A Quantitative Approach to Potency Testing for Chimeric Antigen Receptor-Encoding Lentiviral Vectors and Autologous CAR-T Cell Products, Using Flow Cytometry
<p>Readout selection for potency assay using CAR19-LVV-transduced Jurkat cells. (<b>A</b>) Jurkat cells expressing CAR19 co-cultured with or without NALM6 cells at the indicated E:T ratios. Histograms show MFI of CD25 staining in CD3+ cells at 24 h time point. (<b>B</b>) Presence of IL-2 in the supernatants of co-cultures used in (<b>A</b>). The mean of triplicates ±SD is shown. (<b>C</b>) Histogram plots of CD69 expression in CD3+ cells after 24 h of co-culture. (<b>D</b>) CD69 MFI quantification in co-cultures of untransduced and CAR19-expressing Jurkat cells and NALM6. The mean of triplicates ±SD is shown. “ns” indicates no statistical significance. “*” indicates <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 2
<p>CD69-based potency assay optimization. (<b>A</b>) Correlation between the number of LVV particles used per cell (also known as multiplicity of infection (MOI)) and percentage of CAR-expressing cells at 72 h. The red line indicates a linear correlation. (<b>B</b>) Representative flow-cytometry images of CAR19-expressing Jurkat cells transduced at different MOIs. (<b>C</b>) CD69 activation index test performed using Jurkat cells displaying various percentages of CAR-expressing cells. Mean ± SD of triplicates is shown. (<b>D</b>) Same as (<b>C</b>) but using small intervals of CAR-expressing Jurkat cells. Mean ± SD is shown. (<b>E</b>) CD69 activation index test performed at the indicated time points after co-culture initiation. Mean ± SD is shown. “ns” indicates no statistical significance. “*” indicates <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 3
<p>CD69-based potency assay test in routine LVV-batch analysis. (<b>A</b>) Diagram depicting the different steps of CD69-based potency test. (<b>B</b>) Results of potency test of 26 CAR19-LVV batches tested, 4 CARBCMA-LVV batches and 26 untransduced Jurkat cells. The dashed red line indicates the limit of the specification set for ARI-0001-LVV samples. Mean ± SD is shown. (<b>C</b>) Results of potency test of 12 CARBCMA-LVV batches and 10 untransduced Jurkat cells tested using U266 cells as target cells. The dashed red line indicates the limit of the specification set for CARBCMA-LVV samples. Mean ± SD is shown. “*” indicates <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 4
<p>CD69 activation assay as a surrogate potency assay for autologous CAR-T cell products. (<b>A</b>) Diagram of CD69-based potency test applied to autologous CAR-T cell products. T-cell activation (CD69) and target cell killing or cytotoxicity are evaluated simultaneously. (<b>B</b>) Results of T-cell activation (CD69 fold activation) and target cell killing, using NALM6 clones with a variable number of CD19-molecules per cell as target cells. Results of triplicate experiments are shown. (<b>C</b>) Non-linear fit analysis between CD69 fold activation and %Target cell killing using data generated in (<b>B</b>). (<b>D</b>) Results of CD69-fold activation and cytotoxicity values obtained for 10 ARI-0001 batches analyzed. (<b>E</b>) Representative flow cytometry images of CD69 T-cell activation of patient batches analyzed in (<b>D</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines, Patient Samples and Culture Conditions
2.2. Antibodies and Flow Cytometry
2.3. Jurkat Cell Transduction
2.4. Co-Culture (E:T Cells) Experiments Using Jurkat Cells
2.5. Co-Culture (E:T Cells) Experiments Using Primary T Cells
2.6. IL-2 and IFNγ ELISA
2.7. Statistics
3. Results
3.1. Selection of a Potency Assay for ARI-0001 LV Vector
3.2. Development of CD69-Based Potency as a Quality Control-Suitable Assay
3.3. CD69-Based Potency Assay Optimization
3.4. Assay Validation
3.5. CD69-Based Potency Assay Adaptation to Other Antigen-Targeting CAR-LVV
3.6. Correlation of CD69-Based Potency Assay and CAR-T Cell Cytotoxicity
3.7. CD69 Activation Assay in the Context of Autologous CAR-T Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Z.; Anselmo, A.C.; Mitragotri, S. Viral Vector-Based Gene Therapies in the Clinic. Bioeng. Transl. Med. 2022, 7, e10258. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023, 15, 698. [Google Scholar] [CrossRef] [PubMed]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral Vector Platforms within the Gene Therapy Landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Torggler, R.; Margreiter, E.; Marksteiner, R.; Thurner, M. Potency Assay Development: A Keystone for Clinical Use. In Potency Assays for Advanced Stem Cell Therapy Medicinal Products; Burns, J.S., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 13–28. ISBN 978-3-031-30040-0. [Google Scholar]
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Guideline on Potency Testing of Cell Based Immunotherapy Medicinal Products for the Treatment of Cancer 3Rs Technical Update*; 2006. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-potency-testing-cell-based-immunotherapy-medicinal-products-treatment-cancer-revision-1_en.pdf (accessed on 21 February 2025).
