Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties
<p>Flowchart of the formulation and characterization procedures. The preparation of the semisolid emulsion involves several sequential steps (<b>A</b>): weighing the individual components for the oil phase (OP) and aqueous phase (AP), heating each phase separately to 70 °C to ensure proper dissolution and mixing, combining the phases by gradually pouring the aqueous phase (AP) into the oil phase (OP) under constant stirring to form a uniform emulsion, and obtaining the final gel–cream formulation. The emulsion was subsequently characterized through various analyses (<b>B</b>): Fourier-transform infrared spectroscopy (FTIR) to assess molecular interactions and confirm compatibility among components, centrifugation to evaluate physical stability and detect any phase separation, spreadability and reology testing to determine ease of application and coverage on the skin, density measurement to assess formulation consistency, pH measurement with a pH meter to ensure suitability for skin application, bioadhesion and occlusion potential, antioxidant activity, cytotoxicity testing using cell cultures to evaluate biocompatibility and potential safety for skin use, and wound healing assay to determine efficacy.</p> "> Figure 2
<p>Macroscopic (<b>A</b>) and microscopic (<b>B</b>) images of polysaccharide-based semisolid emulsions containing vegetable oils. Overall, the formulations have a whitish color, homogeneous aspect, and shiny texture. The microscopic evaluation indicates that the system effectively dispersed the oil, keeping it stable within the semisolid structure. Abbreviations: GG—Gellan gum; KC—<span class="html-italic">Kappa</span>-carrageenan; BO—Blackcurrant Oil; AO—Avocado Oil.</p> "> Figure 3
<p>Infrared spectra of raw materials (<b>A</b>) and semisolid emulsions (<b>B</b>). The spectra exhibit characteristic peaks corresponding to the functional groups present in the substances. Additionally, these spectra support the compatibility among the components, as the absence of significant new peaks suggests no chemical interaction altering the molecular structure of the excipients.</p> "> Figure 4
<p>PCA model. In (<b>A</b>,<b>B</b>) are the eigenvalues graphs, which indicate that these three principal components encompass most of the chemical information in the raw materials. The red circles represent the principal components selected for the model. In (<b>C</b>,<b>D</b>) are the score plot graphs that reveal a distinct differentiation is observable between the formulations containing GG and KC, emphasizing these polysaccharides’ influence on the formulations’ ultimate chemical composition.</p> "> Figure 5
<p>Spreadability profile (<b>A</b>), spreadability factor (<b>B</b>), and viscosity (<b>C</b>) of semisolid emulsions. The developed emulsions demonstrated an increased spreading area with the application of more weight, suggesting they can expand more easily under pressure. Moreover, rheological measurements supported this behavior, as the complex viscosity (η*) of all formulations decreased with increasing angular frequency, which is a characteristic of pseudoplastic materials.</p> "> Figure 6
<p>Storage modulus (G′) and loss modulus (G″) as functions of angular frequency (ω). In (<b>A</b>,<b>B</b>) formulations containing AO stabilized with GG and KC, respectively. In (<b>C</b>,<b>D</b>) formulations prepared with BO stabilized with GG and KC, respectively. Data indicates that elastic and viscous behaviors become more pronounced at higher frequencies, suggesting a predominantly elastic rather than viscous behavior.</p> "> Figure 7
<p>Thixotropy evaluation of F1-GG-AO (<b>A</b>), F2-KC-AO (<b>B</b>), F3-GG-BO (<b>C</b>), and (<b>D</b>) F4-KC-BO. The data show that the material’s structure is temporarily disrupted under shear, but it recovers gradually when the shear is removed, which is characteristic of thixotropic materials.</p> "> Figure 8
