Tree Community Phenodynamics and Its Relationship with Climatic Conditions in a Lowland Tropical Rainforest
<p>Climate and meteorological patterns in the União Biological Reserve region, southeastern Brazil (data from the Macaé weather station). (<b>A</b>) Walter-Lieth climate diagram [<a href="#B1-forests-09-00114" class="html-bibr">1</a>] of the last climate normal (1961–1990). The information above the panel corresponds to station location and altitude, the mean annual temperature, and the mean annual precipitation. Continuous and dotted lines indicate the monthly precipitation and mean temperature, respectively. The dotted area indicates dry period, the hatched areas indicate humid periods, and the black areas indicate wet periods; (<b>B</b>) Monthly photoperiod and (<b>C</b>) monthly total precipitation (gray bars) and mean, maximum, and minimum temperatures (line) for the study period (2006–2008).</p> "> Figure 1 Cont.
<p>Climate and meteorological patterns in the União Biological Reserve region, southeastern Brazil (data from the Macaé weather station). (<b>A</b>) Walter-Lieth climate diagram [<a href="#B1-forests-09-00114" class="html-bibr">1</a>] of the last climate normal (1961–1990). The information above the panel corresponds to station location and altitude, the mean annual temperature, and the mean annual precipitation. Continuous and dotted lines indicate the monthly precipitation and mean temperature, respectively. The dotted area indicates dry period, the hatched areas indicate humid periods, and the black areas indicate wet periods; (<b>B</b>) Monthly photoperiod and (<b>C</b>) monthly total precipitation (gray bars) and mean, maximum, and minimum temperatures (line) for the study period (2006–2008).</p> "> Figure 2
<p>Vegetative and reproductive phenodynamics of tree community of lowland Atlantic Forest in the União Biological Reserve from August 2006 to August 2008 (<span class="html-italic">n</span> = 182 species; 479 individuals). Phenograms represent the percentage of sampled species and individuals exhibiting the phenophase each month ((<b>A</b>)–(<b>E</b>), activity data) and the percentage of Fournier intensity (FI) and the Fournier intensity corrected by the basal area (FIU) of sampled individuals each month ((<b>F</b>)–(<b>J</b>), intensity data).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Phenological Sampling
2.3. Data Analysis
3. Results
3.1. Phenodynamics
3.2. The Relationship between Phenodynamics and Local Climatic Conditions
4. Discussion
4.1. Vegetative Phenophases
4.2. Reproductive Phenophases
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lieth, H. Purposes of a phenology book. In Phenology and Seasonality Modeling; Springer: Berlin, Germany, 1974; pp. 3–19. ISBN 9783642518638. [Google Scholar]
- Pau, S.; Wolkovich, E.M.; Cook, B.I.; Davies, T.J.; Kraft, N.J.B.; Bolmgren, K.; Betancourt, J.L.; Cleland, E.E. Predicting phenology by integrating ecology, evolution and climate science. Glob. Chang. Biol. 2011, 17, 3633–3643. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; Cook, B.I.; Davies, T.J. Progress towards an interdisciplinary science of plant phenology: Building predictions across space, time and species diversity. New Phytol. 2014, 201, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Bullock, S.H.; Solis-Magallanes, J.A. Phenology of Canopy Trees of a Tropical Deciduous Forest in Mexico. Biotropica 1990, 22, 22–35. [Google Scholar] [CrossRef]
- Newstrom, L.E.; Frankie, G.W.; Baker, H.G.; Colwell, R. Diversity of long-term flowering patterns. In La Selva: Ecology and Natural History of a Lowland Tropical Rainforest; McDade, L.A., Bawa, K.S., Hartshorn, G.S., Hespenheide, H., Eds.; University of Chicago Press: Chicago, IL, USA, 1994; ISBN 9780226039527. [Google Scholar]
