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Abstract: Currently, existing methods for single-tree detection based on airborne laser scanning
(ALS) data usually require some thresholds and parameters to be set manually. Manually setting
threshold or parameters is laborious and time-consuming, and for dense forests, the high commission
and omission rate make most existing single-tree detection techniques inefficient. As a solution to
these problems, this paper proposed an automatic single-tree detection method in ALS data through
gradient orientation clustering (GOC). In this method, the rasterized Canopy Height Model (CHM)
was derived from ALS data using surface interpolation. Then, potential trees were assumed as
approximate conical shapes and extracted based on the GOC. Finally, trees were identified from
the potential trees based on the compactness of the crown shape. This method used the gradient
orientation information of rasterized CHM, thus increasing the generalization of single-tree detection
method. In order to verify the validity and practicability of the proposed method, twelve 1256 m?
circular study plots of different forest types were selected from the benchmark dataset (NEWFOR),
and the results from nine different methods were presented and compared for these study plots.
Among nine methods, the proposed method had the highest root mean square matching score
(RMS_M = 43). Moreover, the proposed method had excellent detection (M > 47) in both single-layer
coniferous and single-layered mixed stands.

Keywords: single-tree detection; airborne laser scanning (ALS); gradient orientation clustering
(GOC); NEW technologies for a better mountain FORest timber mobilization (NEWFOR)

1. Introduction

Remote sensing (RS) is a synthesized, efficient, and rapid means of obtaining earth surface
information, which can help forestry management departments achieve high-precision forest resource
surveys, timber production estimation, and other applications [1-3]. Light detection and ranging
(LiDAR) is an RS method that uses light in the form of a pulsed laser to measure ranges (i.e., variable
distances) to the Earth. These light pulses, combined with other data recorded by the airborne
system, generate precise, three-dimensional information about the shape of the Earth and its surface
characteristics. Airborne laser scanning (ALS) is a widely used LiDAR technology in forestry, which has
a unique advantage in 3D terrain and forest height detection. It can quickly and accurately obtain a
digital surface model (DSM) and forest height information for forested land [4,5]. According to the
statistics, single-tree detection algorithms that use active RS data, such as ALS, have grown rapidly in
recent years, accounting for 80% of the total increase in RS area, at the same time, those algorithms
using passive data or a fusion of passive and active data accounts for 8% and 12% respectively [6].
To date, there are many methods for single-tree detection based on ALS data acquired for forest
mapping, precision forestry management, and forest timber evaluation [7-12].
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Currently, some researchers have proposed automatic or semi-automatic single-tree detection
methods. According to the data processing, the single-tree detection method based on ALS data
can be divided into three categories: (1) raster-based methods; (2) point cloud-based methods;
and (3) methods combing raster, point cloud, and a prior information [13]. Our research focuses
on the raster-based method which is based on rasterized canopy height model (CHM). This type of
method needs to rasterize the point cloud data and detect single trees in the rasterized data. In this
method, height normalised ALS points are classified into ground points and above-ground points.
Then, the points are rasterised to produce a digital terrain model (DTM, ground points only) and
digital surface model (DSM, maximum of all points) by following the generation of a triangulated
irregular network. As a result, the CHM was built based on the DTM and the DSM. For example,
Hyyppa et al. [14] firstly used high-pulse-rate laser scanners to extract the information at tree level
and accurate 3D tree height maps, which is used for forest inventories at stand level. This method
calculated the stem volume and basal area for each tree by using the tree height and crown boundary
information obtained with the laser scanner for each individual tree. The precision obtained by the new
method is better than that in conventional standwise forest inventories. Persson et al. [15] generated
digital canopy model with different scales to estimate the height and crown diameter of identified
trees by using a parabolic surface. This study demonstrates the usefulness of airborne laser scanning
data for detecting and measuring individual trees. Popescu et al. [16] proposed a Local Maximum
(LM) technique with a variable window size, which is demonstrated more appropriate than the static
LM filter or the grid approach that arbitrarily selects only the highest values in a grid with a user
defined size. But, this study was based on rather limited samples with no stratification based on
tree species or ages. The LiDAR data were not fully exploited by neglecting secondary returns from
within the tree canopy. Chen et al. [17] proposed a marker-controlled watershed segmentation for
LiDAR CHM. This method identifies the treetops using variable window sizes to traverse the CHM
and then uses these treetops as markers to avoid over segmentation of the watershed algorithm [18,19].
This method is effective for isolating trees, and Chen’s software TIFFS (toolbox for LIDAR data filtering
and forest studies) is well-established in forest remote sensing. The disadvantage of this algorithm
is that the single-tree detection results depend on the seed point selection, and over-segmentation
often occurs. Dalponte et al. [20] proposed a method to exploit the rasterized CHM and ALS point
cloud with normalized heights. This method uses a moving window approach to select seed points if
they are the highest point inside the window and higher than 2.5 m. Then, it uses the region growing
algorithm to detect the single trees. Mohan et al. [21] proposed an individual tree detection system for
open canopy mixed conifer forests. This system evaluates the applicability of low consumer grade
cameras attached to unmanned aerial vehicles (UAVs) and a structure-from-motion (5fM) algorithm
for automatic individual tree detection using a local-maxima-based algorithm on UAV-derived CHM.
Zhao et al. [22] presented a method of region-based hierarchical cross-section analysis for individual
tree crown delineation using ALS data. This method uses the features of a mountain-like topographic
surface and adopts the vertical structure of crowns to detect treetops and delineate crown boundaries.
However, it is difficult to detect and delineate some flat crowns without a dominant protrusion on
CHM. Kaartinen et al. [23] conducts lots of experiment to show that the extraction method is the main
factor impacting achieved accuracy. However, sometimes the success of tree detection is dependent on
tree density and clustering [24].