<p>Antioxidant activity. The @ denotes the significant difference (<span class="html-italic">p</span> < 0.05) between formulations and their respective blank forms (F1-GG-AO versusF5-GG-B, and F3-GG-BO versus F5-GG-B); # represents the significant difference (<span class="html-italic">p</span> < 0.05) between polysaccharides (F1-GG-AO versus F2-KC-AO, and F5-GG-B versus F6-KC-B). NS means “not significant”. Both oils significantly enhanced the antioxidant potential of GG emulsions compared to the placebo semisolid, while emulsions stabilized with KC demonstrated higher antioxidant properties than those stabilized with GG.</p> "> Figure 9
<p>Occlusion potential. The @ denotes the significant difference (<span class="html-italic">p</span> < 0.05) between formulations and their respective blank forms (F2-KC-AO versusF6-KC-B, and F4-KC-BO versus F6-KC-B); # represents the significant difference (<span class="html-italic">p</span> < 0.05) between polysaccharides (F5-GG-B versus F6-KC-B). NS means “not significant”. Similar occlusion potential was observed among the formulations. Data also suggests that the oily components may negatively affect the KC formulations.</p> "> Figure 10
<p>Bioadhesion potential in intact and injured skin. The @ denotes the significant difference (<span class="html-italic">p</span> < 0.05) between formulations and their respective blank forms; # represents the significant difference (<span class="html-italic">p</span> < 0.05) between polysaccharides with the same oil (F1-GG-AO versusF2-KC-AO, or F3-GG-BO versus F4-KC-BO); * denotes the significant difference (<span class="html-italic">p</span> < 0.05) between oils with the same polysaccharide (F1-GG-AO versus F3-GG-BO or F2-KC-AO versus F4-KC-BO); and <span>$</span> represents the significant difference (<span class="html-italic">p</span> < 0.05) between intact and injured skin. NS means “not significant”. All formulations presented significantly higher bioadhesion in intact skin than in injured skin.</p> "> Figure 11
<p>Effect of F1-GG-AO (<b>A</b>), F2-KC-AO (<b>B</b>), F3-GG-BO (<b>C</b>), F4-KC-BO (<b>D</b>), F5-GG-B (<b>E</b>), and F6-KC-B (<b>F</b>) (1–1000 µg/mL) on the viability of L-929 cells by MTT assay. A negative control (non–treated cells) was conducted and considered 100% viability. Mean values were calculated from 3 independent results. The * denotes the significative difference from the negative control (<span class="html-italic">p</span> < 0.05). NS means “not significant”. In all formulations examined, the viability of cells is observed to decline as the concentration increases.</p> "> Figure 12
<p>Hemolytic assay of KC semisolid emulsions. The results showed a hemolytic potential of less than 1% for all tested concentrations of the KC-based emulsions.</p> "> Figure 13
<p>Representative images showing the progression of healing over time (<b>A</b>) and percentage of open wound area at different times (0, 6, and 24 h) (<b>B</b>) for the F2-KC-AO, F4-KC-BO, and F6-KC-B, compared to the negative control. The * denotes the significant difference (<span class="html-italic">p</span> < 0.05) with time zero in the same group, and # denotes the significant difference (<span class="html-italic">p</span> < 0.05) with negative control at the same time. There is a consistent reduction in the area of open wounds over time, with formulations containing oils exhibiting a more pronounced degree of cell migration, which suggests an effective healing process.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polysaccharide-Based Semisolid Emulsion
2.3. Macro and Microscopic Evaluation
2.4. pH
2.5. Density
2.6. Physical Stability
2.7. Fourier Transform Infrared (FTIR) Spectroscopy
2.8. Principal Component Analysis (PCA)
2.9. Spreadability
2.10. Dynamic Rheological Analysis
2.11. Antioxidant Activity Evaluation
2.12. Occlusion Potential Determination
2.13. Bioadhesive Strenght
2.14. Safety Assays
2.15. Wound Healing Potential
2.16. Statistical Analysis
3. Results and Discussion
3.1. Polysaccharide-Based Semisolid Emulsion General Characterization
3.2. Infrared and PCA Model