- Morellato, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.E.; Leite, P.T.P.; et al. Linking plant phenology to conservation biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Camargo, M.G.G.; Gressler, E. A review of plant phenology in South and Central America. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 91–113. [Google Scholar]
- Chmielewski, F.-M.; Heider, S.; Moryson, S.; Bruns, E. International Phenological Observation Networks: Concept of IPG and GPM. In Phenology: An Integrative Environmental Science; Springer: Dordrecht, The Netherlands, 2013; pp. 137–153. [Google Scholar]
- Forrest, J.; Miller-rushing, A.J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3101–3112. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.G.; Freitas, L.; Pires, J.P.A. A Fournier Index upgrade as a new approach for quantitative phenological studies in plant communities. Trop. Ecol. 2014, 55, 137–142. [Google Scholar]
- Heideman, P.D. Temporal and Spatial Variation in the Phenology of Flowering and Fruiting in a Tropical Rainforest. J. Ecol. 1989, 77, 1059–1079. [Google Scholar] [CrossRef]
- Bencke, C.S.C.; Morellato, L.P.C. Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Rev. Bras. Bot. 2002, 25, 269–275. [Google Scholar] [CrossRef]
- Garcia, L.C.; Hobbs, R.J.; Mäes dos Santos, F.A.; Rodrigues, R.R. Flower and Fruit Availability along a Forest Restoration Gradient. Biotropica 2014, 46, 114–123. [Google Scholar] [CrossRef]
- Wright, S.J.; Calderon, O. Phylogenetic Patterns among Tropical Flowering Phenologies. J. Ecol. 1995, 83, 937–948. [Google Scholar] [CrossRef]
- Davis, C.C.; Willis, C.G.; Primack, R.B.; Miller-Rushing, A.J. The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3201–3213. [Google Scholar] [CrossRef] [PubMed]
- Gentry, A.H. Flowering Phenology and Diversity in Tropical Bignoniaceae. Biotropica 1974, 6, 64–68. [Google Scholar] [CrossRef]
- Lobo, J.A.; Quesada, M.; Stoner, K.E.; Fuchs, E.J.; Herrerias-Diego, Y.; Rojas, J.; Saborio, G. Factors affecting phenological patterns of bombacaceous trees in seasonal forests in Costa Rica and Mexico. Am. J. Bot. 2003, 90, 1054–1063. [Google Scholar] [CrossRef] [PubMed]
- Aide, T.M. Dry Season Leaf Production: An Escape from Herbivory. Biotropica 1992, 24, 532–537. [Google Scholar] [CrossRef]
- Frankie, G.W.; Baker, H.G.; Opler, P.A. Comparative Phenological Studies of Trees in Tropical Wet and Dry Forests in the Lowlands of Costa Rica. J. Ecol. 1974, 62, 881–919. [Google Scholar] [CrossRef]
- Garwood, N.C. Seed Germination in a Seasonal Tropical Forest in Panama: A Community Study. Ecol. Monogr. 1983, 53, 159–181. [Google Scholar] [CrossRef]
- Reich, P.B. Phenology of tropical forests: Patterns, causes, and consequences. Can. J. Bot. Rev. Can. Bot. 1995, 73, 164–174. [Google Scholar] [CrossRef]
- Borchert, R.; Renner, S.S.; Calle, Z.; Navarrete, D.; Tye, A.; Gautier, L.; Spichiger, R.; von Hildebrand, P. Photoperiodic induction of synchronous flowering near the Equator. Nature 2005, 433, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Borchert, R.; Calle, Z.; Strahler, A.H.; Baertschi, A.; Magill, R.E.; Broadhead, J.S.; Kamau, J.; Njoroge, J.; Muthuri, C. Insolation and photoperiodic control of tree development near the equator. New Phytol. 2015, 205, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Corlett, R.T.; Lafrankie, J.V., Jr. Potential Impacts of Climate Change on Tropical Asian Forests through an Influence on Phenology. Clim. Chang. 1998, 39, 439–453. [Google Scholar] [CrossRef]
- Wright, S.J.; van Schaik, C.P. Light and the Phenology of Tropical Trees. Am. Nat. 1994, 143, 192–199. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Talora, D.C.; Takahasi, A.; Bencke, C.C.; Romera, E.C.; Zipparro, V.B. Phenology of Atlantic Rain Forest Trees: A Comparative Study. Biotropica 2000, 32, 811–823. [Google Scholar] [CrossRef]
- Stevenson, P.R.; Castellanos, M.C.; Cortés, A.I.; Link, A. Flowering Patterns in a Seasonal Tropical Lowland Forest in Western Amazonia. Biotropica 2008, 40, 559–567. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, W.; Liu, S.; Dong, W. Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere 2015, 6, 2009–2016. [Google Scholar] [CrossRef]
