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Abstract: The Qinghai–Tibet Plateau ecosystem is fragile, experiencing rapid changes in land cover
driven by both climate change and human activities, leading to habitat fragmentation and loss and
resulting in biodiversity decline. Habitat ecological networks (HA-ENs) are considered effective
solutions for habitat connectivity and biodiversity conservation in response to these dual drivers.
However, HA-EN studies typically rely on current or historical landscape data, which hinders the for-
mulation of future conservation strategies. This study proposes three future scenarios—improvement,
deterioration, and baseline scenarios—focused on the southeastern Qinghai–Tibet Plateau (SE-QPT).
The habitats of 10 species across three classes are extracted, integrating land use and climate change
data into habitat ecological network modeling to assess the long-term dynamics of HA-ENs in the
SE-QPT. Finally, conservation management strategies are proposed based on regional heterogeneity.
The results show the following: Climate change and human activities are expected to reduce the
suitable habitat area for species, intensifying resource competition among multiple species. By 2030,
under all scenarios, the forest structure will become more fragmented, and grassland degradation
will be primarily concentrated in the southeastern and western parts of the study area. Compared
to 1985 (71,891.3 km2), the habitat area by 2030 is projected to decrease by 12.9% (62,629.3 km2).
The overlap rate of species habitats increases from 25.4% in 1985 to 30.9% by 2030. Compared to
the HA-EN control in 1985, all scenarios show a decrease in connectivity and complexity, with only
the improvement scenario showing some signs of recovery towards the control network, albeit
limited. Finally, based on regional heterogeneity, a conservation management strategy of “two points,
two cores, two corridors, and two regions” is proposed. This strategy aims to provide a framework
for future conservation efforts in response to climate change and human activities.

Keywords: habitat ecological network; multi-species; multi-scenario; Qinghai–Tibet Plateau

1. Introduction

Climate change and human activities have precipitated a crisis in biodiversity, leading
to the loss and fragmentation of habitats for numerous species [1–4]. These global change
factors are perceived as posing a significant threat to global biodiversity [5], negatively
impacting nearly all taxonomic groups, encompassing birds [6] and mammals [7], amphib-
ians [8,9], and plants [10]. The ecosystem of the Qinghai–Tibet Plateau (QTP) is under dual
pressure from human activities and climate change. As one of the most unique and sensi-
tive ecosystems on Earth, the QTP has experienced significant changes since the mid-20th
century [11,12]. Taking proactive and comprehensive conservation measures to prevent
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habitat fragmentation and biodiversity loss has become an urgent and widespread concern
in landscape planning and sustainable management.

Ecological networks are recognized as an effective tool for mitigating landscape frag-
mentation and promoting the preservation of threatened habitats and their inherent bi-
ological communities [13–15]. By optimizing the structure of ecological networks and
identifying priority areas, regional biodiversity can be effectively maintained and stabi-
lized. However, the effectiveness of these conservation efforts has been diminishing due to
global changes. In response to this challenge, research related to ecological networks has
evolved to encompass areas such as multi-layer ecological networks and future ecological
network predictions. Scenario simulation serves as a crucial tool for predicting future
development [16] and can furnish a theoretical foundation for natural resource planning
and management [17,18]. The construction of multi-scenario ecological networks based on
future multiple scenarios enables the formulation of protection plans and policies suitable
for future climate change and land alterations, grounded in the monitoring of species
habitat conditions and species dynamics.

The construction of ecological networks involves identifying ecological sources, con-
structing resistance surfaces, and extracting ecological corridors [19]. Ecological networks
analysis typically involves the use of graph theory, where each node represents an eco-
logical source and its spatial location, while ecological corridors connect two ecological
sources [20,21]. These corridors generally indicate diffusion potential and possess attributes
such as length and direction. In the context of biodiversity conservation, the identification
of ecological sources is crucial and should be closely associated with the target species,
thereby making species habitats the centerpiece of species conservation research [22]. How-
ever, the majority of prior studies have concentrated on a single species or a select few
focal species [23,24]. Indeed, several studies have found that corridors identified for one
species might not be effectively utilized by other species [25,26]. To improve biodiversity
conservation more broadly, it is essential to establish a methodology that can address
the functional connectivity needs of multiple species, which will play a critical role in
advancing conservation research. Landscape connectivity refers to the extent to which the
landscape facilitates or hinders movement between resource patches [27,28]. Enhancing
landscape connectivity can foster animal migration, the spread of plant habitats, gene flow,
and various other ecological functions of the landscape [29,30]. Therefore, connectivity is
crucial for the survival of animal and plant populations and contributes to reducing the risk
of extinction [31]. Furthermore, actions aimed at enhancing and preserving landscape con-
nectivity are widely recognized as beneficial for adapting to climate change [1,32,33]. For
instance, wildlife corridors serve a crucial role in bolstering the persistence and adaptability
of species in the face of severe climate change [34].

