Development of Full Growth Cycle Crown Width Models for Chinese Fir (Cunninghamia lanceolata) in Southern China
<p>Sample point distribution map.</p> "> Figure 2
<p>Methodology framework.</p> "> Figure 3
<p>Pearson’s correlation coefficients and collinearity tests among multiple variables and crown width: (<b>a</b>) correlation coefficients of CW with other variables; (<b>b</b>) collinearity of CW with each variable, where the y−axis shows the VIF values. CW, crown width; A, stand age (year); SD, stand density; CD, canopy closure; DBH, diameter at breast height; H, tree height; HCB, height to crown base; DH, dominant tree height.</p> "> Figure 4
<p>Comparison of model performance for predicting Chinese fir crown width (<span class="html-italic">RMSE</span>, Root Mean Square Error; <span class="html-italic">TRE</span>, Total Relative Error; blue points, training dataset; orange points, validation dataset).</p> "> Figure 5
<p>Distribution of residuals for three models predicting the CW of Chinese fir trees.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Data Collection and Pre-Processing
Chinese Fir Tree Ground Survey Data
2.4. Model Establishment
2.4.1. Variable Selection
2.4.2. Basic Model Construction
2.4.3. Construction of Dummy Variable Model
2.4.4. Two-Level NLME Models Establishment
3. Results
3.1. Parameter Optimization
3.2. Binary Model Results
3.3. Dummy Variable Model
3.4. Prediction Results of Two-Level NLME Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, L.; Mei, G.; Wang, Y.; Saeed, S.; Chen, L.; Cao, Y.; Sun, Y. Generalized Nonlinear Mixed-Effect Model of Individual TREE Height to Crown Base for Larix Olgensis Henry in Northeast China. J. Sustain. For. 2020, 39, 827–840. [Google Scholar] [CrossRef]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.C.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees. Glob. Change Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Monserud, R.A.; Sterba, H. A Basal Area Increment Model for Individual Trees Growing in Even- and Uneven-Aged Forest Stands in Austria. For. Ecol. Manag. 1996, 80, 57–80. [Google Scholar] [CrossRef]
- Zarnoch, S.; Bechtold, W.; Stolte, K. Using Crown Condition Variables as Indicators of Forest Health. Can. J. For. Res. Rev. Can. De. Rech. For. Can. J. Forest. Res. 2004, 34, 1057–1070. [Google Scholar] [CrossRef]
- Safe’i, R.; Ardiansyah, F.; Banuwa, I.S.; Yuwono, S.B.; Maulana, I.R.; Muslih, A.M. Analysis of Internal Factors Affecting the Health Condition of Mangrove Forests in the Coastal Area of East Lampung Regency. IOP Conf. Ser. Earth Environ. Sci. 2021, 912, 012070. [Google Scholar] [CrossRef]
- Goodman, R.; Phillips, O.; Baker, T. The Importance of Crown Dimensions to Improve Tropical Tree Biomass Estimates. Ecol. Appl. A Publ. Ecol. Soc. Am. 2014, 24, 680–698. [Google Scholar] [CrossRef]
- Lohbeck, M.; Lebrija-Trejos, E.; Martínez-Ramos, M.; Meave, J.A.; Poorter, L.; Bongers, F. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession. PLoS ONE 2015, 10, e0123741. [Google Scholar] [CrossRef]