- Gill, S.; June, C.H. Going Viral: Chimeric Antigen Receptor T-Cell Therapy for Hematological Malignancies. Immunol. Rev. 2015, 263, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.M.; Singh, N.; Porter, D.L.; Grupp, S.A.; June, C.H. Chimeric Antigen Receptor Therapy for Cancer. Annu. Rev. Med. 2014, 65, 333–347. [Google Scholar] [CrossRef]
- Dai, H.; Wang, Y.; Lu, X.; Han, W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. JNCI J. Natl. Cancer Inst. 2016, 108, 439. [Google Scholar] [CrossRef]
- Sadelain, M. CAR Therapy: The CD19 Paradigm. J. Clin. Investig. 2015, 125, 3392–3400. [Google Scholar] [CrossRef]
- Brentjens, R.J.; Riviere, I.; Park, J.H.; Davila, M.L.; Wang, X.; Stefanski, J.; Taylor, C.; Yeh, R.; Bartido, S.; Borquez-Ojeda, O.; et al. Safety and Persistence of Adoptively Transferred Autologous CD19-Targeted T Cells in Patients with Relapsed or Chemotherapy Refractory B-Cell Leukemias. Blood 2011, 118, 4817–4828. [Google Scholar] [CrossRef]
- Wang, X.; Popplewell, L.L.; Wagner, J.R.; Naranjo, A.; Blanchard, M.S.; Mott, M.R.; Norris, A.P.; Wong, C.W.; Urak, R.Z.; Chang, W.-C.; et al. Phase 1 Studies of Central Memory-Derived CD19 CAR T-Cell Therapy Following Autologous HSCT in Patients with B-Cell NHL. Blood 2016, 127, 2980–2990. [Google Scholar] [CrossRef]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-Escalation Trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Dudley, M.E.; Kassim, S.H.; Somerville, R.P.T.; Carpenter, R.O.; Maryalice, S.S.; Yang, J.C.; Phan, G.Q.; Hughes, M.S.; Sherry, R.M.; et al. Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated with Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor. J. Clin. Oncol. 2015, 33, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Kochenderfer, J.N.; Dudley, M.E.; Carpenter, R.O.; Kassim, S.H.; Rose, J.J.; Telford, W.G.; Hakim, F.T.; Halverson, D.C.; Fowler, D.H.; Hardy, N.M.; et al. Donor-Derived CD19-Targeted T Cells Cause Regression of Malignancy Persisting after Allogeneic Hematopoietic Stem Cell Transplantation. Blood 2013, 122, 4129–4139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.H.; Liu, J.; Wang, B.Y.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; et al. A Phase 1, Open-Label Study of LCAR-B38M, a Chimeric Antigen Receptor T Cell Therapy Directed against B Cell Maturation Antigen, in Patients with Relapsed or Refractory Multiple Myeloma. J. Hematol. Oncol. 2018, 11, 141. [Google Scholar] [CrossRef] [PubMed]
- Newick, K.; O’Brien, S.; Moon, E.; Albelda, S.M. CAR T Cell Therapy for Solid Tumors. Annu. Rev. Med. 2017, 68, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.B.; Brudno, J.N.; Borie, D.; Kochenderfer, J.N. Chimeric Antigen Receptor T Cell Therapy for Autoimmune Disease. Nat. Rev. Immunol. 2024, 24, 830–845. [Google Scholar] [CrossRef]
- Morte-Romea, E.; Pesini, C.; Pellejero-Sagastizábal, G.; Letona-Giménez, S.; Martínez-Lostao, L.; Aranda, S.L.; Toyas, C.; Redrado, S.; Dolader-Ballesteros, E.; Arias, M.; et al. CAR Immunotherapy for the Treatment of Infectious Diseases: A Systematic Review. Front. Immunol. 2024, 15, 1289303. [Google Scholar] [CrossRef]