3.3. Spreadability and Rheology Evaluations
3.4. Antioxidant Activity
3.5. Occlusion Potential
3.6. Bioadhesion
3.7. Safety Assay
3.8. Wound Healing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choudhary, V.; Choudhary, M.; Bollag, W.B. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int. J. Mol. Sci. 2024, 25, 3790. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Sánchez, Á.; Kim, K.H.; Blasco-Morente, G.; Arias-Santiago, S. Cellular Human Tissue-Engineered Skin Substitutes Investigated for Deep and Difficult to Heal Injuries. Npj Regen. Med. 2021, 6, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; DiPietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Gounden, V.; Singh, M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024, 10, 43. [Google Scholar] [CrossRef]
- Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S.S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; et al. Drug Delivery Systems and Materials for Wound Healing Applications. Adv. Drug Deliv. Rev. 2018, 127, 138–166. [Google Scholar] [CrossRef] [PubMed]
- Sari, M.H.M.; Cobre, A.d.F.; Pontarolo, R.; Ferreira, L.M. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023, 15, 874. [Google Scholar] [CrossRef]
- Raina, N.; Pahwa, R.; Thakur, V.K.; Gupta, M. Polysaccharide-Based Hydrogels: New Insights and Futuristic Prospects in Wound Healing. Int. J. Biol. Macromol. 2022, 223, 1586–1603. [Google Scholar] [CrossRef]
- Sari, M.H.M.; Mota Ferreira, L.; Cruz, L. The Use of Natural Gums to Produce Nano-Based Hydrogels and Films for Topical Application. Int. J. Pharm. 2022, 626, 122166. [Google Scholar] [CrossRef]
- Shukla, R.; Kashaw, S.K.; Jain, A.P.; Lodhi, S. Fabrication of Apigenin Loaded Gellan Gum-Chitosan Hydrogels (GGCH-HGs) for Effective Diabetic Wound Healing. Int. J. Biol. Macromol. 2016, 91, 1110–1119. [Google Scholar] [CrossRef]
- Poljšak, N.; Kreft, S.; Kočevar Glavač, N. Vegetable Butters and Oils in Skin Wound Healing: Scientific Evidence for New Opportunities in Dermatology. Phytother. Res. 2020, 34, 254–269. [Google Scholar] [CrossRef]
- Alves, A.Q.; Da Silva, V.A.; Goés, A.J.S.; Silva, M.S.; De Oliveira, G.G.; Bastos, I.V.G.A.; De Castro Neto, A.G.; Alves, A.J. The Fatty Acid Composition of Vegetable Oils and Their Potential Use in Wound Care. Adv. Ski. Wound Care 2019, 32, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guidoni, M.; Figueira, M.M.; Ribeiro, G.P.; Lenz, D.; Grizotto, P.A.; de Melo Costa Pereira, T.; Scherer, R.; Bogusz, S.; Fronza, M. Development and Evaluation of a Vegetable Oil Blend Formulation for Cutaneous Wound Healing. Arch. Dermatol. Res. 2019, 311, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Guidoni, M.; De Christo Scherer, M.M.; Figueira, M.M.; Schmitt, E.F.P.; De Almeida, L.C.; Scherer, R.; Bogusz, S.; Fronza, M. Fatty Acid Composition of Vegetable Oil Blend and in Vitro Effects of Pharmacotherapeutical Skin Care Applications. Braz. J. Med. Biol. Res. 2019, 52, e8209. [Google Scholar] [CrossRef] [PubMed]
- Ract, J.N.R.; Soares, F.A.S.D.M.; Rodrigues, H.G.; Bortolon, J.R.; Murata, G.M.; Gonçalves, M.I.A.; Hatanaka, E.; Curi, R.; Gioielli, L.A. Production of Vegetable Oil Blends and Structured Lipids and Their Effect on Wound Healing. Braz. J. Pharm. Sci. 2015, 51, 415–427. [Google Scholar] [CrossRef]
- Santos, J.A.A.; Silva, J.W.D.; Santos, S.M.D.; Rodrigues, M.D.F.; Silva, C.J.A.; Da Silva, M.V.; Correia, M.T.S.; Albuquerque, J.F.C.; Melo, C.M.L.; Silva, T.G.; et al. In Vitro and In Vivo Wound Healing and Anti-Inflammatory Activities of Babassu Oil (Attalea speciosa Mart. Ex Spreng., Arecaceae). Evid. Based Complement. Altern. Med. 2020, 2020, 8858291. [Google Scholar] [CrossRef]
- Mahmood, H.; Khan, I.U.; Asif, M.; Khan, R.U.; Asghar, S.; Khalid, I.; Khalid, S.H.; Irfan, M.; Rehman, F.; Shahzad, Y.; et al. In Vitro and in Vivo Evaluation of Gellan Gum Hydrogel Films: Assessing the Co Impact of Therapeutic Oils and Ofloxacin on Wound Healing. Int. J. Biol. Macromol. 2021, 166, 483–495. [Google Scholar] [CrossRef]