- Tian, D.; He, P.; Jiang, L.; Gaire, D. Developing Crown Width Model for Mixed Forests Using Soil, Climate and Stand Factors. J. Ecol. 2024, 112, 427–442. [Google Scholar] [CrossRef]
- Ishii, H.T.; Tanabe, S.; Hiura, T. Exploring the Relationships Among Canopy Structure, Stand Productivity, and Biodiversity of Temperate Forest Ecosystems. For. Sci. 2004, 50, 342–355. [Google Scholar] [CrossRef]
- Chen, Q.; Duan, G.; Liu, Q.; Ye, Q.; Sharma, R.P.; Chen, Y.; Liu, H.; Fu, L. Estimating Crown Width in Degraded Forest: A Two-Level Nonlinear Mixed-Effects Crown Width Model for Dacrydium Pierrei and Podocarpus Imbricatus in Tropical China. For. Ecol. Manag. 2021, 497, 119486. [Google Scholar] [CrossRef]
- Hou, R.; Chai, Z. Predicting Crown Width Using Nonlinear Mixed-Effects Models Accounting for Competition in Multi-Species Secondary Forests. PeerJ 2022, 10, e13105. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Ohtani, M.; Washitani, I. Tree Crown Size Estimated Using Image Processing: A Biodiversity Index for Sloping Subtropical Broad-Leaved Forests. Trop. Conserv. Sci. 2017, 10, 1940082917721787. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Banin, L.; Phillips, O.L.; Baker, T.R.; Lewis, S.L.; Quesada, C.A.; Affum-Baffoe, K.; Arets, E.J.M.M.; Berry, N.J.; Bird, M.; et al. Height-Diameter Allometry of Tropical Forest Trees. Biogeosciences 2011, 8, 1081–1106. [Google Scholar] [CrossRef]
- Lei, Y.; Fu, L.; Affleck, D.L.R.; Nelson, A.S.; Shen, C.; Wang, M.; Zheng, J.; Ye, Q.; Yang, G. Additivity of Nonlinear Tree Crown Width Models: Aggregated and Disaggregated Model Structures Using Nonlinear Simultaneous Equations. For. Ecol. Manag. 2018, 427, 372–382. [Google Scholar] [CrossRef]
- Côté, J.-F.; Fournier, R.A.; Frazer, G.W.; Olaf Niemann, K. A Fine-Scale Architectural Model of Trees to Enhance LiDAR-Derived Measurements of Forest Canopy Structure. Agric. For. Meteorol. 2012, 166–167, 72–85. [Google Scholar] [CrossRef]
- Liu, X.; Zou, X.; Hao, Y.; Dong, L. A Comprehensive Comparison of Individual Tree Crown Delineation of Plantations Using UAV-LiDAR Data: A Case Study for Larch (Larix Olgensis) Forests in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2396–2408. [Google Scholar] [CrossRef]
- Wang, W.; Ge, F.; Hou, Z.; Meng, J. Predicting Crown Width and Length Using Nonlinear Mixed-Effects Models: A Test of Competition Measures Using Chinese Fir (Cunninghamia Lanceolata (Lamb.) Hook.). Ann. For. Sci. 2021, 78, 77. [Google Scholar] [CrossRef]
- Bragg, D.C. A Local Basal Area Adjustment for Crown Width Prediction. North. J. Appl. For. 2001, 18, 22–28. [Google Scholar] [CrossRef]
- Buchacher, R.; Ledermann, T. Interregional Crown Width Models for Individual Trees Growing in Pure and Mixed Stands in Austria. Forests 2020, 11, 114. [Google Scholar] [CrossRef]
- Qiu, S.; Gao, P.; Pan, L.; Zhou, L.; Liang, R.; Sun, Y.; Wang, Y. Developing Nonlinear Additive Tree Crown Width Models Based on Decomposed Competition Index and Tree Variables. J. For. Res. 2023, 34, 1407–1422. [Google Scholar] [CrossRef]
