to 2023 (mm/year).
19 avg_yr_rainy_days Average number of rainy days per year from 2020 to 2023 (days).
20 avg_month_temp Average monthly temperature from 2020 to 2023 (°C).
21 avg_min_temp Average minimum temperature per year from 2020 to 2023 (°C).
22 avg_max_temp Average maximum temperature per year from 2020 to 2023 (°C).
23 avg_month_wind_speed Average monthly wind speed from 2020 to 2023 (m/s).
24 avg_month_humidity Average monthly humidity from 2020 to 2023 (%).
25 ndvi Normalized Difference Vegetation Index (NDVI).

Geological Variables
26 epoch Geological time period.
27 stratum_abbr Stratum abbreviation.

Socioeconomic Variables
28 pop_density Population density (persons/ha).

The DEM and population density data in Table 2 were sourced from the Ministry of
the Interior. Slope, aspect, curvature, topographic wetness index, stream power index,
and terrain ruggedness index were calculated from the DEM. The river network data
were obtained from the Water Resources Agency. Fault lines, geologically sensitive areas,
epoch, and stratum data were provided by the Geological Survey and Mining Management
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Agency. Urban area data were sourced from the Global Urban Boundaries dataset [18].
Data on debris flow streams, watersheds, and influence areas were obtained from the
Agency of Rural Development and Soil and Water Conservation. Distances to rivers, faults,
urban boundaries, geologically sensitive areas, debris flow streams, their watersheds, and
influence areas were calculated. Rainfall, temperature, wind speed, and humidity data
were obtained from the Central Weather Administration.

The necessary computations were performed using both R and ArcMap GIS. The
integration of R and ArcMap GIS facilitated systematic data processing and analysis,
ensuring accuracy and reliability in our dataset. This dataset serves as a foundational
resource for our study on rockfall hazard assessment, supporting evidence-based decision-
making and proactive measures for disaster risk reduction in Taiwan.

Figure 2 illustrates the distribution of some of these variables across Taiwan. Each
subfigure may represent a single predictor or a combination of predictors, from which
additional predictors can be computed. For instance, distance to geologically sensitive
areas and slope angle are critical geographical and topographical variables that influence
the likelihood of rockfalls. Similarly, environmental variables such as average yearly
rainfall and NDVI provide insights into climatic conditions and vegetation cover, which
are essential for understanding the environmental context of rockfall events.

By integrating these diverse data sources, we aimed to develop a robust predictive model
tailored to Taiwan’s conditions. The model leverages the comprehensive dataset to identify
patterns and relationships that may not be immediately apparent through traditional analysis
methods. This approach not only enhances the accuracy of predictions, but also provides a
deeper understanding of the factors contributing to rockfall hazards in Taiwan.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Cont.



Future Internet 2024, 16, 299 7 of 18

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. Predictive variables used for rockfall analysis: (a) elevation, (b) slope angle in degrees,
(c) NDVI, (d) river system, (e) urban areas, (f) fault lines, (g) geologically sensitive areas, (h) potential
debris flow areas, (i) average yearly rainfall, (j) average monthly temperature, (k) average monthly
wind speed, (l) average monthly humidity, (m) average number of rainy days, (n) strata, (o) epoch,
(p) population density.

2.3. Machine Learning and Accuracy Indices

The Random Forest technique is a robust and versatile machine learning method
that operates by constructing multiple decision trees during training and combining their
outcomes to enhance predictive accuracy and control overfitting. Each decision tree is built
using a subset of the data, and the final prediction is obtained by averaging the results
of these individual trees (regression) or by majority voting (classification). This ensemble
approach not only improves the model’s performance, but also provides insights into the
importance of various predictive variables.

In our rockfall hazard susceptibility study, the Random Forest technique [19] was
employed due to its ability to handle complex, non-linear relationships and its effectiveness
with large datasets. Recent studies have shown that among various machine learning
algorithms, Random Forest consistently outperforms others in terms of precision and clas-
sification accuracy, achieving over 90% accuracy in predicting small rockfall locations [20].
This method has been successfully applied in studies of landslide susceptibility [21], soil ero-
sion [22], forest growth [23], soil organic carbon [24], and potential groundwater zones [25].
Its capability to manage a wide range of input variables and its robustness against overfit-
ting made it particularly suitable for our comprehensive analysis of rockfall susceptibility
in Taiwan.