- Chamchangi, M.A.; Abdollahi, S.; Raoufi, Z.; Badr, A.A. Nano Hydrogel with Bacterial Nanocellulose and Bitter Almond Oil Nanoemulsions for Enhanced Wound Healing: In-Vivo and in-Vitro Characterization. Int. J. Biol. Macromol. 2024, 277, 134134. [Google Scholar] [CrossRef]
- Yap, X.F.; Saw, S.H.; Lim, V.; Tan, C.X. Plant Essential Oil Nanoemulgel as a Cosmeceutical Ingredient: A Review. Cosmetics 2024, 11, 116. [Google Scholar] [CrossRef]
- Silvério, L.A.L.; Coco, J.C.; Macedo, L.M.d.; Santos, É.M.d.; Sueiro, A.C.; Ataide, J.A.; Tavares, G.D.; Paiva-Santos, A.C.; Mazzola, P.G. Natural Product-Based Excipients for Topical Green Formulations. Sustain. Chem. Pharm. 2023, 33, 101111. [Google Scholar] [CrossRef]
- Liu, M.; Jin, J.; Zhong, X.; Liu, L.; Tang, C.; Cai, L. Polysaccharide Hydrogels for Skin Wound Healing. Heliyon 2024, 10, e35014. [Google Scholar] [CrossRef]
- Alves, L.A.; Araujo de Morais Trindade, G.; Luna Lazo, R.E.; de Fátima Cobre, A.; Pontarolo, R.; Mota Ferreira, L. Uso de Gomas Naturais Para Obtenção de Emulsões de Óleo de Camomila Pretendidos Para Aplicação Cutânea. Rev. Bras. Multidiscip. 2024, 27, 119–132. [Google Scholar] [CrossRef]
- Trindade, G.A.d.M.; Antunes Alves, L.; Gabrieli Dallabrida, K.; Henrique Marcondes Sari, M.; Brandão Reolon, J.; Pontarolo, R.; Mota Ferreira, L. Formulação de Gel-Creme a Base de Óleo de Camomila (Matricaria chamomilla L.) Com Potencial Bioadesivo, Oclusivo e Antioxidante Para Aplicação Cutânea. Rev. Bras. Multidiscip. 2024, 27, 54–69. [Google Scholar] [CrossRef]
- Alves, F.M.S.; El Zein, A.K.; Cobre, A.d.F.; Lazo, R.E.L.; Reolon, J.B.; Marchiori, C.; Costa, J.S.d.; Pontarolo, R.; Fajardo, A.R.; Sari, M.H.M.; et al. Aloe Vera Miller Extract as a Plasticizer Agent to Polymeric Films: A Structural and Functional Component. J. Drug Deliv. Sci. Technol. 2024, 99, 105982. [Google Scholar] [CrossRef]
- Dallabrida, K.G.; Braz, W.C.; Marchiori, C.; Alves, T.M.; Cruz, L.S.; Trindade, G.A.d.M.; Machado, P.; da Rosa, L.S.; Khalil, N.M.; Rego, F.G. de M.; et al. Exploring Cationic Guar Gum: Innovative Hydrogels and Films for Enhanced Wound Healing. Pharmaceutics 2024, 16, 1233. [Google Scholar] [CrossRef]
- Rigo, L.A.; Webber, J.; Silva, C.B.; Beck, R.C.R. Evaluation of the Spreadability of Pharmaceutical or Cosmetic Semisolid Formulations Using Scanned Images. Lat. Am. J. Pharm. 2012, 10, 1387–1391. [Google Scholar]
- Athikomkulchai, S.; Tunit, P.; Tadtong, S.; Jantrawut, P.; Sommano, S.R.; Chittasupho, C. Moringa Oleifera Seed Oil Formulation Physical Stability and Chemical Constituents for Enhancing Skin Hydration and Antioxidant Activity. Cosmetics 2020, 8, 2. [Google Scholar] [CrossRef]
- Barbalho, G.N.; Matos, B.N.; Espirito Santo, M.E.L.; Silva, V.R.C.; Chaves, S.B.; Gelfuso, G.M.; Cunha-Filho, M.; Gratieri, T. In Vitro Skin Model for the Evaluation of Burn Healing Drug Delivery Systems. J. Drug Deliv. Sci. Technol. 2021, 62, 102330. [Google Scholar] [CrossRef]
- Osmari, B.F.; Giuliani, L.M.; Reolon, J.B.; Rigo, G.V.; Tasca, T.; Cruz, L. Gellan Gum-Based Hydrogel Containing Nanocapsules for Vaginal Indole-3-Carbinol Delivery in Trichomoniasis Treatment. Eur. J. Pharm. Sci. 2020, 151, 105379. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Designation: F756 − 13 F756 − 17 Standard Practice for Assessment of Hemolytic Properties of Materials 1. Available online: https://cdn.standards.iteh.ai/samples/96867/14a395a0380848b998624d9ccd4cd0d7/ASTM-F756-17.pdf (accessed on 15 July 2024).
- Peloi, K.E.; Contreras Lancheros, C.A.; Nakamura, C.V.; Singh, S.; Neal, C.; Sakthivel, T.S.; Seal, S.; Lautenschlager, S.O.S. Antioxidative Photochemoprotector Effects of Cerium Oxide Nanoparticles on UVB Irradiated Fibroblast Cells. Colloids Surf. B Biointerfaces 2020, 191, 111013. [Google Scholar] [CrossRef]
- Reolon, J.B.; Sari, M.H.M.; Marchiori, C.; Dallabrida, K.G.; Santos, J.A.R.d.; de Almeida, I.D.F.R.; Alves, F.M.S.; Bonini, J.S.; Ferreira, L.M. Herbal Drugs-Loaded Soft Nanoparticles for Treating Skin Disorders: Where Do We Stand? Ind. Crops Prod. 2023, 206, 117602. [Google Scholar] [CrossRef]
