A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy
"> Figure 1
<p>(<b>A</b>) Absorption spectrum of LVB in PBS (pH 7.4) at 4.1 µM (a) and in the presence of PolyCD (2 mg mL<sup>−1</sup>) at 25 µM (b), 40 µM (c), 50 µM (d) and 60 µM I (e). The spectrum of a 60 µM LVB solution in methanol is shown for the sake of comparison (f). (<b>B</b>) Absorbance value at 245 nm of LVB at different concentrations in the presence of PolyCD. T = 25 °C; cell path = 0.1 cm.</p> "> Figure 2
<p>(<b>A</b>) Absorption spectra of PolyCD (2 mg mL<sup>−1</sup>) in PBS (pH 7.4) co-loaded with LVB (25 µM) and RD-NO (6 µM) (a) and, for the sake of comparison, loaded only with LVB (b) and RD-NO (c). T = 25 °C; cell path = 1 cm. (<b>B</b>) Hydrodynamic diameter of sample a in <a href="#pharmaceutics-15-00096-f002" class="html-fig">Figure 2</a>A.</p> "> Figure 3
<p>(<b>A</b>) Absorption spectral changes observed upon 532 nm light irradiation of a PBS (pH 7.4) solution of PolyCD (2 mg mL<sup>−1</sup>) co-loaded with LVB (25 µM) and RD-NO (6 µM). The inset shows the absorbance changes at 397 nm of PolyCD (2 mg mL<sup>−1</sup><b>)</b> co-loaded with LVB (25 µM) and RD-NO (6 µM) (λ) and, for comparison, the same host in the absence of LVB (ν). (<b>B</b>) NO release profile observed for PolyCD (2 mg mL<sup>−1</sup>) co-loaded with LVB (25 µM) and RD-NO (6 µM) (a) and, for comparison, the same host in the absence of LVB (b). T = 25 °C.</p> "> Figure 4
<p>(<b>A</b>) Fluorescence emission spectrum observed at λ<sub>exc</sub> = 520 nm light excitation for a PBS (pH 7.4) solution of PolyCD (2 mg mL<sup>−1</sup>) co-loaded with LVB (25 µM) and RD-NO (6 µM). (<b>B</b>) Fluorescence decay and the related fitting of the same solution recorded at λ<sub>exc</sub> = 455 nm and λ<sub>em</sub> = 590 nm. T = 25 °C.</p> "> Figure 5
<p>Normalized fluorescence spectra of LVB (a) (λ<sub>exc</sub> = 240 nm), NBF (d) (λ<sub>exc</sub> = 440 nm), and absorption spectra of NBF (c) and RD-NO (b). All guests are loaded in PolyCD (2 mg mL<sup>−1</sup>) dissolved in PBS (pH 7.4). T = 25 °C.</p> "> Figure 6
<p>(<b>A</b>) Absorption spectrum of PolyCD (2 mg mL<sup>−1</sup>) in PBS (pH 7.4) co-loaded with LVB, RD-NO, and NBF (5 µM). (<b>B</b>) Fluorescence emission spectra of the sample as in (<b>A</b>) (a) and PolyCD (2 mg mL<sup>−1</sup>) in PBS (pH 7.4) loaded only with LVB at the same concentration (b) recorded at λ<sub>exc</sub> = 240 nm. (<b>C</b>) Fluorescence emission spectra of the sample as in (<b>A</b>) (a) and PolyCD (2 mg mL<sup>−1</sup>) in PBS (pH 7.4) loaded only with NBF (b) and RD-NO (c) recorded at λ<sub>exc</sub> = 445 nm.</p> "> Figure 7
<p>Fluorescence microscopy analysis of HEP-G2 hepatocarcinoma cell lines treated with PolyCD (2 mg mL<sup>−1</sup>) in PBS (pH 7.4) loaded with LVB (25 µM), RD-NO (6 µM) and both components and stained with DAPI. The cells were analyzed with a DAPI emission filter (<b>A</b>), a rhodamine emission filter (<b>B</b>), or by merging images (<b>A</b>,<b>B</b>) (<b>C</b>). Scale bar = 50 µM.</p> "> Figure 8
<p>Viability of HEP-G2 hepatocarcinoma cells as a function of the concentration of free LVB.</p> "> Figure 9
<p>Cell viability was observed 24 h after incubating HEP-G2 hepatocarcinoma cells with free LVB, PolyCD, and the supramolecular complexes PolyCD/LVB, PolyCD/RD-NO, and PolyCD/LVB/RD-NO in the dark and upon different irradiation times (occurred after the first 4 h of incubation) at λ<sub>exc</sub> > 500 nm. [LVB] = 50 µM; [RD-NO] = 6 µM; [PolyCD] = 2 mg mL<sup>−1</sup>.</p> "> Scheme 1
<p>Molecular structures of the guests LVB and RD-NO, which are supramolecularly assembled in the branched polymeric host PolyCD.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. NO Photorelease and Fluorescence Quantum Yields
2.4. Preparation of the Supramolecular Complexes
2.5. Biological Experiments
2.5.1. Cell Lines
2.5.2. Determination of IC50