The dataset for this research was divided into a training dataset (approximately 80%,
consisting of 145 positive and 145 negative samples) for training the Random Forest model,
and a test dataset (approximately 20%, consisting of 37 positive and 37 negative samples)
for evaluating the model’s performance. The Random Forest model was trained using the
“randomForest” package in R, where we employed 5-fold cross-validation on the training
dataset to determine the optimal hyperparameters.
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The two hyperparameters considered in this study were “mtry,” representing the num-
ber of variables randomly sampled as candidates at each split, and “ntree,” representing
the number of trees to grow. The default values for these parameters are mtry =

√
28 ≈ 5

and ntree = 500. We conducted the cross-validation over a grid of hyperparameter combi-
nations, specifically mtry = (1, 3, 5, 7, 9, 11) and ntree = (100, 500, 1000).

Given the importance of highway types, as discussed previously in this section, each
fold in the cross-validation was stratified based on highway type. Specifically, each fold
contained 20 positive and 20 negative samples along the Provincial Highways, 3 positive
and 3 negative samples along the City and County Highways, and 6 positive and 6 negative
samples along the District and Rural Highways. When training the model, all 28 variables
were considered, excluding the highway type.

To assess the performance of the classification model, we used several statistical
indices: Precision, Sensitivity (Recall), Specificity, F1 score, Overall Accuracy, and Cohen’s
kappa (κ), as shown in Equations (1)–(6). These indices provide a comprehensive evaluation
of the model’s classification performance, offering unique insights into different aspects of
the model’s accuracy and reliability.

Precision =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

F1 score = 2 × Precision × Recall
Precision + Recall

(4)

Overall Accuracy =
TP + TN

N
(5)

κ =
Po − Pe

1 − Pe
(6)

where:

TP = True Positives (correctly predicted rockfalls);

FP = False Positives (incorrectly predicted rockfalls);

TN = True Negatives (correctly predicted non-rockfalls);

FN = False Negatives (incorrectly predicted non-rockfalls);

N = Total number of samples;

Po = Observed agreement between prediction and observation;

Pe = Expected agreement by chance.

In addition, Shapley Additive Explanations (SHAP) [26] was used to interpret the
predictions made by the machine learning model. SHAP provides a unified approach to
explaining the outputs of machine learning models by attributing the contribution of each
feature to the final prediction. Based on cooperative game theory, specifically the concept
of Shapley values, SHAP ensures a fair distribution of contributions among features. By
calculating the average marginal contribution of each feature across all possible feature
combinations, SHAP offers consistent and locally accurate explanations. This method
allows us to understand the influence of individual variables on the model’s decisions,
offering insights into feature importance and interaction effects.

The application of SHAP in our study enhanced the interpretability of the machine
learning model, enabling us to determine the relevance of key predictors and communicate
the model’s decision-making process more transparently. This interpretative capability is
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crucial for ensuring the robustness and credibility of our findings, particularly in complex
predictive modeling scenarios.

For the SHAP analysis, the alternative fast implementation of Random Forests, “ranger”
in R, was used, applying the same hyperparameters as those determined by the slower
“randomForest” package. The test dataset was selected for calculating SHAP values, while
the training dataset was used as the background data.

3. Results

This section presents the results of applying the machine learning technique to predict
rockfall occurrences near highways. The study dataset includes 182 rockfall events and an
equal number of non-rockfall instances, totaling 364 observations. Using 28 variables, the
predictive models was constructed and evaluated. The subsequent section details the per-
formance metrics and insights derived from these models, highlighting their effectiveness
in identifying and understanding the factors influencing rockfall occurrences.

3.1. Random Forest Model Performance in Rockfall Prediction

The performance of the Random Forest model, as shown in Table 3, demonstrates
strong predictive capabilities across various hyperparameter settings during the 5-fold
cross-validation (showing average metrics across the five folds). The results indicate con-
sistent performance, with overall accuracy ranging from 0.7690 to 0.8069, and a Kappa
statistic between 0.5379 and 0.6138, highlighting the model’s stability across different hy-
perparameter combinations. Sensitivity and precision were well-balanced, with sensitivity
values ranging from 0.8207 to 0.8759, and precision values between 0.7473 and 0.7721,
suggesting that the model effectively identifies rockfalls while maintaining high accuracy
in its predictions. According to the results, the optimal hyperparameter combination was
found to be mtry = 1 and ntree = 100. Using this optimal combination, a final Random
Forest model was trained on the entire training dataset and subsequently tested on the
test dataset.