- Parhi, R.; Sahoo, S.K.; Das, A. Applications of Polysaccharides in Topical and Transdermal Drug Delivery: A Recent Update of Literature. Braz. J. Pharm. Sci. 2023, 58, e20802. [Google Scholar] [CrossRef]
- De Oliveira, A.P.; Franco, E.D.S.; Rodrigues Barreto, R.; Cordeiro, D.P.; De Melo, R.G.; De Aquino, C.M.F.; E Silva, A.A.R.; De Medeiros, P.L.; Da Silva, T.G.; Góes, A.J.D.S.; et al. Effect of Semisolid Formulation of Persea Americana Mill (Avocado) Oil on Wound Healing in Rats. Evid. Based Complement. Altern. Med. 2013, 2013, 472382. [Google Scholar] [CrossRef] [PubMed]
- Ilesanmi, T.M.; Oladipo, O.O.; Olaleye, A.C.; Osasona, O.D. Antimicrobial Activity of Essential Oil from Avocado (Persea Americana) Seed and Pulp on Some Pathogenic Organisms. South. Asian J. Res. Microbiol. 2022, 12, 61–68. [Google Scholar] [CrossRef]
- Stević, T.; Šavikin, K.; Ristić, M.; Zdunić, G.; Janković, T.; Krivokuća-Đokić, D.; Vulić, T. Composition and Antimicrobial Activity of the Essential Oil of the Leaves of Black Currant (Ribes nigrum L.) Cultivar Čačanska Crna. J. Serb. Chem. Soc. 2010, 75, 35–43. [Google Scholar] [CrossRef]
- Dijkstra, A.J. Vegetable Oils: Types and Properties. Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2015; pp. 381–386. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards Optimal PH of the Skin and Topical Formulations: From the Current State of the Art to Tailored Products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Zimmermann, E.S.; Ferreira, L.M.; Denardi, L.B.; Sari, M.H.M.; Cervi, V.F.; Nogueira, C.W.; Alves, S.H.; Cruz, L. Mucoadhesive Gellan Gum Hydrogel Containing Diphenyl Diselenide-Loaded Nanocapsules Presents Improved Anti-Candida Action in a Mouse Model of Vulvovaginal Candidiasis. Eur. J. Pharm. Sci. 2021, 167, 106011. [Google Scholar] [CrossRef]
- Sari, M.H.M.; Fulco, B.d.C.W.; Ferreira, L.M.; Pegoraro, N.S.; Brum, E.d.S.; Casola, K.K.; Marchiori, M.C.L.; de Oliveira, S.M.; Nogueira, C.W.; Cruz, L. Nanoencapsulation Potentiates the Cutaneous Anti-Inflammatory Effect of p, P′-Methoxyl-Diphenyl Diselenide: Design, Permeation, and in Vivo Studies of a Nanotechnological-Based Carrageenan Gum Hydrogel. Eur. J. Pharm. Sci. 2020, 153, 105500. [Google Scholar] [CrossRef]
- Ghanbarzadeh, M.; Golmoradizadeh, A.; Homaei, A. Carrageenans and Carrageenases: Versatile Polysaccharides and Promising Marine Enzymes. Phytochem. Rev. 2018, 17, 535–571. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.; Guo, N.; Dai, H.; Wang, Y.; Sun, Y.; Zhu, G. Influence of Different PH Values on Gels Produced from Tea Polyphenols and Low Acyl Gellan Gum. Gels 2023, 9, 368. [Google Scholar] [CrossRef]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and Emulsion Stability: The Role of the Interfacial Properties. Adv. Colloid. Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, I.M.; Pinto, C.F.F.; Moreira, C.D.S.; Saviano, A.M.; Lourenço, F.R. Design of Experiments (DoE) Applied to Pharmaceutical and Analytical Quality by Design (QbD). Braz. J. Pharm. Sci. 2018, 54, e01006. [Google Scholar] [CrossRef]
- Costa, G.M.D.; Alves, G.d.A.D.; Maia Campos, P.M.B.G. Application of Design of Experiments in the Development of Cosmetic Formulation Based on Natural Ingredients. Int. J. Phytocosmetics Nat. Ingred. 2019, 6, 4. [Google Scholar] [CrossRef]
- Juškaite, V.; Ramanauskiene, K.; Briedis, V. Design and Formulation of Optimized Microemulsions for Dermal Delivery of Resveratrol. Evid. -Based Complement. Altern. Med. 2015, 2015, 540916. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Aly, A.A.; Sayed, S.M.; Abou-Okeil, A. K-Carrageenan/Na-Alginate Wound Dressing with Sustainable Drug Delivery Properties. Polym. Adv. Technol. 2021, 32, 1793–1801. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, G. Optimization of PH Conditions and Characterization of Polyelectrolyte Complexes between Gellan Gum and Cationic Guar Gum. Polym. Adv. Technol. 2018, 29, 3035–3048. [Google Scholar] [CrossRef]