2.5.3. Cell Viability
2.5.4. Fluorescence Microscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiyota, N.; Schlumberger, M.; Muro, K.; Ando, Y.; Takahashi, S.; Kawai, Y.; Wirth, L.; Robinson, B.; Sherman, S.; Suzuki, T.; et al. Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci. 2015, 106, 1714–1721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Salama, Z.T.; Syed, Y.Y.; Scott, L.J. Lenvatinib: A Review in Hepatocellular Carcinoma. Drugs 2019, 79, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Habra, M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev. 2016, 42, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Levantinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Hong, M.; Li, S.; Ji, W.; Qi, M.H.; Ren, G.B. Cocrystals of Lenvatinib with Sulfamerazine and Salicylic Acid: Crystal Structure, Equilibrium Solubility, Stability Study, and Anti- Hepatoma Activity. Cryst. Growth Des. 2021, 21, 3714–3727. [Google Scholar] [CrossRef]
- Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: Challenges and opportunities. Cancer Lett. 2019, 460, 1–9. [Google Scholar] [CrossRef]
- Lenvatinib in Combination with Everolimus. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/lenvatinib-combination-everolimus (accessed on 17 November 2022).
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Celli, J.P.; Spring, B.Q.; Rizvi, I.; Evans, C.L.; Samkoe, K.S.; Verma, S.; Pogue, B.W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Lin, W.; Chen, W.; Huang, Y.; Zhu, L.; Pan, X. Photodynamic Therapy in Combination with Sorafenib for Enhanced Immunotherapy of Lung Cancer. J. Biomed. Nanotechnol. 2020, 16, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Zong, J.; Peng, H.; Qing, X.; Fan, Z.; Xu, W.; Du, X.; Shi, R.; Zhang, Y. pH-Responsive Pluronic F127-Lenvatinib-Encapsulated Halogenated Boron-Dipyrromethene Nanoparticles for Combined Photodynamic Therapy and Chemotherapy of Liver Cancer. ACS Omega 2021, 6, 12331–12342. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, A.D.; Ford, P.C. Metal complexes as photochemical nitric oxide precursors: Potential applications in the treatment of tumors. Dalton Trans. 2009, 48, 10660–10669. [Google Scholar] [CrossRef]
- Fraix, A.; Sortino, S. Combination of PDT photosensitizers with NO photodononors. Photochem. Photobiol. Sci. 2018, 17, 1709–1727. [Google Scholar] [CrossRef]
- Ignarro, L.J.; Freeman, B.A. (Eds.) Nitric Oxide: Biology and Pathobiology, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ignarro, L.J. (Ed.) Special Journal Issue on Nitric Oxide Chemistry and Biology. Arch. Pharm. Res. 2009, 32, 1097. [Google Scholar]
- Wink, D.A.; Mitchell, J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 1998, 25, 434–456. [Google Scholar] [CrossRef]
- Sinha, B.K.; Bortner, C.D.; Mason, R.P.; Cannon, R.E. Nitric oxide reverses drug resistance by inhibiting aptase activity of P-glycoprotein in human multidrug-resustant cancer cells. Biochim. Biophys. Acta Gen Subj. 2018, 1862, 2806–2814. [Google Scholar] [CrossRef]
- Riganti, C.; Miraglia, E.; Viarisio, D.; Costamagna, C.; Pescarmona, G.; Ghigo, D.; Bosia, A. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 2005, 65, 516–525. [Google Scholar] [CrossRef]
- Fukumura, D.; Kashiwagi, S.; Jain, R.K. The role of nitric oxide in tumour progression. Nat. Rev. Cancer 2006, 6, 521–534. [Google Scholar] [CrossRef]
- Chang, C.F.; Diers, A.R.; Hogg, N. Cancer cell metabolism and the modulating effects of nitric oxide. Free Radic. Biol. Med. 2015, 79, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Moncada, S.; Erusalimsky, J.D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol. 2002, 3, 214–220. [Google Scholar] [CrossRef]
- Wink, D.A.; Vodovotz, Y.; Laval, J.; Laval, F.; Dewhirst, M.W.; Mitchell, J.B. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 1998, 19, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowley, C.; McHale, A.P.; McCaughan, B.; Fraix, A.; Sortino, S.; Callan, J.F. Carbon quantum dot–NO photoreleaser nanohybrids for two-photon phototherapy of hypoxic tumors. Chem. Commun. 2015, 51, 81–84. [Google Scholar]