Table 3. Performance metrics from 5-fold cross-validation and test dataset.

5-Fold Cross-Validation

mtry ntree Accuracy Kappa Sensitivity Specificity Precision F1

1 1 100 0.8069 0.6138 0.8759 0.7379 0.7721 0.8170
2 1 500 0.7897 0.5793 0.8552 0.7241 0.7592 0.8008
3 1 1000 0.8000 0.6000 0.8690 0.7310 0.7654 0.8108
4 3 100 0.7931 0.5862 0.8552 0.7310 0.7669 0.8041
5 3 500 0.7862 0.5724 0.8276 0.7448 0.7688 0.7929
6 3 1000 0.7793 0.5586 0.8276 0.7310 0.7589 0.7879
7 5 100 0.7862 0.5724 0.8345 0.7379 0.7642 0.7946
8 5 500 0.7828 0.5655 0.8345 0.7310 0.7623 0.7924
9 5 1000 0.7862 0.5724 0.8276 0.7448 0.7688 0.7928

10 7 100 0.7897 0.5793 0.8414 0.7379 0.7658 0.7998
11 7 500 0.7828 0.5655 0.8276 0.7379 0.7670 0.7914
12 7 1000 0.7793 0.5586 0.8345 0.7241 0.7568 0.7904
13 9 100 0.7862 0.5724 0.8414 0.7310 0.7603 0.7967
14 9 500 0.7793 0.5586 0.8207 0.7379 0.7620 0.7865
15 9 1000 0.7931 0.5862 0.8483 0.7379 0.7702 0.8040
16 11 100 0.7690 0.5379 0.8276 0.7103 0.7473 0.7808
17 11 500 0.7931 0.5862 0.8483 0.7379 0.7679 0.8035
18 11 1000 0.7793 0.5586 0.8414 0.7172 0.7529 0.7914

Test Dataset

Accuracy Kappa Sensitivity Specificity Precision F1

0.8514 0.7027 0.8378 0.8649 0.8611 0.8493
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On the test dataset, the model achieved an accuracy of 0.8514, demonstrating its strong
ability to correctly classify instances in previously unseen data. The sensitivity on the test
dataset was 0.8378, indicating the model’s consistent effectiveness in identifying rockfalls.
Precision was also high at 0.8611, underscoring the model’s reliability in making accurate
rockfall predictions. The F1 score on the test dataset was 0.8493, indicating that the model
maintains a good balance between precision and recall. Additionally, the Kappa statistic on
the test dataset was 0.7027, suggesting substantial agreement between the predicted and
actual classifications, even after accounting for chance.

The Receiver Operating Characteristic (ROC) curve depicted in Figure 3 illustrates
the predictive performance of the Random Forest model against the test dataset. This
curve provides a graphical representation of the model’s diagnostic ability by plotting the
True Positive Rate (sensitivity) against the False Positive Rate (1-specificity) across various
threshold settings. The orange line signifies the ROC curve of the model, while the diagonal
blue dashed line represents the performance of a random classifier, which has an Area
Under the Curve (AUC) of 0.5. The ROC curve’s proximity to the upper left corner and the
larger area under the curve indicate better model performance. In this instance, the model
achieved an AUC value of 0.9317, indicating excellent discriminative ability in identifying
rockfall occurrences with minimal misclassifications. Such a high AUC value suggests that
the model maintains a high true positive rate while keeping the false positive rate low,
thereby confirming the robustness and reliability of the Random Forest model in effectively
distinguishing between the rockfall and non-rockfall classes.

Figure 3. The ROC curve of the Random Forest model, highlighting the AUC value of 0.9317, which
indicates excellent model performance.

After validating the machine learning model, a section of Provincial Highway 7,
also known as the Northern Cross-Island Highway, which has numerous occurrences of
rockfalls, was selected to create a detailed rockfall susceptibility map. A 200-m buffer
was generated around the road to encompass the potential impact area. This buffer zone
was then converted from a shapefile to a raster format with a 5-m resolution to ensure
high spatial accuracy. Subsequently, all relevant datasets for this road section, including
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geographical, topographical, environmental, geological, and socioeconomic variables, were
input into the model.

Using the quantile method in ArcMap, we classified the rockfall susceptibility into
five distinct categories: very low, low, moderate, high, and very high. This method divides
the data into equal-sized intervals, allowing for a balanced representation of susceptibility
levels across the area.