In this paper, we provide a new idea for single tree detection, clustering by gradient orientation
information in CHM, which is named gradient orientation clustering (GOC). We group together the
raster cells in CHM whose gradient orientation point to the same one as a potential tree, then use
a density threshold that describes the compactness of the shape to select from potential trees as the
results. Finally, we compared different model parameter settings and the performance of our method
with eight other methods on a public dataset. Moreover, we analyzed the algorithm performance for
different forest types.
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2. Materials

2.1. Study Areas

The study areas in this paper were obtained from the NEWFOR (NEW technologies for a better
mountain FORest timber mobilization) project [25,26]. The distribution of the study areas is shown in
Figure 1.
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Figure 1. Study areas distribution. Red triangles represent different study areas that this paper
used, and yellow triangles represent the remaining areas of NEWFOR (NEW technologies for a better
mountain FORest timber mobilization) project.

NEWFOR aimed at enhancing the wood supply chain within the Alpine Space and provided
a benchmark dataset within different forest types for LIDAR-based single-tree detection. There are
eighteen plots across five countries in the benchmark dataset. As some of the plots were non-public,
twelve plots from the benchmark dataset were chosen as our study areas. Some important forest
parameters, such as the region and forest type of experimental plots are presented in Table 1.
The more detailed information, such as field measurements and plot description can be found in
NEWFOR project.

Table 1. Region and forest type of experimental plots.

. . . Forest Number of Field Inventory Date ALS Date
Plot_ID Region Country Main Species Type Reference Tree (year/month) (year/month)
1 . Scots pine, larch, and spruce ML/C 106
2 Cotolivier Italy Scots pine and larch SL/C 49 2012/9 2012/7
3 Montafon Austria Spruce ML/C 101 2009/6 2011/9
* Pellizzano Italy Larfﬁrz‘cfl’liaercf};’ z“fafrﬁore SL/c 46 2013/8 2012/9
5 s Spruce, H, sy ’ ML/M 235
and poplar
6 Spruce and fir SL/C 79
7 Asiago Ttaly Spruce, fir, and beech ML/M 106 2012/10 2012/7
8 Spruce, fir, and beech ML/M 168
9 Fir, spruce, and beech SL/M 53
10 X Fir, spruce, and beech SL/M 37
11 Leskova Slovenia Fir, spruce, beech, sycamore, and elm ML/M 117 2008/11 2009/10
12 Fir, beech and sycamore ML/M 92

ML/C: multi-layered coniferous forests; SL/C: single-layered coniferous forests; ML/M: multi-layered mixed
forests; SL/M: single-layered mixed forests.



Forests 2018, 9, 291 40f19

2.2. ALS Data and Reference Data

For all study plots, ALS data, DTM, as well as reference data were available in NEWFOR project,
and the detailed data used in this article can be downloaded from its website [25]. Since the dataset
originates from different institutions, the size and shape of these experimental plots are different.
Most of the twelve plots are 40 m in diameter, and some plots (i.e., 3, 10, 11, 12) are 50 m in diameter.
For the sake of comparative analysis, this study normalized twelve plots to the same size of 40 m
diameter. The 3D view of plot 10 ALS data is shown as an example in Figure 2, where the colour
represents the height of point. Red indicates high, and green indicates low.

(a) Top view (b) Side view

Figure 2. 3D view of ALS data.

The region and forest type of experimental plots are presented in Table 1, and more details can
be seen in NEWFOR project. Among these plots, 5 plots were multi-layered mixed forests (ML/M),
2 plots were multi-layered coniferous forests (ML/C), 2 plots were single-layered mixed forests (SL/M),
and 3 plots are single-layered coniferous forests (SL/C). The field measurements for plots 1, 2, 4, 5, 6,
7, and 8 occurred after the ALS data, while other plots (i.e., 3,9, 10, 11, 12) had field measurements
before the ALS data.

3. Methods

Existing single-tree detection algorithms require selection of the local maxima and thresholds for
window dimensions. For example, the watershed method extracts the similar conical geometry of
trees. However, this method must select the local maxima as seed points to avoid over-segmentation.
The seed point selection depends on the manual setting of the parameters that significantly affects the
experimental results.

In this study, we proposed a novel and automatic method to detect single trees from ALS
data through gradient orientation clustering. Like other single-tree detection algorithms (such as
watershed [19,27,28], valley-following [29,30], and active contour model [31,32]), our method considers
tree canopies as a mountain-like 3D topographic surface in the rasterized CHM, as shown in Figure 3a.
The gradient orientation of each point was calculated from the CHM. The gradient orientation of most
points moves towards the local maxima in rasterized CHM, as shown in Figure 3b. If it starts from any
point in rasterized CHM and moves along the gradient orientation of each point, it eventually reaches
the highest point, which is the local maxima point. All points that reach the same highest point are
clustered into the same class. Therefore, the points in the same cones are clustered together.
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Figure 3. Three-dimensional display of canopy height model (CHM) (a) and gradient orientation (b).