- Salas-Eljatib, C.; Mehtätalo, L.; Gregoire, T.G.; Soto, D.P.; Vargas-Gaete, R. Growth Equations in Forest Research: Mathematical Basis and Model Similarities. Curr. For. Rep. 2021, 7, 230–244. [Google Scholar] [CrossRef]
- Comets, E.; Mentré, F. Developing Tools to Evaluate Non-Linear Mixed Effect Models: 20 Years on the Npde Adventure. AAPS J. 2021, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.; Fairbrother, M.; Jones, K. Fixed and Random Effects Models: Making an Informed Choice. Qual. Quant. 2019, 53, 1051–1074. [Google Scholar] [CrossRef]
- Bliese, P.D.; Maltarich, M.A.; Hendricks, J.L. Back to Basics with Mixed-Effects Models: Nine Take-Away Points. J. Bus. Psychol. 2018, 33, 1–23. [Google Scholar] [CrossRef]
- Hu, X.; Jin, Y.; Zhang, X.; Zhang, H. Individual Tree Height Increment Model for Quercus Mongolica Secondary Forest in the Northeastern China Using Generalized Nonlinear Two-Level Mixed-Effects Model. Forests 2023, 14, 2162. [Google Scholar] [CrossRef]
- Sánchez-González, M.; Cañellas, I.; Montero, G. Generalized Height-Diameter and Crown Diameter Prediction Models for Cork Oak Forests in Spain. For. Syst. 2007, 16, 76–88. [Google Scholar] [CrossRef]
- Xu, H.; Sun, Y.; Wang, X.; Wang, J.; Fu, Y. Linear Mixed-Effects Models to Describe Individual Tree Crown Width for China-Fir in Fujian Province, Southeast China. PLoS ONE 2015, 10, e0122257. [Google Scholar] [CrossRef]
- Fu, L.; Sharma, R.P.; Hao, K.; Tang, S. A Generalized Interregional Nonlinear Mixed-Effects Crown Width Model for Prince Rupprecht Larch in Northern China. For. Ecol. Manag. 2017, 389, 364–373. [Google Scholar] [CrossRef]
- Tong, Y.; Chen, D.; Feng, J.; Gao, H. Crown width model for planted Korean pine in eastern Liaoning mountains based on mixed effect linear quantile. Chin. J. Appl. Ecol. 2022, 33, 2321. [Google Scholar] [CrossRef]
- Xiao, Y.; Xunzhi, O.; Ping, P.; Wenping, D.; Songli, P.; Hao, Z.; Rongrong, H. Spatial structure characteristics and its evaluation of evergreen broadleaved forest at different growth stages in Lushan Mountain, Jiangxi Province of eastern China. bjlydxxb 2023, 44, 32–40. [Google Scholar] [CrossRef]
- Tian, H.; Shen, W.; Tan, Y.; Zheng, W.; He, Q.; Zhu, H.; Gan, G. Relationship between Crown Width and Growth Factors in Chinese Fir Plantation among Different Stand Ages. J. Cent. South. Univ. For. Technol. 2021, 41, 93–101. [Google Scholar] [CrossRef]
- Lu, N.; Wang, X.; Zhang, P.; Gao, Z.; Guo, Q.; Chen, Y.; Li, H. Path Analysis between Diameter at Breast Height, Height and Crown Width of Cunninghamia Lanceolata in Dif Ferent Age. J. Northeast. For. Univ. 2015, 43, 12–16. [Google Scholar] [CrossRef]
- Liu, L.; Hong, G.; Mi, H.; Wang, Z.; Xu, R.; Hu, Y. Biomass and Carbon Fixation and Oxygen Release Function of Larix Gmelinii at Different Ages in Daxing’anling. For. Grassl. Resour. Res. 2024, 3, 88–95. [Google Scholar] [CrossRef]
- Mikšys, V.; Varnagiryte-Kabasinskiene, I.; Stupak, I.; Armolaitis, K.; Kukkola, M.; Wójcik, J. Above-Ground Biomass Functions for Scots Pine in Lithuania. Biomass Bioenergy 2007, 31, 685–692. [Google Scholar] [CrossRef]