- Jiménez-Sotelo, P.; Hernández-Martínez, M.; Osorio-Revilla, G.; Meza-Márquez, O.G.; García-Ochoa, F.; Gallardo-Velázquez, T. Use of ATR-FTIR Spectroscopy Coupled with Chemometrics for the Authentication of Avocado Oil in Ternary Mixtures with Sunflower and Soybean Oils. Food Addit. Contam. Part. A 2016, 33, 1105–1115. [Google Scholar] [CrossRef]
- Kowalonek, J.; Łukomska, B.; Łukomska, O.; Stachowiak-Trojanowska, N. Alginate Films Enriched in Raspberry and/or Black Currant Seed Oils as Active Food Packaging. Molecules 2024, 29, 2012. [Google Scholar] [CrossRef]
- Singh, C.; Rao, K.; Yadav, N.; Bansal, N.; Vashist, Y.; Kumari, S.; Chugh, P. A Review: Drug Excipient Iincompatiblity by Ftir Spectroscopy. Curr. Pharm. Anal. 2023, 19, 371–378. [Google Scholar] [CrossRef]
- El-Kased, R.F.; Amer, R.I.; Attia, D.; Elmazar, M.M. Honey-Based Hydrogel: In Vitro and Comparative In Vivo Evaluation for Burn Wound Healing. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Vasowala, T.; Gharat, S.; Mhase, M.; Momin, M. Advances in Hydrogels Based Cutaneous Drug Delivery System for Management of Psoriasis. Eur. Polym. J. 2024, 202, 112630. [Google Scholar] [CrossRef]
- Merg, C.D.; Reolon, J.B.; Rechia, G.C.; Cruz, L. Locust Bean Gum Hydrogels Are Bioadhesive and Improve Indole-3-Carbinol Cutaneous Permeation: Influence of the Polysaccharide Concentration. Braz. J. Pharm. Sci. 2023, 59, e21770. [Google Scholar] [CrossRef]
- Radeva, L.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Tibi, I.P.E.; Zaharieva, M.M.; Kaleva, M.; Najdenski, H.; Petrov, P.D.; Tzankova, V.; et al. Incorporation of Resveratrol-Hydroxypropyl-β-Cyclodextrin Complexes into Hydrogel Formulation for Wound Treatment. Gels 2024, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Nqoro, X.; Adeyemi, S.A.; Ubanako, P.; Ndinteh, D.T.; Kumar, P.; Choonara, Y.E.; Aderibigbe, B.A. Wound Healing Potential of Sodium Alginate-Based Topical Gels Loaded with a Combination of Essential Oils, Iron Oxide Nanoparticles and Tranexamic Acid. Polym. Bull. 2024, 81, 3459–3478. [Google Scholar] [CrossRef]
- Marchiori, M.C.L.; Rigon, C.; da S. Jardim, F.; Giuliani, L.M.; Copetti, P.M.; Sagrillo, M.R.; Ourique, A.F.; Cruz, L. Hydrogel Containing Silibinin-Loaded Pomegranate Oil-Based Nanocapsules for Cutaneous Application: In Vitro Safety Investigation and Human Skin Biometry and Permeation Studies. AAPS PharmSciTech 2023, 24, 138. [Google Scholar] [CrossRef]
- Tan, S.T.; Winarto, N.; Dosan, R.; Aisyah, P.B. The Benefits Of Occlusive Dressings In Wound Healing. Open Dermatol. J. 2019, 13, 27–33. [Google Scholar] [CrossRef]
- Przekop, R.E.; Sztorch, B.; Romanczuk-Ruszuk, E.; Loh, X.J.; Wardhana, Y.W.; Aanisah, N.; Sopyan, I.; Hendriani, R.; Chaerunisaa, A.Y. Gelling Power Alteration on Kappa-Carrageenan Dispersion through Esterification Method with Different Fatty Acid Saturation. Gels 2022, 8, 752. [Google Scholar] [CrossRef]
- Gomes, D.; Batista-Silva, J.P.; Sousa, A.; Passarinha, L.A. Progress and Opportunities in Gellan Gum-Based Materials: A Review of Preparation, Characterization and Emerging Applications. Carbohydr. Polym. 2023, 311, 120782. [Google Scholar] [CrossRef]
- Mortazavi-Manesh, S.; Shaw, J.M. Thixotropic Rheological Behavior of Maya Crude Oil. Energy Fuels 2014, 28, 972–979. [Google Scholar] [CrossRef]
- Terukina, T.; Uchiyama, Y.; Kikuma, F.; Fukumitsu, S.; Iwata, N.; Kanazawa, T.; Kondo, H. A New Approach for Characterizing the Thixotropic Properties of Gel Formulations as Sprayable Agents Based on Rheological Analysis. AAPS PharmSciTech 2022, 23, 1–11. [Google Scholar] [CrossRef]
- Kubo, W.; Miyazaki, S.; Attwood, D. Oral Sustained Delivery of Paracetamol from in Situ-Gelling Gellan and Sodium Alginate Formulations. Int. J. Pharm. 2003, 258, 55–64. [Google Scholar] [CrossRef]
- García, M.C.; Trujillo, L.A.; Muñoz, J.; Alfaro, M.C. Gellan Gum Fluid Gels: Influence of the Nature and Concentration of Gel-Promoting Ions on Rheological Properties. Colloid. Polym. Sci. 2018, 296, 1741–1748. [Google Scholar] [CrossRef]