The process of the proposed method consists of three steps: (1) calculate the DSM based on
ALS data by retaining the highest altitude value of the points in each pixel, and then, the CHM is
derived by subtracting the DTM from the DSM; (2) obtain the potential single-trees from gradient
orientation clustering; and (3) select the final individual trees based on the density feature and
determine its coordinates.

3.1. Obtain the CHM from ALS Data

The point cloud in ALS data was irregularly distributed. However, the ALS height values can
be summarized into regular grids. Figure 4 is an example of the process of rasterization ALS point
cloud data to DSM. In this example, Ax = 5 dm and Ay = 5 dm are the length and width of the grid,
respectively, and r = 6 dm is the search radius of the rasterized pixels. There may be more than one
point in the same search range. We set the value of the rasterized pixels to the maximum height values
within the search range.
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(a) ALS point (b) Process of rasterization

Figure 4. The process of rasterizing ALS point cloud data to the digital surface model (DSM). The blue
point represent the ALS point. The black rectangles represent the rasterized pixels and the red cross
represents the value of a rasterized pixel.

The value will be set to 0 if there is no ALS-information available in a raster cell, which we called
black holes. Usually, there are some black holes in the rasterized DSM, which are caused by the
abnormal changes of the height values. This unnatural phenomenon may cause potential errors in the
treetop detection, but we can solve it through interpolation. Interpolation algorithm is a commonly
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used algorithm in image processing [33,34]. Usually, there are linear, cubic and nearest-neighbor
interpolation methods, and they are integrated into some image processing softwares, such as Matlab
(The MathWorks Inc., Natick, MA, USA). What we used is the cubic interpolation method.

As shown in Figure 5, the CHM can be directly subtracted from DSM to DTM. The value of each
raster cell in the CHM is the absolute height above ground. The values of some raster cells in the
calculated CHM may be less than zero, and those raster cells will be replaced using nearest-neighbour
interpolation [35]. Then, a 3 x 3 Gaussian filtering with o = 0.5 was used for image smoothing and
denoising of the CHM. Section 4.4 will discuss the selection of Gaussian filtering in detail.

DSM DTM CHM

Figure 5. Computing canopy height within each pixel based on the difference between the
surface model and the terrain model. DSM = digital surface model; DTM = digital terrain model;
CHM = canopy height model.
3.2. Gradient Orientation Clustering
The x-gradient-component Gy(x,y) of point (x,y) in the CHM can be calculated using the Sobel
operator [36]:

Gx(x,y) =CHM(x—1,y+1)+2CHM(x,y+1) + CHM(x+ 1,y +1)—

CHM(x -1,y — 1) — 2CHM(x,y — 1) — CHM(x + 1,5 — 1) @
The y-gradient-component Gy (x, y) is
Gy(x,y) = CHM(x +1,y —1) + 2CHM(x + 1,y) + CHM(x + 1,y +1)— 2
CHM(x—1,y—1) —2CHM(x —1,y) — CHM(x — 1,y + 1)
The gradient orientation 6(x, y) is
arctan(gigzg) Gx(x,y) >0
arctan(Z220) + 7 Gy(x,y) > 0,Ge(x,y) <0
Gy(x,
6(x,y) — { arctan( Gzﬁ;g;) — 7 Gy(x,y) <0,Ge(x,y) <0 ,0(x,) € [~71, +7] 3
+7 Gy(x,y) > 0,Gx(x,y) =0
—Z Gy(x,y) <0,Gx(x,y) =0
0 Gy(x,y) =0,Gx(x,y) =0

The pseudocode of 4-N GOC algorithm (Algorithm 1) is shown as follows.
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Algorithm 1. Pseudocode of 4-N GOC.

Input: CHM € RM*N

Output: label

Initialize: map = @, label < OM*N  index + 1

1. forx=1—-M

2. for y =1 — N // Traversing every point in the matrix

3. (xc,yc) < (x,y) I/l Select a current point from the matrix
4. if label (x¢,yc) == 0
5. map = @ I/ Clear the point set
6. end if
7. add (x.,y.) to map
8. if label (x¢,yc) == 0
9 (x,y") = argminZ0(a, B)
' (&, B) € {(xc +1,yc), (xc = Lye), (xe, ye + 1), (xc, e — 1)}
10. if CHM(x¢,y.) > CHM(x,y')
11. for (i,j) in map
12. label (i, j) < index I/ Set every point in map
13. end for
14. map = &
15. index < index + 1
16. goto line 2; // Set a new index and start the next cycle
17. else
18. (xe,ye) < (x,y')
19. goto line 4 // Set a new current point and do the above steps
20. end if
21. else
22. for (i,j)inmap
23. label (i, j) < label(x¢,y.) Il Set every point in map
24. end for
25. end if
26. end for
27.  end for

In the 4-N GOC algorithm, [abel is a label matrix with the size of CHM, which is initialized to
0. These points in label have a same value belong to the same class, (e.g., label(x,y) = k indicates
that point (x,y) belongs to class k). index is initialized to 1, and when it increments by 1 indicates
that one cluster is completed. map is a point set that stores the points belong to the same class in
clustering, and (i, j) represents a point in the map. (xc,y.) is the point being processed currently.
Z8(a, B) is the angle between the gradient orientation 6(x, yc) and the orientation from (xc,y.) to
(a, B), where (a, B) represents one neighbour point of (x¢, yc). (x,y’) is the neighbour point of (x, y.)
that has the minimum Z6(«, B).