Figure 4 illustrates the rockfall susceptibility of the selected section of Provincial
Highway 7. The map highlights areas with varying levels of susceptibility, with black dots
indicating the locations of past rockfalls. The agreement between the model’s predictions
and the actual rockfall occurrences demonstrates the model’s accuracy and reliability in
identifying high-risk zones.

Figure 4. Rockfall susceptibility map of a section of Provincial Highway 7, showing the classification
into five susceptibility levels. Black dots indicate the locations of past rockfalls.
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3.2. Feature Importance Visualization

Figure 5 illustrates the variable importance derived from the Random Forest model.
The 28 predictors are categorized into five groups: geographical, topographical, environ-
mental, geological, and socioeconomic variables, each labeled with different colors for
clarity. The figure shows that the most influential factor is slope_deg, a topographical
variable, indicating its significant impact on the model’s predictions. Following closely
are dist_geo_sens_area, a geographical variable, and dist_urban, another geographical
variable, highlighting the crucial role of topographical and geographical features.

Other notable variables include curvature, spi, twd97_y, twd97_x, and twi, which
also fall within the geographical and topographical categories. Environmental variables are
ranked next, indicating that they are of lesser importance compared to topographical and
geographical variables. The socioeconomic variable pop_density and the two geological
variables rank near the bottom of the figure, suggesting their relatively minor impact
on rockfall occurrence predictions. Overall, this figure highlights the model’s ability to
integrate a diverse range of variables across different domains, reflecting the complex
interplay of geographical, topographical, environmental, geological, and socioeconomic
factors in the analysis.

Figure 5. Variable importance derived from the Random Forest model, highlighting the significant
predictors across geographical, topographical, environmental, geological, and socioeconomic categories.

The mean SHAP values shown in Figure 6 represent the average impact of various
features on the output of the machine learning model. The features are ranked by impor-
tance, with slope_deg and dist_geo_sens_area exhibiting the highest mean SHAP values
of 0.0422 and 0.0368, respectively, signifying their significant influence on the model’s
predictions. Other notable features, such as curvature, spi, avg_yr_rainy_days, and twi,
also contribute meaningfully, albeit to a lesser extent. The remaining features display
lower mean SHAP values, reflecting their gradually diminishing impact on the model’s
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predictions. This plot provides a clear hierarchy of feature importance, enhancing our
understanding of which variables most strongly influence the model’s outcomes.

The comparison between the Random Forest feature importance and the SHAP values
demonstrates a strong alignment in identifying key predictors. Both methods concur on
the top features, with slope_deg and dist_geo_sens_area consistently ranked as the two
most important variables. Additionally, the top four features in the SHAP values are among
the top five features identified by the Random Forest. However, there are some minor
differences; for instance, SHAP values assign greater importance to avg_yr_rainy_days
compared to its ranking in the Random Forest results, whereas Random Forest ranks
twd97_y and twd97_x higher than the SHAP values do. Despite these differences, both
methods emphasize the critical significance of the top features, particularly those related
to geographical and topographical variables. SHAP values enhance interpretability by
quantifying the average contribution of each feature, complementing the Random Forest’s
ranking. This similarity between the two methods supports confidence in the model’s
identification of key predictors, providing a robust understanding of the features driving
the model’s predictions.

Figure 6. Mean SHAP values indicating the average impact of each feature on model predictions.
Features are ranked by importance, with slope_deg and dist_geo_sens_area showing the high-
est impact.

The SHAP values illustrated in Figure 7 demonstrate the impact of each feature on the
model’s output, providing a detailed understanding of feature importance and interaction.
Each dot represents a SHAP value for a specific feature and instance. The position on the
x-axis shows the feature’s impact on the model’s output, with values ranging from negative
to positive. The color of the dots indicates the feature value, with red representing high
values and blue representing low values.
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Figure 7. SHAP values illustrating the impact of each feature on the model’s output. Red dots
represent high feature values, while blue dots represent low feature values.

The importance of a feature is assessed by the average magnitude of its SHAP value
across all predictions, rather than simply the range of those values. The plot demon-
strates that slope_deg and dist_geo_sens_area exert the most significant influence on the
model’s output. The SHAP values for these features are spread across both sides of zero,
indicating that they can either increase or decrease the likelihood of rockfall occurrences,
depending on their specific values. For slope_deg, the red dots on the right side of the plot
suggest that higher values of slope_deg are associated with an increased likelihood of rock-
fall occurrences. Conversely, the presence of purple and blue dots on the left side indicates
that lower values of slope_deg are linked to a decreased likelihood of rockfall occurrences.