Our goal is to establish a biodiversity conservation framework that effectively supports
the protection of multi-species biodiversity in the face of global change, with a particular
focus on the Plateau’s sensitivity to climate change and human activities. This framework
utilizes past and future climate data, along with species distribution predictions, to identify
suitable habitats for various species. Subsequently, based on land use prediction models,
future land use changes are forecasted, and circuit theory is applied to establish habitat
connectivity, thereby promoting the construction of long-term, multi-scenario, multi-species
ecological networks. The framework enhances the integration of ecological network models
with future data, and through multi-scenario ecological network analysis and comparison,
develops biodiversity conservation strategies to address future global changes. The main
contributions of this study include the following: (1) constructing a multi-scenario HA-
EN that integrates climate and land change data of the study area, establishing spatial
distribution patterns of habitats and ecological corridors for multiple species; (2) identifying
expected ecological challenges under future scenarios through the analysis of research
results, determining priority conservation areas in conjunction with current development
trends, and ultimately formulating relevant ecological conservation strategies for reference.
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2. Materials and Methods
2.1. Study Area

The study area, encompassing Lhasa, Nyingchi, and Shannan cities in the Tibet Au-
tonomous Region, is situated in the southeastern Qinghai–Tibet Plateau (SE-QTP), covering
approximately 223,600 km2 (Figure 1). At an average altitude of around 3500 m, the region
experiences an annual average temperature ranging from 4 to 12 ◦C and an annual precipi-
tation between 300 and 1200 mm. During the summer, the region experiences warmth and
rainfall due to the influence of the southwest monsoon, carrying abundant moisture and
heat from the Indian Ocean, contributing to a high level of biodiversity. With significant
differences in elevation, the study area represents the most complete vertical natural zone
for mountainous regions worldwide and serves as a crucial location for investigating global
climate change. Nevertheless, against the backdrop of global warming, the temperature of
the QTP has risen [35], leading to the accelerated retreat of glaciers, significant expansion
of lakes, and increased glacial runoff, which have also caused major disasters such as
avalanches and glacial lake outburst floods, and the potential risks of grassland degrada-
tion, ecological environment security, and water shortage may gradually increase in the
future [36,37].
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Figure 1. Elevation and land use/land cover (LULC) of the study area.

2.2. Data Sources

The data utilized in this study encompass geographical, socio-economic, and climatic
data. All data are publicly available to ensure scalability of the experiments and models.
To ensure data availability, all data in this study were converted to a uniform projected
coordinate system with a uniform grid size of 200 × 200 m. Details are shown in Table 1.
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Table 1. Data used in this study.

Data Types Indicator Factors Years Data Sources

Climatic variables 19 bioclimates (see Table S1
for details) 1970–2000 and 2021–2040 http://www.worldclim.org

(accessed on 1 January 2024)

Geographical data

Elevation 2020 https://www.resdc.cn/
(accessed on 1 January 2024)

LULC 1985, 2000, 2015, and 2020 https://data.casearth.cn/
(accessed on 1 January 2024)

NDVI 2020 https://www.resdc.cn/
(accessed on 1 January 2024)

Soil type 2020 https://www.resdc.cn/
(accessed on 1 January 2024)

Vegetation type 2020 https://www.resdc.cn/
(accessed on 1 January 2024)

Road 2020 https://www.openstreetmap.org
(accessed on 1 January 2024)

Water 2020 https://www.resdc.cn/
(accessed on 1 January 2024)

Socio-economic data

Gross domestic product 2020 http://www.resdc.cn/
(accessed on 1 January 2024)

Population density 2020 http://www.resdc.cn/
(accessed on 1 January 2024)