The gradient orientation clustering (GOC) algorithm is a procedure to find a path from one
point to the last point of the cluster. According to the neighbour size, GOC can be divided into 4-N
(4-Neighbour) and 8-N (8-Neighbour) GOC algorithms. Compared with Pseudocode of 4-N GOC,
Pseudocode of 8-N GOC is only different in line 9 where

(xC + 1/ yC>/ (xC - 1/ ]/c)/ (xC/ yC + l)/ (xC/yC - 1)/
p) € 4
((X ﬁ) { (xc+1ryc+1)/(xc+1ryc_1)/(xc_Lyc"‘l)/(xc_lryc_l) ( )

Figure 6 is an example of the process of GOC. During the clustering, both 4-N and 8-N GOC
algorithms, the point that is nearest to the current point at the gradient direction is added to the
clustering path.
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(a) 4-N GOC (b) 8-N GOC

Figure 6. Example of gradient orientation clustering (GOC). The blue arrow represents the gradient
orientation of a point and the red squares represent the clustering path.

3.3. Single-Tree Selection

In CHM, the gradient orientation of the shrubs and edges of canopies are chaotic. Thus, after the
process of gradient orientation clustering, there is some noise and obviously erroneous detection objects
in the image, such as rough borders and small plaques. This noise and erroneous detection objects can
be eliminated by performing an image morphology opening and closing operation. We had performed
some experiments for the morphology opening and closing operation with different structural elements.
Finally, the 5 x 5 square structuring element is selected, as the 3 x 3 square has a poor smoothing
effect, and the 7 X 7 square may remove some trees correctly detected and distort the image. Although
most objects removed are noise and erroneous in the morphology operation, it is inevitable to remove
some small trees. For example, if the resolution of CHM is 0.5 m, we will not extract the crown less
than 2 m?, because the object less than 3 x 3 cells was removed.

The shape of the tree canopy should approximate a circle. As shown in Figure 7, the object of
region 2 is more such as a tree than region 1. The features of the image object that do not satisfy the
tree canopy shape must be removed. By defining the density value to describe the compactness of the
regions, the noise region (with an abnormal density value) can be removed. The density d is expressed
as follows [37]:

Vn

4= 1+ +/Var(X) + Var(Y)

where # is the number of image pixels for the object; X and Y are the x and y coordinates of all image
pixels that constitute the object; and Var is the variance operation. Density d describes the degree of
compactness of an object. An image object commonly resembles a square with high density.

Q)

Region 1, di=1.12 Region 2, d2=1.92

(a) Detected trees (b) Density value

Figure 7. An example of single-tree selection based on density feature. The green pixels and the red
pixels represent region 1 and region 2, respectively.
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We defined the density threshold T; as follows:
T; = ki1 —kp X res 6)

where res is the image resolution, k; and k; are two constants, and T; € (1,2). A higher image
resolution corresponds to a larger tree density in the image. Therefore, the appropriate ky and kp
must be selected to obtain the threshold at different resolutions. kj is the initial value of a threshold,
and ky € [1.2,2]. Use k; to adjust the threshold for different resolutions, where k; € [0,1]. When the
density of the image object d > T}, the image object is considered a tree. For example, the density of
region 2 in Figure 7a is 1.92, and the density of region 1 in Figure 7a is 1.12. Therefore, the object in
region 2 is more likely a tree.

The final step is to determine the centre points of the trees. In this paper, the centre of the
minimum circumscribed circle around the image object is considered the centre of a tree. The altitude
of the centre point is considered the tree height. The radius of the minimum circumscribed circle is
considered the crown radius of a tree. The effect of density features is detailly discussed in Section 4.1.

3.4. Parameters for Accuracy Evaluation

To prove the effectiveness of this method, we analysed the test results of this study with the
reference data. The detected tree and reference tree were considered a match if the horizontal difference
AH,p and vertical difference AV, were within a certain range. The matching process is as follows.
(1) Candidate tree selection: for a test tree, the reference trees are added to the candidate set if the
horizontal difference AH,p and vertical difference AV,y are within a certain threshold range. If the tree
is higher than 15 m, we set AHyy < 5 m and AV,y < 2m, else we set AHyy < 4mand AVyy < 1.5 m;
(2) Choose the best candidate tree: find the nearest reference tree to the test tree from the candidate
set as the best candidate tree; (3) Candidate testing: the matching problem is not a one-way problem.
A test tree needs to find the best matching reference tree. The reference tree also needs to find the best
matching test tree. These two trees are considered as a successful match only when the candidate tree
of the test results and the candidate tree of reference data are two candidate trees for each other.

The evaluation parameters and their calculation methods are defined as follows [26]:

e  Ny: Number of extracted trees

e N, Number of reference trees

e Nt Number of matched trees

®  Hyean: Mean horizontal difference of the matching trees

®  Viean: Mean tree height difference of the matching trees

e  Reyr (Extraction rate): Reytr = Niest/ Nief

®  Ryar Matching rate): Riar = Nyaten/ Nief

o  Reom (Commission rate): Reom = (Ntest — Nyatc) / Niest, Where commission represents misrecognized
of the test result.

®  Rom (Omission rate): Rom = (Nyef — Nyatcn)/ Nyer, Where omission represents leakage recognition of
the reference data.