- Menéndez-Miguélez, M.; Ruiz-Peinado, R.; Del Río, M.; Calama, R. Improving Tree Biomass Models through Crown Ratio Patterns and Incomplete Data Sources. Eur. J. For. Res. 2021, 140, 675–689. [Google Scholar] [CrossRef]
- Wang, C.; Wu, B.; Chen, Y.; Qi, Y. Development of Crown Profile Models for Chinese Fir Using Non-Linear Mixed-Effects Modelling. Nat. Environ. Pollut. Technol. 2019, 18, 1349–1361. [Google Scholar]
- Westfall, J.A.; Nowak, D.J.; Henning, J.G.; Lister, T.W.; Edgar, C.B.; Majewsky, M.A.; Sonti, N.F. Crown Width Models for Woody Plant Species Growing in Urban Areas of the U.S. Urban. Ecosyst. 2020, 23, 905–917. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Liu, L.; Sharma, R.P.; Guan, F.; Fan, S. Constructing Two-Level Nonlinear Mixed-Effects Crown Width Models for Moso Bamboo in China. Front. Plant Sci. 2023, 14, 1139448. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Q.V.; Duan, A.; Zhang, J. Modeling Tree Mortality in Relation to Climate, Initial Planting Density, and Competition in Chinese Fir Plantations Using a Bayesian Logistic Multilevel Method. Can. J. For. Res. 2017, 47, 1278–1285. [Google Scholar] [CrossRef]
- Raptis, D.; Kazana, V.; Kazaklis, A.; Stamatiou, C. A Crown Width-Diameter Model for Natural Even-Aged Black Pine Forest Management. Forests 2018, 9, 610. [Google Scholar] [CrossRef]
- Zou, X.; Miao, Z.; Hao, Y.; Liu, X.; Dong, L.; Li, F. Effects of Tree Vigor, Competition and Stand Conditions on Branch Diameter for Mixed Plantations of Fraxinus Mandshurica Rupr. and Larix Olgensis Henry in Northeast China. Eur. J. For. Res. 2024, 143, 1165–1180. [Google Scholar] [CrossRef]
- Ordóñez, C.; Maguire, D.A.; Pando, V.; Bravo, F. Stand Structural Effects on Growth Distribution and Growth Efficiency in Scots Pine and Mediterranean Pine in Spain. Eur. J. For. Res. 2024, 143, 1411–1428. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P. Size-Symmetric versus Size-Asymmetric Competition and Growth Partitioning among Trees in Forest Stands along an Ecological Gradient in Central Europe. Can. J. For. Res. 2010, 40, 370–384. [Google Scholar] [CrossRef]
- Calama, R.; Montero, G. Interregional Nonlinear Height-diameter Model with Random Coefficients for Stone Pine in Spain. Can. J. For. Res. 2004, 34, 150–163. [Google Scholar] [CrossRef]
- Uzoh, F.C.C.; Oliver, W.W. Individual Tree Diameter Increment Model for Managed Even-Aged Stands of Ponderosa Pine throughout the Western United States Using a Multilevel Linear Mixed Effects Model. For. Ecol. Manag. 2008, 256, 438–445. [Google Scholar] [CrossRef]
- Bui, D.T.; Lofman, O.; Revhaug, I.; Dick, O. Landslide Susceptibility Analysis in the Hoa Binh Province of Vietnam Using Statistical Index and Logistic Regression. Nat. Hazards 2011, 59, 1413–1444. [Google Scholar] [CrossRef]