Settlement data 2020 http://www.resdc.cn/
(accessed on 1 January 2024)

2.3. Research Framework

The research framework of this paper is divided into three parts (Figure 2). Firstly,
multi-scenario LULC in 2030 was conducted based on the future land use simulation
model. Subsequently, we used the MaxEnt model to determine species habitats in both
1985 and 2030 as ecological sources. The resistance surface was constructed by integrating
the minimum cumulative resistance model with multi-scenario LULC and temporal data.
By leveraging circuit theory, we established the connectivity of species ecological sources
to formulate multi-scenario ecological networks. Finally, we analyzed networks for the
years 1985 and 2030 under various scenarios. A priority protection pattern was devised by
considering both future scenarios and actual conditions.

2.4. Multi-Scenario Prediction of LULC
2.4.1. Future Land Use Simulation Model

Future land use simulation (FLUS) is a model for simulating land use change un-
der human activity, natural influence, and future scenarios [18]. The model simulates
land use change by defining a set of rules and conversion rules. Rules can be based on
interactions between land use types, the influence of the surrounding environment, and
decision-makers’ behavior. Currently, this method is widely used in urban expansion
simulation [38,39] and land use simulation [40–42].

In this study, we selected an appropriate land use classification system based on the
LULC classification and the study area’s size, and we classified LULC into six categories:
cropland, forest, grassland, impervious surfaces, water body, and unused land. The
driving factors were selected from the existing research on natural, economic, and social
aspects [18,39]. We utilized the following 9 indicators in this study: DEM, slope, water
distance, road distance, population density, night light data, NDVI, settlement distance,
and soil type.

The land use map from the year 2000 served as the basis for generating the simulated
map for 2015. The simulation results were compared with the actual land use map of 2015
to assess the accuracy of the simulation. We used the LULC data from the year 2000 to
simulate the LULC data for 2015. By comparing the simulation results with the actual 2015

http://www.worldclim.org
https://www.resdc.cn/
https://data.casearth.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.resdc.cn/
https://www.openstreetmap.org
https://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
http://www.resdc.cn/
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LULC data, we found that our model achieved a Kappa coefficient of 0.89. This indicates
that the model can effectively simulate the real land use dynamics within the study area.
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2.4.2. Multi-Scenario Setting

To assess the impact of different land use management models on the ecological
environment and to provide scientific support for future land use planning and policy
making, we simulated three scenarios: sustainable development, disregarding ecological
protection, and maintaining the status quo. By analyzing the positive and negative effects
of each scenario on the environment and ecosystem, we aim to explore the importance of
protecting ecological land and guide practical land use decisions.

(1) Improvement scenario: assume that forest land maintains its previous growth rate,
grassland degradation is improved, and water bodies are designated as restricted
conversion areas, while other land types convert randomly.

(2) Deterioration scenario: abandon the protection of ecological land such as forests, grass-
lands, and water bodies, allowing these areas to be converted into other land types.

(3) Baseline scenario: all land types continue their previous trends, with forest area
increasing and grassland area continuing to decrease.

2.5. Construction of Multi-Scenario Ecological Networks
2.5.1. Identification of Ecological Source

In this study, we used the MaxEnt model to select habitats for species. The MaxEnt
model is a machine learning model used to predict the potential distribution of species
under different environmental conditions [43]. The MaxEnt model requires two types of
data input: species distribution data and environmental variable data.

Based on previous research [44–46], we selected 19 bioclimatic data indicators as envi-
ronmental variables. By excluding low-contribution and high-covariance environmental



Forests 2024, 15, 1506 6 of 19

variables, 8 environmental variables were finally retained, and the specific environmental
variable content is shown in Figure S1. The species distribution data came from the Global
Biodiversity Information Facility (www.gbif.org) and field observation records. By com-
bining the distribution and biological conservation status of species in Tibet, we selected
10 wild animals and plants from the IUCN Red List of Endangered Species and the National
Key Protected Wild Animals and Plants List, including three birds (Grus nigricollis, Anser
indicus, Nucifraga caryocatactes), three plants (Saussurea obvallata, Rhodiola crenulata, Rheum
nobile), and four mammals (Catopuma temminckii, Martes flavigula, Capricornis sumatraensis,
Budorcas taxicolor), with the spatial distribution as shown in Figure S2.