- Sodano, F.; Cavanagh, R.J.; Pearce, A.K.; Lazzarato, L.; Rolando, B.; Fraix, A.; Abelha, T.F.; Vasey, C.E.; Alexander, C.; Taresco, V.; et al. Enhancing doxorubicin anticancer activity with a novel polymeric platform photoreleasing nitric oxide. Biomater. Sci. 2020, 8, 1329–1344. [Google Scholar] [CrossRef]
- Fraix, A.; Conte, C.; Gazzano, E.; Riganti, C.; Quaglia, F.; Sortino, S. Overcoming doxorubicin resistance with lipid-polymer hybrid nanoparticles photoreleasing nitric oxide. Mol. Pharm. 2020, 17, 2135–2144. [Google Scholar]
- Chegaev, K.; Fraix, A.; Gazzano, E.; Abd-Ellatef, G.E.F.; Blangetti, M.; Rolando, B.; Conoci, S.; Riganti, C.; Fruttero, R.; Gasco, A.; et al. Light-regulated NO release as a novel strategy to overcome doxorubicin multidrug resistance. ACS Med. Chem. Lett. 2017, 8, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Fraix, A.; Parisi, C.; Failla, M.; Chegaev, K.; Spyrakis, F.; Lazzarato, L.; Fruttero, R.; Gasco, A.; Sortino, S. NO release regulated by doxorubicin as green light-harvesting antenna. Chem. Commun. 2020, 56, 6332–6335. [Google Scholar] [CrossRef]
- Parisi, C.; Moret, F.; Fraix, A.; Menilli, L.; Failla, M.; Sodano, F.; Conte, C.; Quaglia, F.; Reddi, E.; Sortino, S. Doxorubicin-NO releaser molecular hybrid activatable by green light to overcome resistance in breast cancer cells. ACS Omega 2022, 7, 7452–7459. [Google Scholar] [CrossRef]
- Ghione, S.; Mabrouk, N.; Paul, C.; Bettaieb, A.; Plenchette, S. Protein kinase inhibitor-based cancer therapies: Considering the potential of nitric oxide (NO) to improve cancer treatment. Biochem. Pharmacol. 2020, 176, 113855–113865. [Google Scholar] [CrossRef]
- Laneri, F.; Graziano, A.C.E.; Seggio, M.; Fraix, A.; Malanga, M.; Beni, S.; Longobardi, G.; Conte, C.; Quaglia, F.; Sortino, S. Enhancing the anticancer activity of sorafenib through its combination with a nitric oxide photodelivering β-cyclodextrin polymer. Molecules 2022, 27, 1918–1930. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Failla, M.; Fraix, A.; Rolando, B.; Gianquinto, E.; Spyrakis, F.; Gazzano, E.; Riganti, C.; Lazzarato, L.; Fruttero, R.; et al. Fluorescent nitric oxide photodonors based on BODIPY and rhodamine antennae. Chem. Eur. J. 2019, 25, 11080–11084. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Bouchemal, K.; Couvreur, P.; Desmaële, D.; Morvan, E.; Pouget, T.; Gref, R. A comprehensive study of the spontaneous formation of nanoassemblies in water by a “lock-and-key” interaction between two associative polymers. J. Colloid Interface Sci. 2011, 354, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Parisi, C.; Seggio, M.; Fraix, A.; Sortino, S. A High-Performing Metal-Free Photoactivatable Nitric Oxide Donor with a Green Fluorescent Reporter. ChemPhotoChem 2020, 4, 742–748. [Google Scholar] [CrossRef]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Trotta, F.; Caldera, F.; Cavalli, R.; Mele, A.; Punta, C.; Melone, L.; Castiglione, F.; Rossi, B.; Ferro, M.; Crupi, V.; et al. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer. Beilstein J. Org. Chem. 2014, 10, 2586–2593. [Google Scholar] [CrossRef] [Green Version]
- Battistini, E.; Gianolio, E.; Gref, R.; Couvreur, P.; Fuzerova, S.; Othman, M.; Aime, S.; Badet, B.; Durand, P. High-Relaxivity Magnetic Resonance Imaging (MRI) Contrast Agent Based on Supramolecular Assembly between a Gadolinium Chelate, a Modified Dextran, and Poly-β-Cyclodextrin. Chem. Eur. J. 2008, 14, 4551–4561. [Google Scholar] [CrossRef]
- Daoud-Mahammed, S.; Couvreur, P.; Bouchemal, K.; Chéron, M.; Lebas, G.; Amiel, C.; Gref, R. Cyclodextrin and Polysaccharide-Based Nanogels: Entrapment of Two Hydrophobic Molecules, Benzophenone and Tamoxifen. Biomacromolecules 2009, 10, 547–554. [Google Scholar] [CrossRef]