For dist_geo_sens_area, most of the dots are blue, indicating that low values of
dist_geo_sens_area are prevalent on both sides of the plot. In contrast, the presence of
a few red dots suggests that high values of dist_geo_sens_area are less common and
generally associated with a decreased likelihood of rockfall occurrences.

4. Discussion

The integration of machine learning techniques with diverse data sources has proven to
be a powerful approach in enhancing the predictive capabilities of models used for rockfall
hazard analysis. This study demonstrates how leveraging internet-based data collection,
combined with advanced analytical methods, can provide comprehensive insights into
rockfall occurrences. By systematically collecting data over an extended period, this
research offers a robust framework for understanding the multifaceted nature of rockfall
hazards. The combination of diverse data types and an effective machine learning model
not only improves prediction accuracy, but also contributes to a deeper understanding of
the underlying factors influencing rockfall events.
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4.1. The Usefulness of Internet-Based Data Collection for Rockfall Hazards

This study highlights the significant utility of using internet-based data collection to
study rockfall hazards. Internet news sources can provide diverse information from various
locations that might otherwise go unnoticed. By systematically collecting and automatically
notifying researchers of relevant data, the study ensured a comprehensive dataset over the
span of 4 years and 11 months. This approach enabled the first comprehensive rockfall
hazard susceptibility analysis of Taiwan’s entire highway system, rather than focusing on
specific locations or slopes. This breadth of coverage is unprecedented in the literature,
providing a more holistic understanding of the risks involved.

4.2. Machine Learning Applications in Rockfall Hazard Prediction

The application of machine learning techniques, particularly the Random Forest
model, has yielded insightful results in predicting rockfall occurrences near highways. A
comparison of the Random Forest model’s variable importance with SHAP value analysis
provided complementary perspectives on feature contributions, underscoring the critical
role of various factors in predicting rockfall events.

The variable importance analysis from the Random Forest model emphasized the
predominant role of topographical and geographical features in predicting rockfalls. Vari-
ables such as slope_deg and dist_geo_sens_area ranked highest on the importance list,
highlighting their substantial impact on the model’s predictions. Other significant vari-
ables included dist_urban, curvature, and spi, which are also key geographical and
topographical factors. In contrast, environmental factors exerted a lesser influence, while
socioeconomic and geological variables had the least impact. Collectively, these find-
ings illustrate the model’s capability to integrate a diverse array of factors—geographical,
topographical, environmental, geological, and socioeconomic—into accurate predictions.

4.3. Insights from SHAP Value Analysis

The SHAP value analysis offers a more granular view of feature contributions. The
SHAP summary plot revealed that topographical and geographical features such as
slope_deg and dist_geo_sens_area had the highest mean SHAP values, signifying their
dominant influence on the model’s predictions. This finding aligns with the Random For-
est’s identification of similar key features, indicating consistent results across both methods.
The visualization of SHAP values highlighted the in-depth effects of each feature, provid-
ing deeper insights into their contributions compared to the simple variable importance
ranking from the Random Forest model.

Comparing the Random Forest and SHAP analyses reveals several key insights. Both
methods consistently identify topographical and geographical features as highly influen-
tial. However, the SHAP analysis provides a more detailed understanding of individual
feature impacts, illustrating how specific feature values affect model predictions. This
granularity helps in understanding the diverse influences on the model, guiding future
feature engineering and model refinement efforts. The ability to see how each feature
value impacts predictions enhances their interpretability, providing actionable insights for
domain experts.

4.4. Practical Implications for Model Accuracy and Reliability

These findings have practical implications for improving model accuracy and reliabil-
ity. The consistent importance of geographical and topographical features suggests that
incorporating more detailed spatial data could further enhance predictive performance.
Additionally, the in-depth insights from the SHAP analysis can inform targeted feature en-
gineering, focusing on the most impactful variables while considering the specific contexts
in which they operate. The complementary use of Random Forest and SHAP analyses offers
a robust framework for understanding and improving predictive models. By integrating
diverse features from different domains, the model reflects the complex interplay of factors
influencing rockfall occurrences. This comprehensive approach not only enhances model
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performance, but also aids in developing more effective strategies for risk management
and mitigation in rockfall-prone areas.

4.5. Limitations of the Study

This study offers valuable insights into rockfall hazard modeling and prediction across
Taiwan, representing the first attempt at such an analysis on an island-wide basis. However,
several limitations should be acknowledged and addressed, as outlined below.

