Molecular Data Reveal Unrecognized Diversity in the European Ganoderma resinaceum
<p>Sequence diversity between <span class="html-italic">Ganoderma resinaceum</span> genotypes. (<b>A</b>) Comparison of aligned ITS sequences of <span class="html-italic">G. resinaceum</span> genotypes A and B; (<b>B</b>) comparison of aligned partial translation elongation factor 1-α (<span class="html-italic">tef1-α</span>) sequences of <span class="html-italic">G. resinaceum</span> genotypes A and B.</p> "> Figure 2
<p>Genetic diversity between <span class="html-italic">Ganoderma resinaceum</span> genotypes and related <span class="html-italic">Ganoderma</span> species documented by internal transcribed spacer (ITS) sequence analysis. Maximum parsimony phylogenetic tree documenting phylogenetic relatedness of <span class="html-italic">Ganoderma resinaceum</span> specimens from Slovakia based on internal transcribed spacer sequences comparison. The sequences obtained through this study are underlined. Numbers at nodes are bootstrap values after 1000 repetitions (only values over 80 are shown). ITS sequence of <span class="html-italic">Trametes versicolor</span> (GenBank accession number JF437649) was used as an outgroup. The geographical origin and host plant of specimens are shown (if available). The bar indicates the number of nucleotide changes over the whole sequence.</p> "> Figure 3
<p>Genetic diversity between <span class="html-italic">Ganoderma resinaceum</span> genotypes documented by <span class="html-italic">tef1-α</span> sequence analysis. Maximum parsimony phylogenetic tree documenting phylogenetic relatedness of <span class="html-italic">Ganoderma resinaceum</span> specimens from Slovakia based on <span class="html-italic">tef1-α</span> region sequences comparison. The sequences obtained through this study are underlined. Numbers at nodes are bootstrap values after 1000 repetitions (only values over 80 are shown). <span class="html-italic">Tef1-α</span> sequence of <span class="html-italic">Trametes versicolor</span> (GenBank accession number KX880919) was used as an outgroup. The bar indicates the number of nucleotide changes over the whole sequence.</p> "> Figure 4
<p>Comparison of normalized matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI–TOF MS) spectra of <span class="html-italic">G. resinaceum</span> genotype A. (right) GSP strain and genotype B; (left) SADS1 strain.</p> "> Figure 5
<p>Similarity dendrogram of <span class="html-italic">Ganoderma</span> spp. strains based on MALDI–TOF spectra comparisons. The vertical line at distance value 500 indicates cutoff score for species delineation. Numbers after strains designation indicate biologic replicates.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens and Strains Examined
2.2. DNA Isolation and Analysis
2.3. PCR Amplification and Sanger Sequencing
2.4. Phylogenetic Analyses
2.5. MALDI–TOF MS Analysis
3. Results
3.1. Variability of Partial Translation Elongation Factor Tef1-α Region Sequences
3.2. Variability of Partial 25S Large Subunit Ribosomal RNA Gene Sequences
3.3. MALDI–TOF MS Analysis
3.4. Morphologic Features
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
agg. | aggregatum |
CTAB | cetrimonium bromide |
DNA | deoxyribonucleic acid |
EDTA | ethylenediaminetetraacetic acid |
ibid. | ibidem |
ITS | internal transcribed spacer |
