Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension
<p>The picture of the planetary ball mill (<b>A</b>) and the schematic view of the ball mill (<b>B</b>).</p> "> Figure 2
<p>The photo of initial MEL (<b>A</b>), untreated suspended MEL (<b>B</b>), and MEL milled at different scales (<b>C</b>,<b>D</b>).</p> "> Figure 3
<p>SEM pictures of rawMEL (<b>A</b>), of dried untreated suspension of MEL (<b>B</b>), of MEL milled in laboratory scale (<b>C</b>), and of MEL milled at scaled-up conditions (<b>D</b>).</p> "> Figure 4
<p>XRPD patterns of rawMEL, of dried untreated suspension of MEL, and of MEL milled at different scales.</p> "> Figure 5
<p>DSC thermograms of rawMEL, of dried untreated suspension of MEL, and of MEL milled at different scales.</p> "> Figure 6
<p>FTIR spectra of rawMEL, of dried untreated suspension of MEL, and of MEL milled at different scales.</p> "> Figure 7
<p>In vitro dissolution profile of initial and milled suspensions filled into capsules in artificial gastric fluid (<b>A</b>) and in artificial intestinal fluid (<b>B</b>).</p> "> Figure 8
<p>Cytotoxicity of the untreated and milled suspensions as a function of concentration on a Caco-2 cell line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Suspensions
2.3. Determination of Particle Size Distribution
2.4. Preparation of Solid-Phase Products for Physical-Chemical Investigations of Products
2.5. Image Analysis (SEM)
2.6. Structural Analysis
2.7. Fourier-Transformed Infrared Spectroscopy (FT-IR)
2.8. Determination of the Interparticle Interactions
2.9. Characterizations of the Suspensions
2.9.1. Resuspendability
2.9.2. Holding Time Determination
2.9.3. Drug Content and Uniformity
2.10. In Vitro Dissolution Test
2.11. Cytotoxicity Studies
3. Results
3.1. Particle Size Distribution of Milled Suspensions
3.2. Morphology of MEL
3.3. Structural Analyses (XRPD and DSC)
3.4. FT-IR Investigations
3.5. Interparticular Interactions
3.6. Investigations of Milled Suspnesions
3.6.1. Resuspendability Test and Holding Time Determination
3.6.2. Drug Content and Uniformity Determination
3.7. Results of In Vitro Dissolution Test
3.8. Cytotoxicity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Zhao, L.; Wu, B.; Chen, F. Improving Solubility of Poorly Water-Soluble Drugs by Protein-Based Strategy: A Review. Int. J. Pharm. 2023, 634, 122704. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.-D.; Tran, K.A.; Tran, P.H.-L. Modulation of Particle Size and Molecular Interactions by Sonoprecipitation Method for Enhancing Dissolution Rate of Poorly Water-Soluble Drug. Ultrason. Sonochem 2015, 24, 256–263. [Google Scholar] [CrossRef]
- Marushka, J.; Brokešová, J.; Ugo Ogadah, C.; Kazemi, A.; Duintjer Tebbens, J.; Šklubalová, Z. Milling of Pharmaceutical Powder Carrier Excipients: Application of Central Composite Design. Adv. Powder Technol. 2022, 33, 103881. [Google Scholar] [CrossRef]
- Méndez Cañellas, F.; Al-Rifai, N.; Padrela, L.; Tajber, L.; Khamiakova, T.; Otava, M.; Geertman, R. A Comparative Study of Dry and Wet Top-down Milling Approaches for the Preparation of Microparticle Suspensions. Powder Technol. 2023, 428, 118829. [Google Scholar] [CrossRef]
- Kumar, R.; Thakur, A.K.; Chaudhari, P.; Banerjee, N. Particle Size Reduction Techniques of Pharmaceutical Compounds for the Enhancement of Their Dissolution Rate and Bioavailability. J. Pharm. Innov. 2022, 17, 333–352. [Google Scholar] [CrossRef]
- Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W. Overview of Milling Techniques for Improving the Solubility of Poorly Water-Soluble Drugs. AJPS 2015, 10, 255–274. [Google Scholar] [CrossRef]
- Zulbeari, N.; Holm, R. Is Roller Milling—The Low Energy Wet Bead Media Milling—A Reproducible and Robust Milling Method for Formulation Investigation of Aqueous Suspensions? Int. J. Pharm. 2024, 651, 123733. [Google Scholar] [CrossRef]
- Varghese, S.; Ghoroi, C. Improving the Wetting and Dissolution of Ibuprofen Using Solventless Co-Milling. Int. J. Pharm. 2017, 533, 145–155. [Google Scholar] [CrossRef]
- Karde, V.; Ghoroi, C. Influence of Surface Modification on Wettability and Surface Energy Characteristics of Pharmaceutical Excipient Powders. Int. J. Pharm. 2014, 475, 351–363. [Google Scholar] [CrossRef]
- Penkina, A.; Semjonov, K.; Hakola, M.; Vuorinen, S.; Repo, T.; Yliruusi, J.; Aruväli, J.; Kogermann, K.; Veski, P.; Heinämäki, J. Towards Improved Solubility of Poorly Water-Soluble Drugs: Cryogenic Co-Grinding of Piroxicam with Carrier Polymers. Drug Dev. Ind. Pharm. 2016, 42, 378–388. [Google Scholar] [CrossRef]
- Cerdeira, A.M.; Mazzotti, M.; Gander, B. Formulation and Drying of Miconazole and Itraconazole Nanosuspensions. Int. J. Pharm. 2013, 443, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Mithu, M.D.S.H.; Ross, S.A.; Hurt, A.P.; Douroumis, D. Effect of mechanochemical grinding conditions on the formation of pharmaceutical cocrystals and co-amorphous solid forms of ketoconazole—Dicarboxylic acid. J. Drug Deliv. Sci. Technol. 2021, 63, 102508. [Google Scholar] [CrossRef]
- Shin, H.; Lee, S.; Jung, H.S.; Kim, J.-B. Effect of Ball Size and Powder Loading on the Milling Efficiency of a Laboratory-Scale Wet Ball Mill. Ceram. Int. 2013, 39, 8963–8968. [Google Scholar] [CrossRef]
- Seibert, K.D.; Collins, P.C.; Luciani, C.V.; Fisher, E.S. Chemical Engineering in the Pharmaceutical Industry: Active Pharmaceutical Ingredients, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 861–879. [Google Scholar]
- Altun, O.; Sert, T.; Altun, D.; Toprak, A.; Kwade, A. Scale-up of Vertical Wet Stirred Media Mill (HIGmill) via Signature Plots, Stress Analyses and Energy Equations. Miner. Eng. 2024, 205, 108460. [Google Scholar] [CrossRef]
- Mannheim, V. Empirical and scale-up modeling in stirred ball mills. Chem. Eng. Res. Des. 2011, 89, 405–409. [Google Scholar] [CrossRef]
- Lehocký, R.; Pěček, D.; Štěpánek, F. Scale-up from Batch to Flow-through Wet Milling Process for Injectable Depot Formulation. Eur. J. Pharm. Sci. 2016, 95, 122–129. [Google Scholar] [CrossRef]
- Lestari, M.L.A.D.; Müller, R.H.; Möschwitzer, J.P. The Scalability of Wet Ball Milling for The Production of Nanosuspensions. PNT 2019, 7, 147–161. [Google Scholar] [CrossRef]
- Srivalli, K.M.R.; Mishra, B. Drug Nanocrystals: A Way toward Scale-Up. SPJ 2016, 24, 386–404. [Google Scholar]
- Mio, H.; Kano, J.; Saito, F.; Kaneko, K. Effects of Rotational Direction and Rotation-to-Revolution Speed Ratio in Planetary Ball Milling. Mater. Sci. Eng. A 2002, 332, 75–80. [Google Scholar] [CrossRef]
- Mio, H.; Kano, J.; Saito, F. Scale-up Method of Planetary Ball Mill. Chem. Eng. Sci. 2004, 59, 5909–5916. [Google Scholar] [CrossRef]
- Bolourchian, N.; Nili, M.; Foroutan, S.M.; Mahboubi, A.; Nokhodchi, A. The Use of Cooling and Anti-Solvent Precipitation Technique to Tailor Dissolution and Physicochemical Properties of Meloxicam for Better Performance. J. Drug Deliv. Sci. Technol. 2020, 55, 101485. [Google Scholar] [CrossRef]