- Castella, M.; Caballero-Baños, M.; Ortiz-Maldonado, V.; González-Navarro, E.A.; Suñé, G.; Antoñana-Vidósola, A.; Boronat, A.; Marzal, B.; Millán, L.; Martín-Antonio, B.; et al. Point-of-Care CAR T-Cell Production (ARI-0001) Using a Closed Semi-Automatic Bioreactor: Experience from an Academic Phase i Clinical Trial. Front. Immunol. 2020, 11, 482. [Google Scholar] [CrossRef]
- Castella, M.; Boronat, A.; Martín-Ibáñez, R.; Rodríguez, V.; Suñé, G.; Caballero, M.; Marzal, B.; Pérez-Amill, L.; Martín-Antonio, B.; Castaño, J.; et al. Development of a Novel Anti-CD19 Chimeric Antigen Receptor: A Paradigm for an Affordable CAR T Cell Production at Academic Institutions. Mol. Ther. Methods Clin. Dev. 2019, 12, 134–144. [Google Scholar] [CrossRef]
- Salmikangas, P.; Carlsson, B.; Klumb, C.; Reimer, T.; Thirstrup, S. Potency Testing of Cell and Gene Therapy Products. Front. Med. 2023, 10, 1190016. [Google Scholar] [CrossRef]
- Capelli, C.; Cuofano, C.; Pavoni, C.; Frigerio, S.; Lisini, D.; Nava, S.; Quaroni, M.; Colombo, V.; Galli, F.; Bezukladova, S.; et al. Potency Assays and Biomarkers for Cell-Based Advanced Therapy Medicinal Products. Front. Immunol. 2023, 14, 1186224. [Google Scholar] [CrossRef] [PubMed]
- Kiesgen, S.; Messinger, J.C.; Chintala, N.K.; Tano, Z.; Adusumilli, P.S. Comparative Analysis of Assays to Measure CAR T-Cell-Mediated Cytotoxicity. Nat. Protoc. 2021, 16, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.G.; Bozenhardt, E.H.; Celluzzi, C.M.; Dobnik, D.; Grant, M.L.; Lakshmipathy, U.; Nebel, T.; Peltier, L.; Ratcliffe, A.; Sherley, J.L.; et al. Mechanism of Action, Potency and Efficacy: Considerations for Cell Therapies. J. Transl. Med. 2024, 22, 416. [Google Scholar] [CrossRef] [PubMed]
- Si, X.; Xiao, L.; Brown, C.E.; Wang, D. Preclinical Evaluation of CAR T Cell Function: In Vitro and In Vivo Models. Int. J. Mol. Sci. 2022, 23, 3154. [Google Scholar] [CrossRef] [PubMed]
- Taheri, F.H.; Hassani, M.; Sharifzadeh, Z.; Behdani, M.; Abdoli, S.; Sayadi, M.; Bagherzadeh, K.; Arashkia, A.; Abolhassani, M. Tuning Spacer Length Improves the Functionality of the Nanobody-Based VEGFR2 CAR T Cell. BMC Biotechnol. 2024, 24, 1. [Google Scholar] [CrossRef]
- Majzner, R.G.; Rietberg, S.P.; Sotillo, E.; Dong, R.; Vachharajani, V.T.; Labanieh, L.; Myklebust, J.H.; Kadapakkam, M.; Weber, E.W.; Tousley, A.M.; et al. Tuning the Antigen Density Requirement for Car T-Cell Activity. Cancer Discov. 2020, 10, 702–723. [Google Scholar] [CrossRef]
- Hassani, M.; Taheri, F.H.; Sharifzadeh, Z.; Arashkia, A.; Hadjati, J.; van Weerden, W.M.; Abdoli, S.; Modarressi, M.H.; Abolhassani, M. Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor. Iran. Biomed. J. 2020, 24, 81–88. [Google Scholar] [CrossRef]
- Bloemberg, D.; Nguyen, T.; MacLean, S.; Zafer, A.; Gadoury, C.; Gurnani, K.; Chattopadhyay, A.; Ash, J.; Lippens, J.; Harcus, D.; et al. A High-Throughput Method for Characterizing Novel Chimeric Antigen Receptors in Jurkat Cells. Mol. Ther. Methods Clin. Dev. 2020, 16, 238–254. [Google Scholar] [CrossRef]
- Committee for Medicinal Products for Human Use ICH Q2(R2) Guideline on Validation of Analytical Procedures. 2023. Available online: https://www.ema.europa.eu/en/ich-q2r2-validation-analytical-procedures-scientific-guideline (accessed on 21 February 2025).