These evaluation parameters were used to measure the matching results for each experimental
dataset. The extraction rate should be within a reasonable range. If the extraction rate is too high, (e.g.,
Rextr = 200%, that indicates at least half of the extracted trees cannot match reference trees, or many
extracted trees are incorrect). A higher matching rate indicates a better single-tree detection method.
A higher commission rate and omission rate indicate a worse single-tree detection method. Since each
above-mentioned indicator can only show one aspect of algorithm performance, we measure the
performance of the algorithm more comprehensive and directly by using a matching score. The idea
of using a matching score comes from Larsen’s work [38]. In Larsen’s work the matching score is
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M gesen = 100 X Nyasching / (Nmatching + Neom + Nom). In order to make it easier to compare with the
previous studies, we modified the matching score as below.

. M (Matching score): M = 100 x IWJ}RZ%

Although the expressions of these two formulas are different, a high matching score under our
criteria can also indicate that the algorithm performance is better. In addition, root mean square (RMS)
was used to evaluate the accuracy of model predictions. The evaluation parameters of the RMS were
defined as follows [26]:

e RMS_H: Root mean square of Hiyeqs.

e  RMS_V: Root mean square of Vean.

o  RMS_Reyr: Root mean square of Reyr.

o  RMS_Ry: Root mean square of Ry

o  RMS_Rm: Root mean square of Reop-

o  RMS_Ryu: Root mean square of Ry;.

e  RMS_M: Root mean square of matching score.

The RMS of X is defined as Formula (7), where X can be Hyean, Vinean, Rextrs Rinats Reom, Rom and M,

i represents the i-th plot.
14,
RMS_X = 521 X @)

This section aims to verify the effectiveness of our algorithm by conducting some related
experiments. Firstly, it shows the selection of appropriate parameters, such as 4-N or 8-N GOC,
different resolutions, different Gaussian filters, the values of k1, k, and T;. Next, it shows the results
of 4-N GOC and 8-N GOC for each plot, and evaluates the detection results by using the evaluation
criteria, such as extraction rate, matching rate, commission rate, omission rate, mean horizontal

4. Experiment & Discussion

distance and mean height distance. Then, to show the advantages of our method, it presents the
experiment results of RMS_Rextr, RMS_Ryat, RMS_Reom, RMS_Rom, RMS_H, and RMS_V for 12 plots
to compare the detection results of our method with other existing methods. Finally, it presents the
applicability of our algorithm for different forest types.

4.1. Analysis of Model Parameters

This section mainly presents the selection of experimental parameters. It first shows the effects of
using different Gaussian filters. Then, it shows the effects of density threshold. Finally, it presents the
effects of 4-N and 8-N and the effects of different resolutions of rasterized CHM.

We have tried several filter-specifications such as 3 x 3,5 x 5and 7 x 7 filtering to smoothen the
CHM. With the same window size, there is almost no difference in the performances for different o
values, so in our experiment we chose ¢ = 0.5.

Table 2 shows matching scores of all 12 plots and there RMS_M of no filter, 3 x 3,5 x 5 and
7 x 7 Gaussian filters. Moreover, Figure 8 shows 0.5 m CHM and the matching results of no filter,
3 x 3,5 x 5and 7 x 7 Gaussian filters in plot 10 using 4-N GOC method as an example. As we can
see, the matching score M of no filter, 3 x 3,5 x 5 and 7 x 7 Gaussian filters in plot 10 are 39, 45 45,
45. For plot 10, the detection result for the CHM using filter was better than the CHM without filter,
and the single tree detection using different gaussian filters almost had the same results. Moreover,
RMS_M of all these twelve plots showed that the detection result for the CHM using filter will have
better performance than the CHM without filter. For these filters, the 3 x 3 and 5 x 5 filter had a
better performance.
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(c) 3 x 3 filtering

0m 35m
ROI
Reference
Test -+

Matched trees

(d) 5 x 5 filtering () 7 x 7 filtering
Figure 8. Matching results of no filter, 3 x 3,5 x 5, and 7 x 7 Gaussian filters.

Table 2. Matching Scores of all Plots and their RMS_M for different Gaussian filters.

lot_ID
}m\ 1 2 3 4 5 6 7 8 9 10 11 12 RMS_M

no filtering 42 44 43 37 25 56 49 36 31 39 54 34 41
3x3 43 46 44 34 29 56 52 31 36 45 48 49 43
5x5 43 46 43 34 29 56 51 31 37 45 48 50 43
7x7 44 46 42 48 35 53 45 31 38 45 41 45 42

RMS_M: root mean square matching score.

For the impact of density threshold T, we also took plot 10 as an example. Table 3 shows
the matching results of plot 10 with T; of 0, 1.2, 1.4, and 1.6 respectively. The extracted number
decreases quickly when the threshold increases, and the matched number decreases rarely. Simply
said, the density threshold T, can help reduce the commission rate. Moreover, R,;; does not increase
with the same rate as R, decreases. Therefore, the matching score M by setting the density threshold
T,; will have better performance. When the threshold is within a certain range (1.2 to 1.6), the impact
on the result is not significant.

Table 3. Matching results of plot 10 with density threshold T, of 0, 1.2, 1.4, and 1.6 respectively.