- Kürti, L.; Kukovecz, Á.; Kozma, G.; Ambrus, R.; Deli, M.A.; Szabó-Révész, P. Study of the Parameters Influencing the Co-Grinding Process for the Production of Meloxicam Nanoparticles. Powder Technol. 2011, 212, 210–217. [Google Scholar] [CrossRef]
- Ambrus, R.; Kocbek, P.; Kristl, J.; Šibanc, R.; Rajkó, R.; Szabó-Révész, P. Investigation of Preparation Parameters to Improve the Dissolution of Poorly Water-Soluble Meloxicam. Int. J. Pharm. 2009, 381, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Tian, Y.; Zhang, H.; Jia, Q.; Chen, X.; Kang, D.; Du, Y.; Song, S.; Zheng, A. The Evaluation of Meloxicam Nanocrystals by Oral Administration with Different Particle Sizes. Molecules 2022, 27, 421. [Google Scholar] [CrossRef]
- Ambrus, R.; Alshweiat, A.; Szabó-Révész, P.; Bartos, C.; Csóka, I. Smartcrystals for Efficient Dissolution of Poorly Water-Soluble Meloxicam. Pharmaceutics 2022, 14, 245. [Google Scholar] [CrossRef]
- Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of Nanoparticles. Small 2008, 4, 26–49. [Google Scholar] [CrossRef]
- Nagy, E.; Homik, Z.; Smausz, T.; Kopniczky, J.; Náfrádi, M.; Alapi, T.; Kokai, D.; Burián, K.; Szabó-Révész, P.; Ambrus, R.; et al. A Comprehensive Analysis of Meloxicam Particles Produced by Nanosecond Laser Ablation as a Wet Milling Technique. Sci. Rep. 2022, 12, 12551. [Google Scholar] [CrossRef]
- Party, P.; Bartos, C.; Farkas, Á.; Szabó-Révész, P.; Ambrus, R. Formulation and In Vitro and In Silico Characterization of “Nano-in-Micro” Dry Powder Inhalers Containing Meloxicam. Pharmaceutics 2021, 13, 211. [Google Scholar] [CrossRef]
- Bartos, C.; Ambrus, R.; Sipos, P.; Budai-Szűcs, M.; Csányi, E.; Gáspár, R.; Márki, Á.; Seres, A.B.; Sztojkov-Ivanov, A.; Horváth, T.; et al. Study of Sodium Hyaluronate-Based Intranasal Formulations Containing Micro- or Nanosized Meloxicam Particles. Int. J. Pharm. 2015, 491, 198–207. [Google Scholar] [CrossRef]
- Zulbeari, N.; Holm, R. Wet bead milling by dual centrifugation—An approach to obtain reproducible and differentiable suspensions. Int. J. Pharm. 2023, 646, 123455. [Google Scholar] [CrossRef]
- Alshora, D.; Ibrahim, M.; Elzayat, E.; Almeanazel, O.T.; Alanazi, F. Defining the process parameters affecting the fabrication of rosuvastatin calcium nanoparticles by planetary ball mill. Int. J. Nanomed. 2019, 14, 4625–4636. [Google Scholar] [CrossRef] [PubMed]
- Bartos, C.; Jójárt-Laczkovich, O.; Katona, G.; Budai-Szűcs, M.; Ambrus, R.; Bocsik, A.; Gróf, I.; Deli, M.; Szabó-Révész, P. Optimization of a Combined Wet Milling Process in Order to Produce Poly(Vinyl Alcohol) Stabilized Nanosuspension. DDDT 2018, 12, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- Beidokhti, H.R.N.; Ghaffarzadegan, R.; Mirzakhanlouei, S.; Ghazizadeh, L.; Dorkoosh, F.A. Preparation, Characterization, and Optimization of Folic Acid-Chitosan-Methotrexate Core-Shell Nanoparticles by Box-Behnken Design for Tumor-Targeted Drug Delivery. AAPS Pharm. Sci. Tech. 2017, 18, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, E.; Mercuri, A.; Wu, S.; Salar-Behzadi, S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. Front. Pharmacol. 2016, 7, 181. [Google Scholar] [CrossRef]
- Anderson, N.H.; Bauer, M.; Boussac, N.; Khan-Malek, R.; Munden, P.; Sardaro, M. An Evaluation of Fit Factors and Dissolution Efficiency for the Comparison of in Vitro Dissolution Profiles. JPBA 1998, 17, 811–822. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010, 12, 263–271. [Google Scholar] [CrossRef]