- Huuskonen, S.; Miina, J. Stand-Level Growth Models for Young Scots Pine Stands in Finland. For. Ecol. Manag. 2007, 241, 49–61. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, S. Comparison of Different Methods for Fitting Nonlinear Mixed Forest Models and for Making Predictions. Can. J. For. Res. 2011, 41, 1671–1686. [Google Scholar] [CrossRef]
- Vonesh, E.; Chinchilli, V.M. Linear and Nonlinear Models for the Analysis of Repeated Measurements; CRC Press: Boca Raton, FL, USA, 1996; ISBN 978-0-429-18019-4. [Google Scholar]
- Fu, L.; Tang, S. A general formulation of nonlinear mixed effect models and its application. Sci. Sin. Math. 2020, 50, 15–30. [Google Scholar]
- Zhong, S.; Ning, J.; Huang, J.; Chen, D.; Ouyang, X.; Zang, H. Crown Width Model of Chinese Fir Plantation Based on Mixed Effect. J. For. Environ. 2024, 44, 127–135. [Google Scholar] [CrossRef]
- Fu, L.; Sun, H.; Sharma, R.P.; Lei, Y.; Zhang, H.; Tang, S. Nonlinear Mixed-Effects Crown Width Models for Individual Trees of Chinese Fir (Cunninghamia Lanceolata) in South-Central China. For. Ecol. Manag. 2013, 302, 210–220. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q.; Luo, P.; Ye, Q.; Sharma, R.P.; Duan, G.; Zhang, H.; Fu, L. Nonlinear Mixed-Effects Height to Crown Base Model Based on Both Airborne LiDAR and Field Datasets for Picea Crassifolia Kom Trees in Northwest China. For. Ecol. Manag. 2020, 474, 118323. [Google Scholar] [CrossRef]
- Aiba, S.-I.; Kohyama, T. Tree Species Stratification in Relation to Allometry and Demography in a Warm-Temperate Rain Forest. J. Ecol. 1996, 84, 207–218. [Google Scholar] [CrossRef]
- Liu, C.; Fang, W.; Cai, Q.; Ma, S.; Jiang, X.; Ji, C.; Fang, J. Allometric Relationship between Tree Height and Diameter of Larch Forests in China. Acta Sci. Nat. Univ. Pekin. 2017, 53, 1081–1088. [Google Scholar] [CrossRef]
- Foli, E.G.; Alder, D.; Miller, H.G.; Swaine, M.D. Modelling Growing Space Requirements for Some Tropical Forest Tree Species. For. Ecol. Manag. 2003, 173, 79–88. [Google Scholar] [CrossRef]
- Rautiainen, M.; Stenberg, P. Simplified Tree Crown Model Using Standard Forest Mensuration Data for Scots Pine. Agric. For. Meteorol. 2005, 128, 123–129. [Google Scholar] [CrossRef]
- Sonmez, T. Diameter at Breast Height-Crown Diameter Prediction Models for Picea Orientalis. Afr. J. Agric. Res. 2009, 4, 215–219. [Google Scholar]
- Larsen, D.; Hann, D. Height-Diameter Equations for Seventeen Tree Species in Southwest Oregon. 1987. Available online: https://ir.library.oregonstate.edu/dspace/handle/1957/8245 (accessed on 13 January 2025).
- Filipescu, C.N.; Groot, A.; MacIsaac, D.A.; Cruickshank, M.G.; Stewart, J.D. Prediction of Diameter Using Height and Crown Attributes: A Case Study. West. J. Appl. For. 2012, 27, 30–35. [Google Scholar] [CrossRef]
- Fischer, C.; Traub, B. (Eds.) Swiss National Forest Inventory—Methods and Models of the Fourth Assessment; Managing Forest Ecosystems; Springer International Publishing: Cham, Switzerland, 2019; Volume 35, ISBN 978-3-030-19292-1. [Google Scholar]