Plot_ID
Td o N, test N, ref N, match Rextr Rmat Rcam Ram Hmeun Vmeun M
0 91 37 29 246% 78% 68% 22% 1.7m 1.2m 46
1.2 64 37 28 173% 76% 76% 24% 1.8m 1.2m 49
55 37 27 149% 73% 51% 27% 19m 1.3m 48
14 35 37 24 95% 65% 31% 35% 1.8m 12m 49

In addition, we used two detection methods to present the experimental results: 4-N and 8-N
gradient orientation clustering. The resolution of the CHM significantly affects the experimental
results. If the density of the ALS data is not sufficient to support a high-resolution CHM, the CHM
will have many null points. Although they can be filled using the interpolation method, this problem
inevitably increases the noise in the CHM. If the CHM resolution is too low, the information in the
CHM to compute the gradient orientation is inadequate and inaccurate. Then, the detection rate
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decreases; in particular, some small trees cannot be detected. To compare the experimental results,
we generated three different resolution (0.3 m, 0.5 m, 0.7 m) CHM in this paper. Table 4 shows different
parameters and the experimental results for all datasets. The three groups of k; and k; have notably
similar experiment results, which implies that the parameters have a minimal effect on the single-tree
matching result.

Table 4. Effects of different parameters on the matching results in single-tree detection.

Method Resolution k1, k» T, RMS_M

1.7,0.65 1.505 36

0.3m 1.55,0.5 1.4 37

14,0.35 1.295 37

1.7,0.65 1.375 41

4-N 0.5m 1.55,0.5 1.3 43
1.4,0.35 1.225 43

1.7,0.65 1.245 38

0.7 m 1.55,0.5 1.2 37

14,0.35 1.155 37

1.7,0.65 1.505 40

0.3m 1.55,0.5 1.4 40

14,0.35 1.295 40

1.7,0.65 1.375 36

&N 05m 1.55,0.5 1.3 36
1.4,0.35 1.225 36

1.7,0.65 1.245 33

0.7m 1.55,0.5 1.2 33

14,0.35 1.155 32

The best matching result is obtained when kj is 1.55 and k; is 0.5. Therefore, in our experiments,
the values of k; and k; can be set as 1.55 and 0.5, respectively. We do not need manually adjust the
values of these parameters according to the spatial resolutions of remote-sensing images, which enable
the automation of single-tree detection.

Table 5 shows the 4-N GOC and 8-N GOC matching results for CHM at 0.3 m, 0.5 m, and 0.7 m
resolutions over the entire dataset. The 4-N GOC single-tree detection method achieved relatively
satisfactory results at 0.5 m resolution. If the resolution of CHM is too high or too low, the results will
not be reasonable. If the CHM resolution is too high, the point density is sparse, which results in more
noise in the CHM. If the CHM resolution is too low, too much gradient information is lost in the CHM.

Table 5. Matching results of 4-N gradient orientation clustering (GOC) and 8-N GOC at different
resolutions. 4-N GOC achieves more satisfactory results at 0.5 m resolution.

RMS_Rextr RMS_Rmat RMS_Rcom RMS_Rom RMS_H RMS_V

Resolution  Method (%) (%) (%) (%) (m) (m) RMS_M
03 4-N 149 57 49 49 2.0 1.1 37
= m 8-N 249 68 62 36 2.0 1.0 41
05 4-N 124 63 42 42 1.9 1.0 43
- m 8-N 108 53 43 50 19 1.0 36
07 4-N 65 48 23 54 19 0.8 38
< m 8-N 59 42 28 60 1.8 0.9 32

As to the reason that 4-N GOC performs better than 8-N GOC in our algorithm, the remote sensing
image is not clear enough, so the gradient information is partly incorrect. In 8-N GOC, one raster cells
will have eight directions to point to, and there are less raster cells point to a same one compared with



Forests 2018, 9, 291 13 of 19

4-N GOC. Therefore, the clustering of 8-N is easy to converge prematurely, that results in an error
clustering, which can be verified from the commission rate. As we can see in Table 5, the commission
rate of 8-N GOC is higher than that of 4-N GOC no matter what the extraction rate is. Therefore,
we finally adopted 4-N GOC in our comparative experiment.

4.2. Results for Each Plot of the Dataset

This section gives the results of each plot and the evaluation results of relevant six parameters
(extraction rate, matching rate, commission rate, omission rate, mean horizontal distance and mean
height distance) of 4-N GOC and 8-N GOC for each plot with the 0.3 m, 0.5 m and 0.7 m CHM.

This study conducted the proposed single-tree detection algorithm in twelve plots of
approximately 20 metres in diameter, which belonged to multi-layered mixed forests (ML/M),
multi-layered coniferous forests (ML/C), single-layered mixed forests (SL/M), and single-layered
coniferous forests (SL/C), as shown in Table 1. Figure 9 illustrates the results of the extracted individual
trees by the 4-N GOC method with 0.5 m CHM.

Plot 10 Plot 11 Plot 12

® Reference treetops ® Extracted treetops Region of interest

Figure 9. Results for each plot of the dataset.

In this study, there were 1286 reference trees, and a total of 1189 trees were extracted using the
proposed algorithm in these twelve plots. The forest type of plots 1 and 3 were ML/C, and plots 2,
4, and 6 were SL/C. They were composed of coniferous trees, and the gradient of a coniferous tree
usually points to only one treetop, so these plots had good extracted rates. The main problem of these
plots was the omission rate. The forest type of plots 5, 7, 8, 11, and 12 were ML /M, and that of plots 9
and 10 was SL/M. They are mixed forests of conifer and broadleaf trees. As the gradient of a broadleaf
tree may point to multiple treetops, the commission rate of these plots was slightly high. Overall,
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the proposed algorithm extracted most individual treetops in four types of forests. The matching score
was M = 39 for ML/C plots, M = 51 for SL/C plots and M = 39 for ML/M plots, and M = 47 for SL/M
plots. However, there were some omitted and misrecognized trees in each plot. We will discuss the
matching results for different forest types in Section 4.4.