4.5.1. Bias in Data Collection via Google Alerts

Rockfall incidents often go unnoticed, and do not always make national news. Even
diligent efforts to collect information on rockfalls can easily miss incidents reported only
in local news. However, Google Alerts can scan a vast array of news sources and provide
instant notifications, significantly enhancing the breadth and depth of rockfall incident
data collection beyond what is possible for an individual. Despite these advantages, we
acknowledge potential omissions and biases that may arise from relying solely on Google
Alerts for data collection. Google Alerts may not capture all relevant rockfall incidents,
leading to incomplete or biased datasets, which can affect the generalizability and accuracy
of the model predictions.

4.5.2. Omission of Severity of Rockfalls

Another limitation of the current study is that it classifies data solely as rockfall or
non-rockfall points, without considering the severity and impact of the rockfalls. This
limitation arises from the nature of the news reports used, which are often written by
general reporters or based on witness accounts rather than experts in rockfall analysis.
Consequently, these reports typically lack detailed information on the severity or magnitude
of the rockfalls, and there is currently no reliable method to infer this information accurately
from the news. Therefore, we chose not to perform this level of analysis to avoid drawing
misleading conclusions.

4.5.3. Effects of Seasonal Vegetation and Precipitation Patterns

This study dedicated nearly five years to collecting rockfall incidents in Taiwan.
Despite this extensive period, the dataset comprises only 182 incidents, which is insufficient
for conducting a detailed seasonal analysis of rockfalls and assessing the influence of
vegetation changes and rainfall patterns. A more comprehensive temporal analysis of
rockfall distribution may become feasible with the collection of additional incidents over a
longer period.

4.5.4. Effect of Climate Change on Model Prediction

Finally, this study does not account for the long-term effects of climate change on
rockfall hazards, primarily due to the limited duration of data collection. Climate change
can alter precipitation patterns, vegetation cover, and other environmental factors that
influence rockfalls. Although this study analyzes many of these factors to demonstrate
their roles in a data-driven rockfall susceptibility model, it does not incorporate climate
change projections. Future models should include these projections to better predict and
mitigate rockfall risks.

5. Conclusions

This study successfully applied machine learning techniques, particularly the Ran-
dom Forest model, to predict rockfall occurrences near highways. The analysis used a
comprehensive dataset comprising 182 rockfall events from April 2019 to February 2024
(4 years and 11 months), and an equal number of non-rockfall instances, incorporating 28
distinct variables. The performance metrics of the Random Forest model demonstrated
robust predictive capabilities, with high accuracy, precision, recall, and F1 scores, alongside
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a substantial Kappa statistic and an impressive AUC value of 0.9317. These results affirm
the model’s reliability and effectiveness in classifying rockfall occurrences.

The comparison between the Random Forest model’s variable importance and the
SHAP value analysis provided valuable insights into the contributions of various fea-
tures. Both methods consistently identified slope_deg and dist_geo_sens_area as highly
influential in predicting rockfall events.

This study also highlights the use of internet news-based data collection and analysis.
Internet news not only helps collect information from various sources that might otherwise
go unnoticed, but also systematically gathers this information and automatically notifies
researchers. Our sustained work over 4 years and 11 months has proven the efficacy of this
process. Consequently, this has resulted in the first rockfall hazard susceptibility analysis of
Taiwan’s entire highway system, rather than just specific roads or sections, a comprehensive
scope that is unprecedented in the literature.

Overall, the findings underscore the critical importance of incorporating detailed
spatial data and leveraging advanced machine learning techniques to enhance predictive
accuracy. The complementary use of Random Forest and SHAP analyses provides a robust
framework for understanding and improving predictive models, ultimately contributing to
safer and more reliable road infrastructure management in rockfall-prone regions. Future
research should focus on integrating additional detailed spatial and environmental data
to further enhance the predictive capabilities and practical applications of these models.
Moreover, efforts should be made to address the biases in data collection and the limitations
of severity assessment by exploring alternative data sources or developing new methods to
quantify the impact of rockfalls more accurately. Extending the duration of data collection
will allow for a more comprehensive temporal analysis, facilitating the examination of sea-
sonal patterns and the long-term effects of climate change. By incorporating climate change
projections and increasing the dataset’s size and scope, future models can provide more
in-depth and reliable predictions, thereby improving rockfall risk management strategies.
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