- Bartos, C.; Szabó-Révész, P.; Bartos, C.; Katona, G.; Jójárt-Laczkovich, O.; Ambrus, R. The Effect of an Optimized Wet Milling Technology on the Crystallinity, Morphology and Dissolution Properties of Micro- and Nanonized Meloxicam. Molecules 2016, 21, 507. [Google Scholar] [CrossRef]
- Pandey, K.U.; Poornachary, S.K.; Dalvi, S.V. Insights to the Action of Additives for Stabilization of Ultrafine Particles of Fenofibrate in Aqueous Suspensions Produced by Sonoprecipitation. Powder Technol. 2020, 363, 310–325. [Google Scholar] [CrossRef]
- Li, C.; Gao, Z. Effect of Grinding Media on the Surface Property and Flotation Behavior of Scheelite Particles. Powder Technol. 2017, 322, 386–392. [Google Scholar] [CrossRef]
- Isaac, J.; Ganguly, S.; Ghosh, A. Co-Milling of Telmisartan with Poly(Vinyl Alcohol)—An Alkalinizer Free Green Approach to Ensure Its Bioavailability. Eur. J. Pharm. Biopharm. 2016, 101, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Peltonen, L.; Hirvonen, J. Pharmaceutical Nanocrystals by Nanomilling: Critical Process Parameters, Particle Fracturing and Stabilization Methods. J. Pharm. Pharmacol. 2010, 62, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- Nagarkar, R.; Patel, J. Polyvinyl Alcohol: A Comprehensive Study. ASPS 2019, 3, 34–44. [Google Scholar]
- Mártha, C.; Kürti, L.; Farkas, G.; Jójárt-Laczkovich, O.; Szalontai, B.; Glässer, E.; Deli, M.A.; Szabó-Révész, P. Effects of Polymers on the Crystallinity of Nanonized Meloxicam during a Co-Grinding Process. Eur. Polym. J. 2013, 49, 2426–2432. [Google Scholar] [CrossRef]
- Thomas, D.; Zhuravlev, E.; Wurm, A.; Schick, C.; Cebe, P. Fundamental Thermal Properties of Polyvinyl Alcohol by Fast Scanning Calorimetry. Polymer 2018, 137, 145–155. [Google Scholar] [CrossRef]
- Todoran, N.; Antonoaea, P.; Rusu, A.; Ciurba, A.; Birsan, M.; Redai, E. DSC and FT-IR Analysis for the Formulation of Dermal Films with Meloxicam in Bioadhesive Polymeric Matrices. Rev. Chim. 2019, 69, 3692–3697. [Google Scholar] [CrossRef]
- Rus, L.M. Development of meloxicam oral lyophilisates: Role of thermal analysis and complementary techniques. Farmacia 2019, 67, 56–67. [Google Scholar] [CrossRef]
- Etman, M.; Shekedef, M.; Nada, A.; Ismail, A. In Vitro and In Vivo Evaluation of Tablets Containing Meloxicam- PEG 6000 Ball-Milled Co-Ground Mixture. J Appl Pharm Sci 2017, 7, 031–039. [Google Scholar]
- Rasenack, N.; Müller, B.W. Micron-Size Drug Particles: Common and Novel Micronization Techniques. Pharm. Dev. Technol. 2004, 9, 1–13. [Google Scholar] [CrossRef]
- Abdollahi, S.; Raissi, H.; Farzad, F. Examine Stability Polyvinyl Alcohol-Stabilized Nanosuspensions to Overcome the Challenge of Poor Drug Solubility Utilizing Molecular Dynamic Simulation. Sci. Rep. 2024, 14, 17386. [Google Scholar] [CrossRef]
- Buttini, F.; Soltani, A.; Colombo, P.; Marriott, C.; Jones, S.A. Multilayer PVA Adsorption onto Hydrophobic Drug Substrates to Engineer Drug-Rich Microparticles. Eur. JPharm Sci. 2008, 33, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Friuli, V.; Urru, C.; Ferrara, C.; Conti, D.M.; Bruni, G.; Maggi, L.; Capsoni, D. Design of Etched- and Functionalized-Halloysite/Meloxicam Hybrids: A Tool for Enhancing Drug Solubility and Dissolution Rate. Pharmaceutics 2024, 16, 338. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, F.; Ziyadi, H.; Baghali, M.; Luo, H.; Ramakrishna, S. Electrospun PVP/PVA Nanofiber Mat as a Novel Potential Transdermal Drug-Delivery System for Buprenorphine: A Solution Needed for Pain Management. Appl. Sci. 2021, 11, 2779. [Google Scholar] [CrossRef]