LSU | large subunit ribosomal RNA |
MALDI–TOF MS | matrix-assisted laser desorption ionization time-of-flight mass spectrometry |
MgCl2 | magnesium chloride |
MSP | main spectrum profiles |
NaCl | sodium chloride |
PCR | polymerase chain reaction |
RFLP | restriction fragment length polymorphism |
RNA | ribonucleic acid |
s. str. | sensu stricto |
SSU | small subunit ribosomal RNA |
tef1-α | partial translation elongation factor 1-α |
Tris-HCl | tris hydrochloride |
UPGMA | unweighted pair group method with arithmetic mean |
References
- Kotlaba, F. Common polypores (Polyporales s.l.) collected on uncommon hosts. Czech Mycol. 1997, 49, 169–188. [Google Scholar] [CrossRef]
- Chen, X.Q.; Chen, L.X.; Zhao, J.; Tang, Y.P.; Li, S.P. Nortriterpenoids from the fruiting bodies of the mushroom Ganoderma resinaceum. Molecules 2017, 22, 1073. [Google Scholar] [CrossRef]
- Oyetayo, O.V. Medicinal uses of mushrooms in Nigeria: Towards full and sustainable exploitation. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Patouillard, N.T. Le genre Ganoderma. Bull. Soc. Mycol. Fr. 1889, 5, 64–80. [Google Scholar]
- Steyaert, R.L. Species of Ganoderma and related genera mainly of the Bogor and Leiden herbaria. Persoonia 1972, 7, 55–118. [Google Scholar]
- Beck, T.; Gáperová, S.; Gáper, J.; Náplavová, K.; Šebesta, M.; Kisková, J.; Pristaš, P. Genetic (non)-homogeneity of the bracket fungi of the genus Ganoderma (Basidiomycota) in Central Europe. Mycosphere 2020, 11, 225–238. [Google Scholar] [CrossRef]
- Moncalvo, J.M. Systematics of Ganoderma. In Ganoderma Diseases of Perennial Crops; Flood, J., Bridge, P.D., Holderness, M., Eds.; CAB International: Oxon, UK, 2000; pp. 23–45. [Google Scholar]
- Hong, S.G.; Jung, H.S. Phylogenetic analysis of Ganoderma based on nearly complete mitochondrial small-subunit ribosomal DNA sequences. Mycologia 2004, 96, 742–755. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.W.; Cao, Y.; Wu, S.H.; Vlasák, J.; Li, D.W.; Li, M.J.; Dai, Y.-C. Global diversity of the Ganoderma lucidum complex (Ganodermataceae, Polyporales) inferred from morphology and multilocus phylogeny. Phytochemistry 2015, 114, 7–15. [Google Scholar] [CrossRef]
- Papp, V.; Dima, B.; Wasser, P.S. What Is Ganoderma lucidum in the molecular era? Int. J. Med. Mushrooms 2017, 19, 575–593. [Google Scholar] [CrossRef]
- Breitenbach, J.; Kranzlin, F. Fungi of Switzerland, Non Gilled Fungi, 2nd ed.; Mykologia Verlag: Luzern, Switzerland, 1986; p. 412. [Google Scholar]
- Gilbertson, R.L.; Ryvarden, L. North American Polypores, Megasporoporia-Wrightoporia, 2nd ed.; Fungiflora: Oslo, Norway, 1987; pp. 437–885. [Google Scholar]
- Hansen, L.; Knudsen, H. (Eds.) Nordic Macromycetes, Vol. 3: Heterobasidioid, Aphyllophoroid and Gastromycetoid Basidiomycetes, 3rd ed.; Nordsvamp: Copenhagen, Denmark, 1997; p. 444. [Google Scholar]
- Bernicchia, A. Polyporaceae s.l. In Fungi Europaei; Candusso: Alassio, Italy, 2005; Volume 10. [Google Scholar]
- Ryvarden, L.; Melo, I. Poroid Fungi of Europe; Fungiflora: Oslo, Norway, 2014; p. 455. [Google Scholar]
- Cooper, J.; Kirk, P. CABI Bioscience Database, Landscape Research, Index Fungorum Database. Available online: http://www.speciesfungorum.org/Names/Names.asp (accessed on 9 November 2019).
- IPNI—The International Plant Names Index. Available online: http://www.ipni.org (accessed on 9 November 2019).