- Talora, D.C.; Morellato, P.C. Fenologia de espécies arbóreas em floresta de planície litorânea do sudeste do Brasil. Rev. Bras. Bot. 2000, 23, 13–26. [Google Scholar] [CrossRef]
- Butt, N.; Seabrook, L.; Maron, M.; Law, B.S.; Dawson, T.P.; Syktus, J.; Mcalpine, C.A. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Glob. Chang. Biol. 2015, 21, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G.; Anjos, L.H.C.; Oliveira, V.A.; Oliveira, J.B.; Coelho, M.R.; Lumbrelas, J.F.; Cunha, T. Sistema Brasileiro de Classificação de Solos, 2nd ed.; EMBRAPA: Brasília, Brazil, 2006; ISBN 978-85-7035-198-2. [Google Scholar]
- Veloso, H.P.; Rangel Filho, A.L.R.; Lima, J.C.A. Classificação da Vegetação Brasileira Adaptada a um Sistema Universal; IBGE: Rio de Janeiro, Brazil, 1991; ISBN 8524003847. [Google Scholar]
- Oliveira-Filho, A.; Fontes, M. Patterns of Floristic Differentiation among Atlantic Forests in Southeastern Brazil and the Influence of Climate. Biotropica 2000, 32, 793–810. [Google Scholar] [CrossRef]
- Coe, H.H.G.; Alexandre, A.; Carvalho, C.N.; Santos, G.M.; da Silva, A.S.; Sousa, L.O.F.; Lepsch, I.F. Changes in Holocene tree cover density in Cabo Frio (Rio de Janeiro, Brazil): Evidence from soil phytolith assemblages. Quat. Int. 2013, 287, 63–72. [Google Scholar] [CrossRef]
- Fournier, L.A. Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 1974, 24, 422–423. [Google Scholar]
- Rodrigues, P.J.F.P. A Vegetação da Reserva Biológica União e os Efeitos de Borda na Mata Atlântica Fragmentada. Ph.D. Thesis, Universidade Estadual Norte Fluminense, Campos dos Goytacazes, Brazil, 2004. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 2008, 27, 2865–2873. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using LME4. J. Stat. Softw. 2014, 67. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. In R Package Version 1.15.6; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://cran.r-project.org/package=MuMIn (accessed on 22 December 2018).
- Harting, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. In R Package Version 0.1.5; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://cran.r-project.org/package=DHARMa (accessed on 22 December 2018).
- Dudley, K.L.; Dennison, P.E.; Roth, K.L.; Roberts, D.A.; Coates, A.R. A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients. Remote Sens. Environ. 2015, 167, 121–134. [Google Scholar] [CrossRef]
- Hawes, J.E.; Peres, C.A. Patterns of plant phenology in Amazonian seasonally flooded and unflooded forests. Biotropica 2016, 48, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Marques, C.M.; Oliveira, M.C.M.; Paulo, E.A.M. Fenologia de espécies do dossel e do sub-bosque de duas Florestas de Restinga na Ilha do Mel, sul do Brasil. Rev. Bras. Bot. 2004, 27, 713–723. [Google Scholar] [CrossRef]
- Oliveira Filho, A.T. Classificação das fitofisionomias da América do Sul cisandina Tropical e Subtropical: Proposta de um novo sistema-prático e flexível-ou uma injeção a mais de caos? Rodriguésia 2009, 60, 237–258. [Google Scholar] [CrossRef]
- Daubenmire, R. Phenology and Other Characteristics of Tropical Semi-Deciduous Forest in North-Western Costa Rica. J. Ecol. 1972, 60, 147–170. [Google Scholar] [CrossRef]
- Alvim, P.T. Tree growth periodicity in tropical climates. In The Formation of Wood in Forest Trees; Zimmermann, M.H., Ed.; Academic Press: New York, NY, USA, 1964; pp. 479–495. [Google Scholar]
- Rivera, G.; Elliott, S.; Caldas, L.S.; Nicolossi, G.; Coradin, V.T.R.; Borchert, R. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 2002, 16, 445–456. [Google Scholar] [CrossRef]
- Wright, S.J. Phenological Responses to Seasonality in Tropical Forest Plants. In Tropical Forest Plant Ecophysiology; Mulkey, S.S., Chazdon, R.L., Smith, A.P., Eds.; Springer: Boston, MA, USA, 1996; pp. 440–460. ISBN 978-1-4613-1163-8. [Google Scholar]