- Yocum, D. Safety and Efficacy of Meloxicam in the Treatment of Osteoarthritis: A 12-Week, Double-Blind, Multiple-Dose, Placebo-Controlled Trial. Arch. Intern. Med. 2000, 160, 2947. [Google Scholar] [CrossRef]
rawMEL | initial drug |
MELsusp | untreated suspension of MEL |
MELlab | sample milled in a laboratory scale for 50 min at 500 rpm |
MELscup | scaled-up sample (335 rpm, 90 min) |
Samples | D10 (µm) | D50 (µm) | D90 (µm) |
---|---|---|---|
rawMEL | 11.40 | 34.26 | 73.59 |
10 min | 2.115 | 3.112 | 3.690 |
30 min | 0.150 | 0.204 | 0.255 |
50 min | 1.101 | 1.218 | 1.329 |
70 min | 0.810 | 0.905 | 1.013 |
90 min | 0.517 | 0.590 | 0.697 |
110 min | 0.518 | 0.594 | 0.696 |
130 min | 0.517 | 0.589 | 0.696 |
150 min | 0.517 | 0.589 | 0.695 |
Samples | D10 (µm) | D50 (µm) | D90 (µm) |
---|---|---|---|
rawMEL | 11.40 | 34.26 | 73.59 |
MELsusp | 11.01 | 20.407 | 35.28 |
MELlab | 0.093 | 0.177 | 0.270 |
MELscup | 0.517 | 0.590 | 0.697 |
Samples | Minimum (µm) | Maximum (µm) | Average (µm) |
---|---|---|---|
rawMEL | 3.19 ± 1.32 | 27.05 ± 8.15 | 12.01 ± 6.07 |
MELsusp | 0.60 ± 0.09 | 16.06 ± 6.36 | 4.62 ± 3.05 |
MELlab | 0.14 ± 0.01 | 0.57 ± 0.02 | 0.33 ± 0.01 |
MELscup | 0.09 ± 0.02 | 0.58 ± 0.05 | 0.24 ± 0.03 |
Sample | Crystallinity (%) |
---|---|
rawMEL | 100 |
MELsusp | 71.8 |
MELlab | 70.2 |
MELscup | 71.2 |
Samples | θ Water (°) | θ Diiodomethane (°) | γ (mN/m) | Polarity (%) |
---|---|---|---|---|
rawMEL | 68.99 | 13.33 | 57.10 | 20.96 |
MELsusp | 67.47 | 9.46 | 58.29 | 21.56 |
MELlab | 61.97 | 27.02 | 58.76 | 26.67 |
MELscup | 54.40 | 21.03 | 62.40 | 31.07 |
Sample | Number of Revolutions |
---|---|
MELsusp | 45 |
MELlab | 2 |
MELscup | 2 |
Sample | Average Particle Size (nm) | |
---|---|---|
Day 0 | Day 30 | |
MELlab | 296.1 ± 20.3 | 299.3 ± 17.1 |
MELscup | 424.7 ± 25.6 | 428.6 ± 45.2 |
Sample | Drug Content and Uniformity (mg) | Drug Content (%) |
---|---|---|
MELsusp | 5.00 ± 0.35 | 100 ± 7.07 |
MELlab | 4.41 ± 0.06 | 88.12 ± 1.36 |
MELscup | 4.44 ± 0.03 | 88.80 ± 0.63 |
Gastric Fluid | Intestinal Fluid | |||
---|---|---|---|---|
Samples | DE (%) | MDT (min) | DE (%) | MDT (min) |
MELsusp | 4.37 | 20.05 | 37.03 | 19.17 |
MELlab | 27.48 | 6.96 | 97.37 | 3.14 |
MELscup | 23.57 | 8.70 | 98.48 | 3.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartos, C.; Motzwickler-Németh, A.; Kovács, D.; Burián, K.; Ambrus, R. Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension. Pharmaceutics 2024, 16, 1512. https://doi.org/10.3390/pharmaceutics16121512
Bartos C, Motzwickler-Németh A, Kovács D, Burián K, Ambrus R. Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension. Pharmaceutics. 2024; 16(12):1512. https://doi.org/10.3390/pharmaceutics16121512
Chicago/Turabian StyleBartos, Csilla, Anett Motzwickler-Németh, Dávid Kovács, Katalin Burián, and Rita Ambrus. 2024. "Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension" Pharmaceutics 16, no. 12: 1512. https://doi.org/10.3390/pharmaceutics16121512
APA StyleBartos, C., Motzwickler-Németh, A., Kovács, D., Burián, K., & Ambrus, R. (2024). Study on the Scale-Up Possibility of a Combined Wet Grinding Technique Intended for Oral Administration of Meloxicam Nanosuspension. Pharmaceutics, 16(12), 1512. https://doi.org/10.3390/pharmaceutics16121512