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, G.M., Shinsky, D., White, T., Eds.; Academic: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Pristaš, P.; Gáperová, S.; Gáper, J.; Júdová, J. Genetic variability in Fomes fomentarius reconfirmed by translation elongation factor 1-α DNA sequences and 25S LSU rRNA sequences. Biologia 2013, 68, 816–820. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xu, Z.; Pei, H.; Chen, Z.; Tan, X.; Hu, J.; Yang, B.; Sun, J. Intraspecific variation and phylogenetic relationships are revealed by ITS1 secondary structure analysis and single-nucleotide polymorphism in Ganoderma lucidum. PLoS ONE 2017, 12, e0169042. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Pristaš, P.; Kvasnová, S.; Gáperová, S.; Gašparcová, T.; Gáper, J. Application of MALDI-TOF mass spectrometry for in-vitro identification of wood decay polypores. Forest Pathol. 2017, 47, e12352. [Google Scholar] [CrossRef]
- Bickford, D.; Lohman, D.J.; Sodhi, N.S.; Ng, P.K.L.; Meier, R.; Winker, K.; Ingram, K.K.; Das, I. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 2007, 22, 148–155. [Google Scholar] [CrossRef]
- Korhonen, A.; Seelan, J.S.S.; Miettinen, O. Cryptic species diversity in polypores: The Skeletocutis nivea species complex. MycoKeys 2018, 36, 45–82. [Google Scholar] [CrossRef]
- Gáper, J.; Gáperová, S.; Pristaš, P.; Náplavová, K. Medicinal value and taxonomy of the Tinder polypore, Fomes fomentarius (Agaricomycetes): A Review. Int. J. Med. Mushrooms 2016, 18, 851–859. [Google Scholar] [CrossRef]
- Dai, Y.C.; Korhonen, K. Heterobasidion australe, a new polypore derived from the Heterobasidion insulare complex. Mycoscience 2009, 50, 353–356. [Google Scholar] [CrossRef]
- Chen, J.J.; Korhonen, K.; Li, W.; Dai, Y.C. Two new species of the Heterobasidion insulare complex based on morphology and molecular data. Mycoscience 2014, 55, 289–298. [Google Scholar] [CrossRef]
- Vasaitis, R.; Menkis, A.; Lim, Y.W.; Seok, S.; Tomšovský, M.; Jankovský, L.; Lygis, V.; Slippers, B.; Stenlid, J. Genetic variation and relationships in Laetiporus sulphureus s. lat., as determined by ITS rDNA sequences and in vitro growth rate. Mycol. Res. 2009, 113, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Banik, M.T.; Lindner, D.L.; Ota, Y.; Hattori, T. Relationships among North American and Japanese Laetiporus isolates inferred from molecular phylogenetics and single-spore incompatibility reactions. Mycologia 2010, 102, 911–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Sun, Y.F.; Ji, X.; Dai, Y.C.; Cui, B.K. Phylogeny and taxonomy of Laetiporus (Basidiomycota, Polyporales) with descriptions of two new species from western China. MycoKeys 2018, 37, 57–71. [Google Scholar] [CrossRef]
- Tomšovský, M.; Vampola, P.; Sedlák, P.; Byrtusová, Z.; Jankovský, L. Delimitation of central and northern European species of the Phellinus igniarius group (Basidiomycota, Hymenochaetales) based on analysis of ITS and translation elongation factor 1 alpha DNA sequences. Mycol. Prog. 2010, 9, 431–445. [Google Scholar] [CrossRef]
- Zhou, L.W.; Vlasák, J.; Qin, W.M.; Dai, Y.C. Global diversity and phylogeny of the Phellinus igniarius complex (Hymenochaetales, Basidiomycota) with the description of five new species. Mycologia 2016, 108, 192–204. [Google Scholar] [CrossRef]
- Ayissi, B.M.K.; Mossebo, D.C. Some noteworthy taxonomic variations in the complex wood-decayer Ganoderma resinaceum (Basidiomycota) with reference to collections from tropical Africa. Kew Bull. 2014, 69, 9542. [Google Scholar] [CrossRef]