- Wang, Y.; Liu, Z.; Li, J.; Cao, X.; Lv, Y. Assessing the Relationship between Tree Growth, Crown Size, and Neighboring Tree Species Diversity in Mixed Coniferous and Broad Forests Using Crown Size Competition Indices. Forests 2024, 15, 633. [Google Scholar] [CrossRef]
- Asigbaase, M.; Dawoe, E.; Abugre, S.; Kyereh, B.; Ayine Nsor, C. Allometric Relationships between Stem Diameter, Height and Crown Area of Associated Trees of Cocoa Agroforests of Ghana. Sci. Rep. 2023, 13, 14897. [Google Scholar] [CrossRef]
- Xiang, W.; Li, L.; Ouyang, S.; Xiao, W.; Zeng, L.; Chen, L.; Lei, P.; Deng, X.; Zeng, Y.; Fang, J.; et al. Effects of Stand Age on Tree Biomass Partitioning and Allometric Equations in Chinese Fir (Cunninghamia Lanceolata) Plantations. Eur. J. For. Res. 2021, 140, 317–332. [Google Scholar] [CrossRef]
- Cao, H.; Du, A.; Xu, Y.; Zhu, W.; Huang, R.; Liu, Y.; Wang, Z. Age Effect on Biomass Distribution Pattern and Optimization of Allometric Growth Equation in Eucalyptus urophylla×E. grandis Plantations. J. Zhejiang AF Univ. 2024, 41, 1124–1133. [Google Scholar]
- Keselman, H.J.; Algina, J.; Kowalchuk, R.K.; Wolfinger, R.D. A Comparison of Recent Approaches to the Analysis of Repeated Measurements. Br. J. Math. Stat. Psychol. 1999, 52, 63–78. [Google Scholar] [CrossRef]
- Su, Y.; Hu, T.; Wang, Y.; Li, Y.; Dai, J.; Liu, H.; Jin, S.; Ma, Q.; Wu, J.; Liu, L.; et al. Large-Scale Geographical Variations and Climatic Controls on Crown Architecture Traits. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005306. [Google Scholar] [CrossRef]
- Park, A.; van Breugel, M.; Ashton, M.S.; Wishnie, M.; Mariscal, E.; Deago, J.; Ibarra, D.; Cedeño, N.; Hall, J.S. Local and Regional Environmental Variation Influences the Growth of Tropical Trees in Selection Trials in the Republic of Panama. For. Ecol. Manag. 2010, 260, 12–21. [Google Scholar] [CrossRef]
- Nie, L.; Dong, L.; Li, F.; Miao, Z.; Xie, L. Construction of Taper Equation for Larix Olgensis Based on Two-Level Nonlinear Mixed Effects Model. J. Nanjing For. Univ. 2022, 46, 194–202. [Google Scholar]
- Wang, W.; Chen, X.; Zeng, W.; Wang, J.; Meng, J. Development of a Mixed-Effects Individual-Tree Basal Area Increment Model for Oaks (Quercus spp.) Considering Forest Structural Diversity. Forests 2019, 10, 474. [Google Scholar] [CrossRef]
- Pretzsch, H.; Biber, P.; Uhl, E.; Dahlhausen, J.; Rötzer, T.; Caldentey, J.; Koike, T.; van Con, T.; Chavanne, A.; Seifert, T.; et al. Crown Size and Growing Space Requirement of Common Tree Species in Urban Centres, Parks, and Forests. Urban For. Urban Green. 2015, 14, 466–479. [Google Scholar] [CrossRef]
DATA | Variable | Min | Max | Mean | Std |
---|---|---|---|---|---|
Fitting data | CW (m) | 0.2 | 7.05 | 2.541 | 0.93 |
A (year) | 2 | 40 | 18.72 | 10.33 | |
SD (trees ha−1) | 0.0 | 32 | 16.59 | 2.53 | |
CD (%) | 650 | 6533 | 3976 | 1385.88 | |
DBH (cm) | 2.4 | 49.9 | 14.36 | 6.07 | |
H (m) | 0.9 | 27.5 | 11.15 | 4.23 | |
HCB (m) | 0.1 | 21 | 6.061 | 2.89 | |
DH (m) | 8 | 27 | 16.59 | 4.19 | |
Validation data | CW (m) | 0.55 | 7.05 | 2.541 | 0.95 |
A (year) | 6 | 40 | 18.68 | 10.48 | |
SD (trees ha−1) | 0.0 | 32 | 1.029 | 2.63 | |