- Selliah, N.; Nash, V.; Eck, S.; Green, C.; Oldaker, T.; Stewart, J.; Vitaliti, A.; Litwin, V. Flow Cytometry Method Validation Protocols. Curr. Protoc. 2023, 3, e868. [Google Scholar] [CrossRef]
- Collins, L.M.; Dziak, J.J.; Li, R. Design of Experiments With Multiple Independent Variables: A Resource Management Perspective on Complete and Reduced Factorial Designs. Psychol. Methods 2009, 14, 202–224. [Google Scholar] [CrossRef]
- Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing European Network of GMO Laboratories (ENGL). 2008. Available online: https://gmo-crl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 21 February 2025).
- Little, T.A. Analytical Best Practices Establishing Acceptance Criteria for Analytical Methods. BioPharm Int. 2016, 29, 44–48. Available online: https://www.biopharminternational.com/view/establishing-acceptance-criteria-analytical-methods (accessed on 21 February 2025).
- Aronson, S.J.; Bakker, R.S.; Moenis, S.; van Dijk, R.; Bortolussi, G.; Collaud, F.; Shi, X.; Duijst, S.; ten Bloemendaal, L.; Ronzitti, G.; et al. A Quantitative In Vitro Potency Assay for Adeno-Associated Virus Vectors Encoding for the UGT1A1 Transgene. Mol. Ther. Methods Clin. Dev. 2020, 18, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Gonneau, C.; Wang, L.; Mitra-Kaushik, S.; Trampont, P.C.; Litwin, V. Progress towards Global Standardization for Quantitative Flow Cytometry. Bioanalysis 2021, 13, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
- Devitt, K.A.; Oldaker, T.; Shah, K.; Illingworth, A. Summary of Validation Considerations with Real-Life Examples Using Both Qualitative and Semiquantitative Flow Cytometry Assays. Cytom. B Clin. Cytom. 2023, 104, 374–391. [Google Scholar] [CrossRef]
- Mizrahi, O.; Ish Shalom, E.; Baniyash, M.; Klieger, Y. Quantitative Flow Cytometry: Concerns and Recommendations in Clinic and Research. Cytom. B Clin. Cytom. 2018, 94, 211–218. [Google Scholar] [CrossRef]
- Lindsey, W.B.; Lowdell, M.W.; Marti, G.E.; Abbasi, F.; Zenger, V.; King, K.M.; Lamb, J.S. CD69 Expression as an Index of T-Cell Function: Assay Standardization, Validation and Use in Monitoring Immune Recovery. Cytotherapy 2007, 9, 123–132. [Google Scholar] [CrossRef]
- Harari-Steinfeld, R.; Abhinav Ayyadevara, V.S.S.; Cuevas, L.; Marincola, F.; Roh, K.H. Standardized In-Vitro Evaluation of CAR-T Cells Using Acellular Artificial Target Particles. Front. Immunol. 2022, 13, 994532. [Google Scholar] [CrossRef]
CD69 Activation Index | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample 1 | Sample 2 | Sample 3 | ||||||||||
Run | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 |
Replicate 1 | 2.48 | 2.10 | 2.06 | 1.66 | 2.51 | 2.26 | 3.04 | 1.93 | 2.40 | 2.50 | 2.94 | 2.00 |
Replicate 2 | 2.48 | 2.00 | 1.81 | 1.55 | 3.41 | 2.14 | 2.81 | 1.86 | 3.00 | 2.34 | 2.60 | 1.85 |
Replicate 3 | 2.23 | 2.04 | 1.62 | 1.62 | 2.86 | 2.05 | 2.21 | 1.75 | 2.23 | 2.21 | 2.59 | 1.67 |
Mean | 2.40 | 2.05 | 1.83 | 1.61 | 2.93 | 2.15 | 2.69 | 1.85 | 2.54 | 2.35 | 2.71 | 1.84 |