- Liu, S.; Huang, S.; Li, L. Thermoreversible Gelation and Viscoelasticity of κ-Carrageenan Hydrogels. J. Rheol. 2016, 60, 203–214. [Google Scholar] [CrossRef]
- Makvandi, P.; Caccavale, C.; Della Sala, F.; Zeppetelli, S.; Veneziano, R.; Borzacchiello, A. Natural Formulations Provide Antioxidant Complement to Hyaluronic Acid-Based Topical Applications Used in Wound Healing. Polymers 2020, 12, 1847. [Google Scholar] [CrossRef]
- Przykaza, K.; Nikolaichuk, H.; Kozub, A.; Tomaszewska-Gras, J.; Peršurić, Ž.; Pavelić, S.K.; Fornal, E. Newly Marketed Seed Oils. What We Can Learn from the Current Status of Authentication of Edible Oils. Food Control 2021, 130, 108349. [Google Scholar] [CrossRef]
- Shafie, M.H.; Kamal, M.L.; Zulkiflee, F.F.; Hasan, S.; Uyup, N.H.; Abdullah, S.; Mohamed Hussin, N.A.; Tan, Y.C.; Zafarina, Z. Application of Carrageenan Extract from Red Seaweed (Rhodophyta) in Cosmetic Products: A Review. J. Indian. Chem. Soc. 2022, 99, 100613. [Google Scholar] [CrossRef]
- Yang, N.; Feng, Y.; Su, C.; Wang, Q.; Zhang, Y.; Wei, Y.; Zhao, M.; Nishinari, K.; Fang, Y. Structure and Tribology of κ-Carrageenan Gels Filled with Natural Oil Bodies. Food Hydrocoll. 2020, 107, 105945. [Google Scholar] [CrossRef]
- Collier, M. A Clinical Observational Case Series Evaluation of a Superabsorbent Dressing on Exudating Wounds. Br. J. Nurs. 2024, 33, S29–S37. [Google Scholar] [CrossRef]
- Shete, B.; Gulhane, R.; Hantodkar, R. A Comprehensive Review on Wound Dressings and Their Comparative Effectiveness on Healing of Contaminated Wounds and Ulcers. Arch. Anesth. Crit. Care 2022, 8, 151–158. [Google Scholar] [CrossRef]
- Parisotto-Peterle, J.; Bidone, J.; Lucca, L.G.; Araújo, G.d.M.S.; Falkembach, M.C.; da Silva Marques, M.; Horn, A.P.; dos Santos, M.K.; da Veiga, V.F.; Limberger, R.P.; et al. Healing Activity of Hydrogel Containing Nanoemulsified β-Caryophyllene. Eur. J. Pharm. Sci. 2020, 148, 105318. [Google Scholar] [CrossRef]
- Gehrcke, M.; Martins, C.C.; de Bastos Brum, T.; da Rosa, L.S.; Luchese, C.; Wilhelm, E.A.; Soares, F.Z.M.; Cruz, L. Novel Pullulan/Gellan Gum Bilayer Film as a Vehicle for Silibinin-Loaded Nanocapsules in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022, 14, 2352. [Google Scholar] [CrossRef] [PubMed]
- Lodén, M.; Maibach, H.I. Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers; Springer Science and Business Media: Berlin, Germany, 2012; 591p, ISBN 9783642276064. [Google Scholar]
- Jaiswal, L.; Shankar, S.; Rhim, J.W. Carrageenan-Based Functional Hydrogel Film Reinforced with Sulfur Nanoparticles and Grapefruit Seed Extract for Wound Healing Application. Carbohydr. Polym. 2019, 224, 115191. [Google Scholar] [CrossRef] [PubMed]
- Neamtu, B.; Barbu, A.; Negrea, M.O.; Berghea-Neamțu, C.Ș.; Popescu, D.; Zăhan, M.; Mireșan, V. Carrageenan-Based Compounds as Wound Healing Materials. Int. J. Mol. Sci. 2022, 23, 9117. [Google Scholar] [CrossRef]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The Mtt Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef]
- Weber, M.; Steinle, H.; Golombek, S.; Hann, L.; Schlensak, C.; Wendel, H.P.; Avci-Adali, M. Blood-Contacting Biomaterials: In Vitro Evaluation of the Hemocompatibility. Front. Bioeng. Biotechnol. 2018, 6, 395774. [Google Scholar] [CrossRef]
- Cicinskas, E.; Begun, M.A.; Tiasto, V.A.; Belousov, A.S.; Vikhareva, V.V.; Mikhailova, V.A.; Kalitnik, A.A. In Vitro Antitumor and Immunotropic Activity of Carrageenans from Red Algae Chondrus Armatus and Their Low-Molecular Weight Degradation Products. J. Biomed. Mater. Res. A 2020, 108, 254–266. [Google Scholar] [CrossRef]
- Ji, Q.; Chen, K.; Yi, H.; He, B.; Jiang, T. A Paintable Small-Molecule Hydrogel with Antimicrobial and ROS Scavenging Activities for Burn Wound Healing. Gels 2024, 10, 621. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, C.; Yong, L.; Niu, M.; Cheng, W.; Zhang, L.; Xue, B. Construction of PNIPAM/Graphene Oxide Loaded with Silver Nanoparticles Interpenetrating Intelligent Hydrogels for Antibacterial Dressing. Polym. Bull. 2024, 81, 13027–13044. [Google Scholar] [CrossRef]