CD (%) | 650 | 6533 | 3991 | 1398.69 | |
DBH (cm) | 2.7 | 46.1 | 14.35 | 6.07 | |
H (m) | 1.6 | 31.5 | 11.15 | 4.23 | |
HCB (m) | 0.3 | 22 | 6.093 | 3.46 | |
DH (m) | 8 | 27 | 16.52 | 4.29 |
Model Parameters | Fitting Data | Validation Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model Form | a | b | c | d | e | AIC | R2 | RMSE | TRE | R2 | RMSE | TRE |
Model1 | 0.921 | 0.121 | 0.978 | −0.001 | 8.584 | 23,140 | 0.478 | 0.675 | 6.6356 | 0.490 | 0.676 | 6.655 |
SE | 0.057 | 0.015 | 0.034 | 0.001 | 1.167 | |||||||
Model2 | 0.521 | 0.612 | −0.01 | 23,289 | 0.471 | 0.679 | 6.733 | 0.483 | 0.677 | 6.626 | ||
SE | 0.009 | 0.012 | 0.013 | |||||||||
Model3 | 1.484 | 0.032 | 0.005 | 23,729 | 0.449 | 0.693 | 7.019 | 0.478 | 0.683 | 6.829 | ||
SE | 0.011 | 0.001 | 0.001 | |||||||||
Model4 | 5.483 | 3.761 | 0.086 | −0.005 | 23,212 | 0.475 | 0.677 | 6.682 | 0.487 | 0.671 | 6.551 | |
SE | 0.132 | 0.083 | 0.003 | 0.002 | ||||||||
Model5 | 4.951 | 0.051 | 0.003 | 23,696 | 0.451 | 0.692 | 6.997 | 0.474 | 0.687 | 6.891 | ||
SE | 0.073 | 0.002 | 0.001 | |||||||||
Model6 | 0.108 | −0.003 | 1.027 | 23,234 | 0.473 | 0.678 | 6.698 | 0.487 | 0.671 | 6.558 | ||
SE | 0.002 | 0.003 | 0.018 |
Model Form | (14) | |||||||||||||
Model Parameters | Fitting Data | Validation Data | ||||||||||||
Model 14 | a1 | a2 | a3 | a4 | a5 | b | c | AIC | R2 | RMSE | TRE | R2 | RMSE | TRE |
0.548 | 0.582 | 0.513 | 0.568 | 0.614 | 0.613 | −0.046 | 22,867 | 0.491 | 0.667 | 6.464 | 0.517 | 0.658 | 6.269 | |
SE | 0.011 | 0.012 | 0.011 | 0.013 | 0.014 | 0.012 | 0.013 |
Model Parameters | Fitting Data | Validation Data | |||||
---|---|---|---|---|---|---|---|
Model form | AIC | R2 | RMSE | TRE | R2 | RMSE | TRE |
Model 14 | 16,808 | 0.717 | 0.497 | 3.489 | 0.731 | 0.491 | 3.373 |
SE | a1: 0.011 | a2: 0.019 | a3: 0.019 | a4: 0.018 | a5: 0.017 | b: 0.035 | c: 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Xie, D.; Liu, Z.; Feng, L.; Ye, Q.; Ye, J.; Wang, Q.; Liao, X.; Wang, Y.; Sharma, R.P.; et al. Development of Full Growth Cycle Crown Width Models for Chinese Fir (Cunninghamia lanceolata) in Southern China. Forests 2025, 16, 353. https://doi.org/10.3390/f16020353
Wu Z, Xie D, Liu Z, Feng L, Ye Q, Ye J, Wang Q, Liao X, Wang Y, Sharma RP, et al. Development of Full Growth Cycle Crown Width Models for Chinese Fir (Cunninghamia lanceolata) in Southern China. Forests. 2025; 16(2):353. https://doi.org/10.3390/f16020353
Chicago/Turabian StyleWu, Zheyuan, Dongbo Xie, Ziyang Liu, Linyan Feng, Qiaolin Ye, Jinsheng Ye, Qiulai Wang, Xingyong Liao, Yongjun Wang, Ram P. Sharma, and et al. 2025. "Development of Full Growth Cycle Crown Width Models for Chinese Fir (Cunninghamia lanceolata) in Southern China" Forests 16, no. 2: 353. https://doi.org/10.3390/f16020353
APA StyleWu, Z., Xie, D., Liu, Z., Feng, L., Ye, Q., Ye, J., Wang, Q., Liao, X., Wang, Y., Sharma, R. P., & Fu, L. (2025). Development of Full Growth Cycle Crown Width Models for Chinese Fir (Cunninghamia lanceolata) in Southern China. Forests, 16(2), 353. https://doi.org/10.3390/f16020353