SD | 0.15 | 0.05 | 0.22 | 0.06 | 0.45 | 0.11 | 0.43 | 0.09 | 0.40 | 0.15 | 0.20 | 0.16 |
%CV | 6.09% | 2.50% | 12.25% | 3.67% | 15.48% | 4.94% | 15.82% | 4.88% | 15.84% | 6.22% | 7.24% | 8.87% |
Mean %CV | 8.65% |
CD69 Activation Index | Mean | SD | %CV | ||||
---|---|---|---|---|---|---|---|
Run | 1 | 2 | 3 | 4 | |||
Conditions | Op 1-Inst 1 | Op 2-Inst 2 | Op 1-Inst 1 | Op 2-Inst 2 | |||
Sample 1 | 2.40 | 2.05 | 1.83 | 1.61 | 1.97 | 0.34 | 17.08 |
Sample 2 | 2.93 | 2.15 | 2.69 | 1.85 | 2.41 | 0.49 | 20.51 |
Sample 3 | 2.54 | 2.35 | 2.71 | 1.84 | 2.36 | 0.38 | 15.96 |
MESF Value | MFI | Mean | SD | %CV | ||||
---|---|---|---|---|---|---|---|---|
Run 1 | Run 2 | Run 3 | Run 4 | |||||
Bead 1 | 994 | 147 | 128 | 156 | 130 | 140.25 | 13.52 | 9.64% |
Bead 2 | 4456 | 654 | 647 | 681 | 661 | 660.75 | 14.66 | 2.22% |
Bead 3 | 24,312 | 3511 | 3640 | 3616 | 3777 | 3636 | 109.42 | 3.01% |
Bead 4 | 73,490 | 11,090 | 11,161 | 11,528 | 11,826 | 11,401.25 | 342.09 | 3.00% |
r2 | 0.9998 | 1 | 0.9997 | 0.9999 |
E:T | Expected CD69 MFI | Observed CD69 MFI | % Recovery (80–120%) |
---|---|---|---|
0 | 1722 | 1595.67 | 92.66 |
0.2 | 1675.2 | 1777.67 | 106.12 |
1 | 1938.1 | 1998.33 | 103.11 |
2 | 2154.2 | 2262.33 | 105.02 |
5 | 2802.5 | 2718 | 96.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mata-Molanes, J.J.; Alserawan, L.; España, C.; Guijarro, C.; López-Pecino, A.; Calderón, H.; Altuna, A.; Pérez-Amill, L.; Klein-González, N.; Fernández de Larrea, C.; et al. A Quantitative Approach to Potency Testing for Chimeric Antigen Receptor-Encoding Lentiviral Vectors and Autologous CAR-T Cell Products, Using Flow Cytometry. Pharmaceutics 2025, 17, 303. https://doi.org/10.3390/pharmaceutics17030303
Mata-Molanes JJ, Alserawan L, España C, Guijarro C, López-Pecino A, Calderón H, Altuna A, Pérez-Amill L, Klein-González N, Fernández de Larrea C, et al. A Quantitative Approach to Potency Testing for Chimeric Antigen Receptor-Encoding Lentiviral Vectors and Autologous CAR-T Cell Products, Using Flow Cytometry. Pharmaceutics. 2025; 17(3):303. https://doi.org/10.3390/pharmaceutics17030303
Chicago/Turabian StyleMata-Molanes, Juan José, Leticia Alserawan, Carolina España, Carla Guijarro, Ana López-Pecino, Hugo Calderón, Ane Altuna, Lorena Pérez-Amill, Nela Klein-González, Carlos Fernández de Larrea, and et al. 2025. "A Quantitative Approach to Potency Testing for Chimeric Antigen Receptor-Encoding Lentiviral Vectors and Autologous CAR-T Cell Products, Using Flow Cytometry" Pharmaceutics 17, no. 3: 303. https://doi.org/10.3390/pharmaceutics17030303
APA StyleMata-Molanes, J. J., Alserawan, L., España, C., Guijarro, C., López-Pecino, A., Calderón, H., Altuna, A., Pérez-Amill, L., Klein-González, N., Fernández de Larrea, C., González-Navarro, E. A., Delgado, J., Juan, M., & Castella, M. (2025). A Quantitative Approach to Potency Testing for Chimeric Antigen Receptor-Encoding Lentiviral Vectors and Autologous CAR-T Cell Products, Using Flow Cytometry. Pharmaceutics, 17(3), 303. https://doi.org/10.3390/pharmaceutics17030303