- Gidwani, B.; Vyas, A. Synthesis, characterization and application of Epichlorohydrin-β-cyclodextrin polymer. Colloids Surf. B Biointerfaces 2014, 114, 130–137. [Google Scholar] [CrossRef]
- Swaminathan, S.; Garcia-Amorós, J.; Fraix, A.; Kandoth, N.; Sortino, S.; Raymo, F.M. Photoresponsive polymer nanocarriers with a multifunctional cargo. Chem. Soc. Rev. 2014, 43, 4167–4178. [Google Scholar] [CrossRef]
- Kandoth, N.; Kirejev, V.; Monti, S.; Gref, R.; Ericson, M.B.; Sortino, S. Two-photon-fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles. Biomacromolecules 2014, 15, 1768–1776. [Google Scholar] [CrossRef]
- Kirejev, V.; Kandoth, N.; Gref, R.; Ericson, M.B.; Sortino, S. A polymer-based nanodevice for the photoregulated release of NO with two-photon fluorescence reporting in skin carcinoma cells. J. Mater. Chem. B 2014, 2, 1190–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraix, A.; Kandoth, N.; Manet, I.; Cardile, V.; Graziano, A.C.E.; Gref, R.; Sortino, S. An engineered nanoplatform for bimodal anticancer phototherapy with dual-color fluorescence detection of sensitizers. Chem. Commun. 2013, 49, 4459–4461. [Google Scholar] [CrossRef] [PubMed]
- Deniz, E.; Kandoth, N.; Fraix, A.; Cardile, V.; Graziano, A.C.E.; Lo Furno, D.; Gref, R.; Raymo, F.M.; Sortino, S. Photoinduced Fluorescence Activation and Nitric Oxide Release with Biocompatible Polymer Nanoparticles. Chem. Eur. J. 2012, 18, 15782–15787. [Google Scholar] [CrossRef]
- Coriat, R.; Nicco, C.; Chéreau, C.; Mir, O.; Alexandre, J.; Ropert, S.; Weill, B.; Chaussade, S.; Goldwasser, F.; Batteux, F. Sorafenib-induced hepatocellular carcinoma cell death depends on reactive oxygen species production in vitro and in vivo. Mol. Cancer Ther. 2012, 11, 2284–2293. [Google Scholar] [CrossRef] [Green Version]
- Stępniak, J.; Krawczyk-Lipiec, J.; Lewiński, A.; Karbownik-Lewińska, M. Sorafenib versus Lenvatinib Causes Stronger Oxidative Damage to Membrane Lipids in Noncancerous Tissues of the Thyroid, Liver, and Kidney: Effective Protection by Melatonin and Indole-3-Propionic Acid. Biomedicines 2022, 10, 2890–2900. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.; Czapski, G. The reaction of NO· with O2− and HO2−: A pulse radiolysis study. Free Radical Biol. Med. 1995, 19, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Brinda, B.J.; Viganego, F.; Vo, T.; Dolan, D.; Fradley, M.G. Anti-VEGF-Induced Hypertension: A Review of Pathophysiology and Treatment Options. Curr. Treat. Options Cardiovasc. Med. 2016, 18, 33–45. [Google Scholar] [CrossRef]
- Kruzliak, P.; Kovacova, G.; Pechanova, O. Therapeutic potential of nitric oxide donors in the prevention and treatment of angiogenesis-inhibitor-induced hypertension. Angiogenesis 2013, 16, 289–295. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laneri, F.; Licciardello, N.; Suzuki, Y.; Graziano, A.C.E.; Sodano, F.; Fraix, A.; Sortino, S. A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy. Pharmaceutics 2023, 15, 96. https://doi.org/10.3390/pharmaceutics15010096
Laneri F, Licciardello N, Suzuki Y, Graziano ACE, Sodano F, Fraix A, Sortino S. A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy. Pharmaceutics. 2023; 15(1):96. https://doi.org/10.3390/pharmaceutics15010096
Chicago/Turabian StyleLaneri, Francesca, Nadia Licciardello, Yota Suzuki, Adriana C. E. Graziano, Federica Sodano, Aurore Fraix, and Salvatore Sortino. 2023. "A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy" Pharmaceutics 15, no. 1: 96. https://doi.org/10.3390/pharmaceutics15010096
APA StyleLaneri, F., Licciardello, N., Suzuki, Y., Graziano, A. C. E., Sodano, F., Fraix, A., & Sortino, S. (2023). A Supramolecular Nanoassembly of Lenvatinib and a Green Light-Activatable NO Releaser for Combined Chemo-Phototherapy. Pharmaceutics, 15(1), 96. https://doi.org/10.3390/pharmaceutics15010096