In Figure 10a, the extraction rate is higher when the resolution of the CHM resolution is higher,
but the extraction rate being too high is not necessarily a good thing. It will also result in a high
commission rate. The extraction rate should be in a suitable range (e.g., 50% to 150%). Then, we counted
the plot number of 4-N and 8-N GOC'’s extraction rate in a suitable range in total of 0.3 m, 0.5 m and
0.7 m are 11, 17, and 19, respectively.

A higher resolution corresponds to a higher matching rate because the extraction rate is high at
high resolution, where more trees are accurately extracted at the same time, and the matching rate
increases. At low resolution, the extraction rate is low and the number of accurately extracted trees
decreases. Therefore, the matching rate in the single-tree detection is low. A higher matching rate is
better, but we think that a result with greater than 60% the matching rate is a relatively good result.
As in Figure 10b, 4-N GOC and 8-N GOC in 0.5 m CHM achieved the most plots with an excellent
result. There were 10 plots of 4-N GOC with excellent results at 0.5 m resolution. These 10 plots include
all single-layered forests (plots 2, 4, 6, 9 and 10), which indicates that the method achieves good results
for single-layered forest types.

The commission is the misrecognized trees in the detection results; thus, the commission rate
increase with the extraction rate increase. As seen in Figure 10c, the commission rates in 0.3 m
CHM are higher than in 0.5 m and 0.7 m CHM. Because the density of ALS points in a pixel of the
rasterized CHM of 0.3 m resolution is low, the 0.3 m CHM contains more noise; therefore, there are
more misrecognized trees in the detection results. The omission is leakage in the reference trees, so the
omission rate increases with the extraction rate decrease. As seen in Figure 10d, the omission rates in
0.7 m CHM are higher than that in 0.3 m and 0.5 m CHM. Too much gradient information is lost when
generating CHM with 0.7 m resolution with ALS point cloud data, and the trees density feature in low
resolution CHM is difficult to recognize. Figure 10e,f show the mean horizontal and vertical distance
between the matched trees and reference trees. The mean horizontal distance of 0.3 m, 0.5 m, 0.7 m
CHM is 2.0 m, 1.9 m and 1.9 m respectively. The mean vertical distance of 0.3 m, 0.5 m, 0.7 m CHM is
1.1 m, 1.0 m and 0.9 m, respectively. The mean horizontal and vertical distance difference between
CHM of the three resolutions is small. Through the above histogram of six evaluation parameters,
we find that the proposed 4-N GOC and 8-N GOC achieve best result in CHM of 0.5 m resolution.
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Figure 10. Cont.
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Figure 10. The evaluation parameters for each plot of the study plots (the raster resolutions are 0.3, 0.5,
and 0.7 m respectively, and the numbers indicate the plot IDs).

4.3. Comparison with Previous Studies

To verify the effectiveness of the proposed GOC method, we conducted a comparative experiment
with eight previous single-tree detection methods. The experimental results (i.e., RMS_Rextr, RMS_Ryyat,
RMS_Reom, RMS_Roy, RMS_H, RMS_V) of these eight methods are provided in the study of
Eysn et al. [26]. Although these indicators are very specific, it is difficult to directly know the effect of
the algorithm. Therefore, we calculated the root mean square of matching scores (RMS_M), which can
directly compare the performance of these algorithms. In order to make it easier to compare with the
other algorithms compared by Eysn et al., we modified Larsen’s formula of matching score. Although
the expressions of these two formulas are different, the ideas of computing matching score are basically
consistent. Moreover, our method can produce similar results when N,ef = Niost-

Table 6 shows the matching results of various single-tree detection methods. The ninth method is
our method with 4-N GOC at 0.5 m resolution. The single-tree detection method with 4-N GOC can
achieve a 63% matching rate at 124% extraction rate, which is much higher than the other detection
methods. The commission rate in our method is 42%, which is lower than those of methods 3, 4, 5,
and 6. The omission rate in our method is 42%, which is lower than any other method. RMS_H is 1.9 m,
which is slightly higher than those of other methods; RMS_V is 1.0 m, which can reach the average
level of all other methods. For the RMS_M, our single-tree detection method of 4-N GOC achieves a
maximum RMS_M over the entire dataset. Therefore, the 4-N GOC is an excellent single-tree detection
method to detect single trees from the ALS data.
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Table 6. Matching results of single-tree detection methods. Our single-tree detection method with 4-N
GOC achieves a maximum RMS_M over the dataset.

ID Method RMS_Rextr  RMS_Rygt  RMS_Reom  RMS_Roy RMS_H  RMS_V. RMS_M
1 LM + filtering 51% 45% 9% 59% 1.6m 09m 40

2 LM + region growing 57% 43% 20% 61% 1.8 m 12m 35

3 LM + multi CHM 101% 46% 61% 57% 1.7m 0.7m 28

4 LM + Watershed 86% 49% 49% 55% 1.6m 11m 32

5 Segment + Clustering 139% 53% 95% 51% 1.7m 1.0m 27

6 LM3 x 3 154% 54% 113% 51% 1.6m 09m 25

7 LM5 x 5 52% 41% 16% 63% 1.8m 11m 34

8 Polyn. Fitting + Watershed 54% 44% 13% 59% 1.8m 11m 38

9 GOC 124% 63% 42% 42% 1.9m 1.0m 43

For further experiments, we also have implemented the related algorithms. For example,
we compared the matching results using our method with LM + filtering [39]. Figure 11 shows
the matching results for 4-N GOC and the LM + filtering method.