- Hernández, M.C.; Arámbula, A.R.V.; Torres, M.G.T.; Decock, C.; Dávalos, L.G. The Ganoderma weberianum-resinaceum lineage: Multilocus phylogenetic analysis and morphology confirm G. mexicanum and G. parvulum in the Neotropics. MycoKeys 2019, 59, 95–131. [Google Scholar] [CrossRef] [Green Version]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef] [Green Version]
- Stielow, J.B.; Lévesque, C.A.; Seifert, K.A.; Meyer, W.; Iriny, L.; Smits, D.; Renfurm, R.; Verkley, G.J.M.; Groenewald, M.; Chaduli, D.; et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015, 35, 242–263. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Leyssene, D.; Chacornac, J.P.; Kostrzewa, M.; Schmit, P.O.; Talon, R.; Bonnet, R.; Delmas, J. Identification of a variety of Staphylococcus species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Alispahic, M.; Christensen, H.; Bisgaard, M.; Hess, M.; Hess, C. MALDI-TOF mass spectrometry confirms difficulties in separating species of the Avibacterium genus. Avian Pathol. 2014, 43, 258–263. [Google Scholar] [CrossRef] [Green Version]
- Mutters, N.T.; Burckhardt, I.; Heeg, K. MALDI-TOF mass spectrometry as a tool for epidemiological outbreak analysis—Can it work? J. Med. Diagn. Meth. 2015, 4, 184. [Google Scholar] [CrossRef]
- Krajaejuna, T.; Lohnoob, T.; Jittorntamb, P.; Srimongkolb, A.; Kumsangb, Y.; Yingyongb, W.; Rujirawatb, T.; Reamtongc, O.; Mangmeec, S. Assessment of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification and biotyping of the pathogenic oomycete Pythium insidiosum. Int. J. Infect. Dis. 2018, 77, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Schrödl, W.; Heydel, T.; Schwartze, V.U.; Hoffmann, K.; Grosse-Herrenthey, A.; Walther, G.; Alastruey-Izquierdo, A.; Rodriguez-Tudela, J.L.; Olias, P.; Jacobsen, I.D.; et al. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry. J. Clin. Microbiol. 2012, 50, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Tomé, L.M.R.; Badotti, F.; Assis, G.B.N.; Fonseca, P.L.C.; Silva, G.A.; Silveira, R.M.B.; Costa-Rezende, D.H.; Santos, E.R.D.; Carvalho Azevedo, V.A.; Figueiredo, H.C.P.; et al. Proteomic fingerprinting for the fast and accurate identification of species in the Polyporoid and Hymenochaetoid fungi clades. J. Proteom. 2019, 203, 103390. [Google Scholar] [CrossRef]
- Loyd, A.L.; Barnes, C.W.; Held, B.W.; Schink, M.J.; Smith, M.E.; Smith, J.A.; Blanchette, R.A. Elucidating “lucidum”: Distinguishing the diverse laccate Ganoderma species of the United States. PLoS ONE 2018, 13, e0199738. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Náplavová, K.; Beck, T.; Pristaš, P.; Gáperová, S.; Šebesta, M.; Piknová, M.; Gáper, J. Molecular Data Reveal Unrecognized Diversity in the European Ganoderma resinaceum. Forests 2020, 11, 850. https://doi.org/10.3390/f11080850
Náplavová K, Beck T, Pristaš P, Gáperová S, Šebesta M, Piknová M, Gáper J. Molecular Data Reveal Unrecognized Diversity in the European Ganoderma resinaceum. Forests. 2020; 11(8):850. https://doi.org/10.3390/f11080850
Chicago/Turabian StyleNáplavová, Kateřina, Terézia Beck, Peter Pristaš, Svetlana Gáperová, Martin Šebesta, Mária Piknová, and Ján Gáper. 2020. "Molecular Data Reveal Unrecognized Diversity in the European Ganoderma resinaceum" Forests 11, no. 8: 850. https://doi.org/10.3390/f11080850
APA StyleNáplavová, K., Beck, T., Pristaš, P., Gáperová, S., Šebesta, M., Piknová, M., & Gáper, J. (2020). Molecular Data Reveal Unrecognized Diversity in the European Ganoderma resinaceum. Forests, 11(8), 850. https://doi.org/10.3390/f11080850