- Wright, S.J.; Cornejo, F.H. Seasonal Drought and Leaf Fall in a Tropical Forest. Ecology 1990, 71, 1165–1175. [Google Scholar] [CrossRef]
- Wu, J.; Albert, L.P.; Lopes, A.P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K.T.; Guan, K.; Stark, S.C.; Christoffersen, B.; Prohaska, N.; et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 2016, 351, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.A.; Mulkey, S.S.; Kitajima, K.; Phillips, N.G.; Wright, S.J. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc. Natl. Acad. Sci. USA 2003, 100, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, D.L.; Klein Tank, A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and Surface. In Climate Change 2013—The Physical Science Basis; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 159–254. ISBN 9781107415324. [Google Scholar]
- Mora, C.; Caldwell, I.R.; Caldwell, J.M.; Fisher, M.R.; Genco, B.M.; Running, S.W. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability. PLoS Biol. 2015, 13, e1002167. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Medway, L. Phenology of a tropical rain forest in Malaya. Biol. J. Linn. Soc. 1972, 4, 117–146. [Google Scholar] [CrossRef]
- Appanah, S. Mass flowering of dipterocarp forests in the aseasonal tropics. J. Biosci. 1993, 18, 457–474. [Google Scholar] [CrossRef]
- Brearley, F.Q.; Proctor, J.; Suriantata; Nagy, L.; Dalrymple, G.; Voysey, B.C. Reproductive phenology over a 10-year period in a lowland evergreen rain forest of central Borneo. J. Ecol. 2007, 95, 828–839. [Google Scholar] [CrossRef]
- Engel, V.L.; Martins, F.R. Reproductive phenology of Atlantic forest tree species in Brazil: An eleven year study. Trop. Ecol. 2005, 46, 1–16. [Google Scholar]
- Aximoff, I.; Freitas, L. Composição e comportamento de aves nectarívoras em Erythrina falcata (Leguminosae) durante duas florações consecutivas com intensidade diferentes. Rev. Bras. Ornitol. 2009, 17, 194–203. [Google Scholar]
- Hilty, S.L. Flowering and Fruiting Periodicity in a Premontane Rain Forest in Pacific Colombia. Biotropica 1980, 12, 292–306. [Google Scholar] [CrossRef]
- Diaz-Martin, Z.; Swamy, V.; Terborgh, J.; Alvarez-Loayza, P.; Cornejo, F. Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J. Trop. Ecol. 2014, 30, 291–301. [Google Scholar] [CrossRef]
- Justiniano, M.J.; Fredericksen, T.S. Phenology of Tree Species in Bolivian Dry Forests. Biotropica 2000, 32, 276–281. [Google Scholar] [CrossRef]
- Rivera, G.; Borchert, R. Induction of flowering in tropical trees by a 30-min reduction in photoperiod: Evidence from field observations and herbarium specimens. Tree Physiol. 2001, 21, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Kushwaha, C.P. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Ann. Bot. 2006, 97, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.P.W.; Lopes, A.V.; Zickel, C.S. Phenology of woody species in tropical coastal vegetation, northeastern Brazil. Flora Morphol. Distrib. Funct. Ecol. Plants 2007, 202, 513–520. [Google Scholar] [CrossRef]
- Marques, A.R.; Lemos Filho, J.P. De Fenologia reprodutiva de espécies de bromélias na Serra da Piedade, MG, Brasil. Acta Bot. Bras. 2008, 22, 417–424. [Google Scholar] [CrossRef]
- Yang, X.; Mustard, J.F.; Tang, J.; Xu, H. Regional-scale phenology modeling based on meteorological records and remote sensing observations. J. Geophys. Res. Biogeosci. 2012, 117, 1–18. [Google Scholar] [CrossRef]
- Melaas, E.K.; Friedl, M.A.; Richardson, A.D. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States. Glob. Chang. Biol. 2016, 22, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Maréchaux, I.; Bartlett, M.K.; Sack, L.; Baraloto, C.; Engel, J.; Joetzjer, E.; Chave, J. Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct. Ecol. 2015, 29, 1268–1277. [Google Scholar] [CrossRef]
Model | Lag | Df | logLik | AIC | ΔAIC | wi |
---|---|---|---|---|---|---|
(a) Leaf flush | ||||||