35m
ROI
Reference
Test -+
Matched trees

(a) 4N GOC (b) LM (5 x 5) + filtering  (c) LM (3 x 3) + filtering

Figure 11. Matching results of 4-N GOC and LM + filtering methods.

Figure 11a shows the matching results of 4-N GOC with 0.5 m resolution in plot 10 using 4-N GOC
method. The extraction rate is 170%, the matching rate is 76%, the commission rate is 56%, the omission
rate is 24%, and the matching score is 49. Figure 11b,c use the LM + filtering. In Figure 11b, the window
size is 5, the extraction rate is 91%, the matching rate is 59%, the commission rate is 35%, the omission
rate is 41%, and the matching score is 44. In Figure 11c, the window size is 3, the extraction rate is
329%, the matching rate is 81%, the commission rate is 75%, the omission rate is 19%, and the matching
score is 46. The results show that the 4-N GOC method can provide superior results, whereas the
LM + filtering method is strongly affected by the window size.

4.4. Analysis of Matching Results for Different Forest Types

The existing single-tree detection methods based on rasterized CHM are commonly used to detect
trees in a single-layered forest or dominant trees in a multi-layered forest. It is difficult to effectively
detect suppressed trees in a multi-layered forest. Though GOC cannot detect suppressed trees in a
multi-layered forest either, it can appropriately capture the dominant trees at least.

To explore the effect of the GOC algorithm on different types of forests, we applied our method
to detect single trees in both single-layered forests and multi-layered forests. Table 7 shows the
matching results for different types of forests using our 4-N GOC method at 0.5 m resolution.
According to the matching results, there are larger values of RMS_Reyty, RMS_Ry0t and RMS_R, in
single-layered mixed forests and single-layered coniferous forests. The values of RMS_M are 47 and
51 for the single-layered mixed forests and single-layered coniferous forests, respectively. Therefore,
our single-tree detection method is more suitable for non-overlapping trees in a single-layered forest.

Because CHM only contains the top layer information of the tree canopy, that leads to better
performance of the algorithm in single-layer forests than multi-layer forests. The matching results of
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multi-layered mixed forests and multi-layered coniferous forests have smaller values of RMS_Reyt,
RMS_Ryat and RMS_Reop than those of the single-layered forest. The values of RMS_M for the
multi-layered mixed forest and multi-layered coniferous forest is 39. Although the matching results of
the multi-layered forest are not as satisfactory as those of single-layered forests, they are still better than
most the other existing methods in Table 6. Therefore, GOC method can also be used to automatically
and effectively identify dominant trees in multi-layered forests.

Table 7. Matching results for different forest types.

Forest Type SL/M SL/C ML/M ML/C

RMS_Rext 163% 139% 116% 74%
RMS_Ryat 73% 73% 57% 52%
RMS_Reom 54% 44% 41% 30%
RMS_Rom 27% 27% 48% 50%

RMS_H 1.8 m 1.7m 20m 1.7m
RMS_V 1.1m 1.0m 09m 1.1m
RMS_M 47 51 39 39

SL/M: single-layered mixed forests; SL/C: single-layered coniferous forests; ML/M: multi-layered mixed forests;
ML/C: multi-layered coniferous forests.

5. Conclusions

This paper proposed an automatic method for single-tree detection in airborne laser scanning
data through gradient orientation clustering. The proposed method combines the height value of
CHM and gradient orientation information to cluster points belonging to the same crown as a conical
shape in a canopy to detect single-trees. In the experiments, we used the proposed method with two
different neighbour sizes (4-N and 8-N), and we presented the experimental results in six different
aspects, the extraction rate, matching rate, commission rate, omission rate, mean horizontal distance
and mean height distance. In our method, the CHM resolution significantly affects the experimental
results. If the ALS points density is not sufficient to support a high-resolution CHM, the CHM may
have some pits. Although they can be filled by using the linear interpolation method, this problem
inevitably distorts the CHM. If the CHM resolution is too low, the gradient orientation information of
the CHM is inadequate and inaccurate. This result in the extraction rate and matching rate obviously
decreasing and many small trees cannot be detected. Experiment shows that the overall matching
scores of the proposed GOC method in four types of forests are higher than those of the other eight
methods, and the root mean square matching score of GOC method (RMS_M is 43) at least 7% higher
than the other eight methods. Although the proposed method can detect dominant single trees in
multi-layered forests, this method has more satisfactory results in single-layered forests.

As to the types of forest communities, such as the broad-leaved forest, coniferous forest, and mixed
coniferous broad-leaved forest, as long as the tree crown has a conical shape, our method is applicable.
However, the single-tree detection method still has room for improvement, particularly for the
detection of multi-layer forest, as the information for different layers of the multi-layered forest
is insufficient in the CHM. Because of GOC method needs to calculate the gradient orientation of the
trees and small trees’” gradient orientation have deviation, it is not suitable for small trees” detection.
For example, GOC cannot correctly detect the crown whose projection area is below 2 m?. In the future,
our method will be combined with a point cloud-based method to detect small trees and find a way to
detect the suppressed trees in multi-layered forests.
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