- Sharma, G.; George Joy, J.; Sharma, A.R.; Kim, J.C. Accelerated Full-Thickness Skin Wound Tissue Regeneration by Self-Crosslinked Chitosan Hydrogel Films Reinforced by Oxidized CNC-AgNPs Stabilized Pickering Emulsion for Quercetin Delivery. J. Nanobiotechnol. 2024, 22. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Moghim Aliabadi, H.A.; Radinekiyan, F.; Sobhani, M.; Farzane, K.; Maleki, A.; Madanchi, H.; Mahdavi, M.; Shalan, A.E. Investigation of the Biological Activity, Mechanical Properties and Wound Healing Application of a Novel Scaffold Based on Lignin–Agarose Hydrogel and Silk Fibroin Embedded Zinc Chromite Nanoparticles. RSC Adv. 2021, 11, 17914–17923. [Google Scholar] [CrossRef] [PubMed]
- Wójciak, M.; Mazurek, B.; Tyśkiewicz, K.; Kondracka, M.; Wójcicka, G.; Blicharski, T.; Sowa, I. Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing. Molecules 2022, 27, 8679. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Błońska-Sikora, E.; Dobros, N.; Spałek, O.; Zielińska, A.; Paradowska, K. Bioactive Compounds, Antioxidant Properties, and Cosmetic Applications of Selected Cold-Pressed Plant Oils from Seeds. Cosmetics 2024, 11, 153. [Google Scholar] [CrossRef]
- Lin, T.K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef]
- Bhore, S.J.; Ochoa, D.S.; Houssari, A.A.; Zelaya, A.L.; Yang, R.; Chen, Z.; Deeya, S.S.; Sens, S.C.d.S.; Schumann, M.; Zhang, Z.; et al. The Avocado (Persea americana Mill.): A Review and Sustainability Perspectives. Preprints 2021, 2021120523. [Google Scholar] [CrossRef]
Phase | Constituents | Concentration (%, w/w) |
---|---|---|
Oily phase | Cetostearyl Alcohol Ethoxylate | 3.0 |
Cetostearyl Alcohol | 5.0 | |
Oil (AO or BO) | 3.0 | |
Vitamin E | 0.2 | |
Aqueous phase | Polysaccharide (GG or KC) | 0.5 |
EDTA | 0.1 | |
Propylene glycol | 5.0 | |
Nipaguard® | 0.3 | |
Watersqf | 100 |
Formulations | Gellan Gum (GG) | Kappa-Carrageenan (KC) | Avocado Oil (AO) | Blackcurrant Oil (BO) |
---|---|---|---|---|
F1-GG-AO | X | - | X | - |
F2-KC-AO | - | X | X | - |
F3-GG-BO | X | - | - | X |
F4-KC-BO | - | X | - | X |
F5-GG-B | X | - | - | - |
F6-KC-B | - | X | - | - |
Formulations | pH | Density (mg/mL) |
---|---|---|
F1-GG-AO | 5.06 ± 0.07 # | 1.0315 ± 0.0325 |
F2-KC-AO | 4.74 ± 0.11 | 1.0242 ± 0.0205 |
F3-GG-BO | 4.97 ± 0.12 # | 1.0294 ± 0.0259 |
F4-KC-BO | 4.74 ± 0.02 | 1.0353 ± 0.0198 |
Formulation | CC50 (µg/mL) |
---|---|
F1-GG-AO | 63.13 ± 4.35 |
F2-KC-AO | 390.03 ± 8.06 # |
F3-GG-BO | 40.77 ± 1.79 |
F4-KC-BO | 589.69 ± 85.47 #* |
F5-GG-B | 65.79 ± 14.25 |
F6-KC-B | 541.24 ± 9.16 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trindade, G.A.d.M.; Alves, L.A.; Lazo, R.E.L.; Dallabrida, K.G.; Reolon, J.B.; Bonini, J.S.; Nunes, K.C.; Garcia, F.P.; Nakamura, C.V.; Rego, F.G.d.M.; et al. Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties. Pharmaceutics 2024, 16, 1426. https://doi.org/10.3390/pharmaceutics16111426
Trindade GAdM, Alves LA, Lazo REL, Dallabrida KG, Reolon JB, Bonini JS, Nunes KC, Garcia FP, Nakamura CV, Rego FGdM, et al. Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties. Pharmaceutics. 2024; 16(11):1426. https://doi.org/10.3390/pharmaceutics16111426
Chicago/Turabian StyleTrindade, Giovanna Araujo de Morais, Laiene Antunes Alves, Raul Edison Luna Lazo, Kamila Gabrieli Dallabrida, Jéssica Brandão Reolon, Juliana Sartori Bonini, Karine Campos Nunes, Francielle Pelegrin Garcia, Celso Vataru Nakamura, Fabiane Gomes de Moraes Rego, and et al. 2024. "Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties" Pharmaceutics 16, no. 11: 1426. https://doi.org/10.3390/pharmaceutics16111426
APA StyleTrindade, G. A. d. M., Alves, L. A., Lazo, R. E. L., Dallabrida, K. G., Reolon, J. B., Bonini, J. S., Nunes, K. C., Garcia, F. P., Nakamura, C. V., Rego, F. G. d. M., Pontarolo, R., Sari, M. H. M., & Ferreira, L. M. (2024). Polysaccharide-Stabilized Semisolid Emulsion with Vegetable Oils for Skin Wound Healing: Impact of Composition on Physicochemical and Biological Properties. Pharmaceutics, 16(11), 1426. https://doi.org/10.3390/pharmaceutics16111426