~ Photoperiod + Growing degree-days + Rainfall days | Lag 0 | 6 | −4372.27 | 8756.54 | 0.00 | 0.46 |
~ Growing degree-days + Rainfall days + Total precipitation | Lag 0 | 6 | −4373.16 | 8758.31 | 1.77 | 0.19 |
~ Photoperiod + Growing degree-days + Rainfall days + Total precipitation | Lag 0 | 7 | −4372.21 | 8758.42 | 1.88 | 0.18 |
~ Growing degree-days + Rainfall days * | Lag 0 | 5 | −4374.27 | 8758.53 | 1.99 | 0.17 |
(b) Leaf fall | ||||||
~ Photoperiod + Growing degree-days + Total precipitation | Lag 0 | 6 | −4125.22 | 8262.43 | 0.00 | 0.49 |
~ Photoperiod + Total precipitation * | Lag 0 | 5 | −4126.66 | 8263.32 | 0.88 | 0.32 |
~ Photoperiod + Growing degree-days + Rainfall days + Total precipitation | Lag 0 | 7 | −4125.19 | 8264.37 | 1.94 | 0.19 |
(c) Flowering | ||||||
~ Photoperiod + Growing degree-days + Total precipitation * | Lag 0 | 6 | −931.91 | 1875.81 | 0.00 | 0.62 |
(d) Fruiting (green) | ||||||
~ Flowering + Rainfall days * | Lag 2 | 5 | −855.58 | 1721.17 | 0.00 | 0.43 |
~ Flowering + Rainfall days + Total precipitation | Lag 2 | 6 | −855.23 | 1722.46 | 1.30 | 0.23 |
~ Growing degree-days + Flowering + Rainfall days | Lag 2 | 6 | −855.47 | 1722.94 | 1.78 | 0.18 |
~ Photoperiod + Flowering + Rainfall days | Lag 2 | 6 | −855.56 | 1723.12 | 1.96 | 0.16 |
(e) Fruiting (mature) | ||||||
~ Fruiting (green) * | Lag 1 | 4 | −613.47 | 1234.95 | 0.00 | 0.24 |
~ Fruiting (green) + Rainfall days | Lag 1 | 5 | −612.59 | 1235.17 | 0.23 | 0.21 |
~ Fruiting (green) + Rainfall days + Total precipitation | Lag 1 | 6 | −612.09 | 1236.17 | 1.23 | 0.13 |
~ Growing degree-days + Fruiting (green) | Lag 1 | 5 | −613.18 | 1236.35 | 1.41 | 0.12 |
~ Growing degree-days + Fruiting (green) + Rainfall days | Lag 1 | 6 | −612.28 | 1236.57 | 1.62 | 0.11 |
~ Photoperiod + Fruiting (green) | Lag 1 | 5 | −613.36 | 1236.71 | 1.76 | 0.10 |
~ Fruiting (green) + Total precipitation | Lag 1 | 5 | −613.47 | 1236.94 | 2.00 | 0.09 |
Predictor | Lag | Slope | SE | z | p |
---|---|---|---|---|---|
(a) Leaf flush | |||||
Intercept | −0.52 | 0.02 | −30.34 | <0.001 | |
Rainfall days | lag 0 | −0.22 | 0.03 | −7.02 | <0.001 |
Growing degree-days | lag 0 | 0.32 | 0.03 | 10.31 | <0.001 |
(b) Leaf fall | |||||
Intercept | −0.91 | 0.04 | −25.87 | <0.001 | |
Total precipitation | lag 0 | −0.38 | 0.05 | −8 | <0.001 |
Photoperiod | lag 0 | −0.55 | 0.04 | −13.24 | <0.001 |
(c) Flowering | |||||
Intercept | −3.34 | 0.1 | −33.84 | <0.001 | |
Total precipitation | lag 0 | −0.64 | 0.14 | −4.44 | <0.001 |
Photoperiod | lag 0 | 1.4 | 0.17 | 8.29 | <0.001 |
Growing degree-days | lag 0 | −0.61 | 0.16 | −3.8 | <0.001 |
(d) Fruiting (green) | |||||
Intercept | −3.27 | 0.14 | −22.56 | <0.001 | |
Flowering | lag 1 | 1.48 | 0.27 | 5.52 | <0.001 |
Rainfall days | lag 2 | −0.24 | 0.11 | −2.29 | 0.022 |
(e) Fruiting (mature) | |||||
Intercept | −5.85 | 0.27 | −22.05 | <0.001 | |
Fruiting (green) | lag 1 | 5.72 | 0.33 | 17.54 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, J.P.A.; Marino, N.A.C.; Silva, A.G.; Rodrigues, P.J.F.P.; Freitas, L. Tree Community Phenodynamics and Its Relationship with Climatic Conditions in a Lowland Tropical Rainforest. Forests 2018, 9, 114. https://doi.org/10.3390/f9030114
Pires JPA, Marino NAC, Silva AG, Rodrigues PJFP, Freitas L. Tree Community Phenodynamics and Its Relationship with Climatic Conditions in a Lowland Tropical Rainforest. Forests. 2018; 9(3):114. https://doi.org/10.3390/f9030114
Chicago/Turabian StylePires, Jakeline P. A., Nicholas A. C. Marino, Ary G. Silva, Pablo J. F. P. Rodrigues, and Leandro Freitas. 2018. "Tree Community Phenodynamics and Its Relationship with Climatic Conditions in a Lowland Tropical Rainforest" Forests 9, no. 3: 114. https://doi.org/10.3390/f9030114
APA StylePires, J. P. A., Marino, N. A. C., Silva, A. G., Rodrigues, P. J. F. P., & Freitas, L. (2018). Tree Community Phenodynamics and Its Relationship with Climatic Conditions in a Lowland Tropical Rainforest. Forests, 9(3), 114. https://doi.org/10.3390/f9030114