After fine-tuning the model parameters to obtain the probable distributions of the
species, we reclassified the results of the species distribution probabilities into 5 cate-
gories using the natural breakpoint method and extracted the highest category as the
ecological source.

2.5.2. Construction of Resistance Surface

Ecological resistance surface is the basis of ecological corridor extraction, which reflects
the blocking effect of the landscape on material, energy, and species migration. Species
behaviors such as migration, propagule dispersal, and gene exchange will be affected by
natural conditions, human activities, etc., and will be concentrated in the characteristic
diversity between different land use types and terrains. Therefore, we amalgamate previ-
ous methods of allocating habitat suitability predicated on land types [45,47] and couple
multiple factors [48–50] to construct the resistance surface.

To simulate the ecological resistance pressures faced by species in different scenarios,
we established ecological resistance surfaces for each of the four networks. Considering
the impact of factors such as terrain, food, water sources, and human activities on wildlife
and vegetation, we selected habitat quality, NDVI, road distance, elevation, and water
source distance data to quantify the ecological resistance pressure faced by flora and
fauna. Drawing from previous research, we categorized the resistance values for all factors
into five levels (Table 2) and assigned values of 1, 5, 10, 20, and 50 based on increasing
resistance values [45,51,52]. Finally, we used the minimum cumulative resistance model to
integrate all resistance factors, creating an ecological resistance surface. The habitat quality
calculation procedure is in Supplementary Materials.

Table 2. Resistance factor grading and weight.

Resistance Factor
Resistance Factor Assignment Weight

1 5 10 20 50

Elevation/m ≤1500 (1500–3000] (3000–4000] (4000–5000] >5000 0.04
Water distance/km ≤1 (1–3] (3–5] (5–7] >7 0.15
Road distance/km >20 (10–20] (5–10] (1–5] ≤1 0.05

NDVI (0.7–1] (0.5–0.7] (0.3–0.5] (0.1–0.3] ≤0.1 0.11
Habitat provision (80–100] (60–80] (40–60] (40–20] (20–0] 0.14

LULC Forest, wetlands Grassland Water, cropland Unused land Impervious surface 0.5

2.5.3. Extraction of Ecological Corridor

We used the circuit theory model to establish the connectivity relationship between
species habitats. The circuit theory model was initially applied to predict the genetic
diversity of species and then gradually developed to predict the migration and diffusion
processes of biological populations [53]. The circuit theory model establishes connections
within complex landscapes and circuits, modeling the random walk characteristics of
electrons in circuits, with ecological resistance surfaces represented as conductive surfaces.
Circuit theory analogizes various components within complex landscapes (such as ani-
mals, plant reproductive bodies, etc.) to electrons. During movement, corridors with low
resistance (low ecological barriers) imply a higher probability for species passage and are

www.gbif.org
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difficult to replace. Conversely, corridors with high resistance (high ecological barriers)
indicate a lower probability of passage and insufficient stability [54].

2.6. Analysis of Multi-Scenario Ecological Networks

To further understand the impact of global change on the overall and local functions
of ecological networks, we conducted network topology and species interaction analysis.
In analyzing species interactions, this study began by examining the ecological sources,
ecological corridor overlap, and intersection relationships among multiple species. The
research involved calculating overlap areas, the number of intersections, and spatial rela-
tionships of species. In the network topology analysis, we abstracted the ecological sources
as nodes and the ecological corridors as edges, and the structure of networks formed an
undirected and unweighted complex network.

The network describes the spatial distribution and connectivity, and by observing
and calculating the spatial characteristics of the entire ecological network, including edges
and nodes, we can obtain the stability, stability, and importance of the source and node
connections in the ecological network. In addition, discussing the topological characteristics
of the ecological network from the perspective of complex networks helps to reveal the
characteristics that traditional methods cannot determine and thus clarify the formation
and evolution of the ecological network. In this study, five network topology indicators,
namely, degree, average path length, clustering coefficient, betweenness centrality, closeness
centrality, and eigenvector centrality, were used to describe multi-scenario ecological
networks [48–50]. The concepts and calculation formulas of each indicator are shown in
Table S2.

3. Results
3.1. Spatio-Temporal Changes of LULC Pattern in SE-QTP

Compared to the LULC situation in 1985, the forest structure in 2030 under each
scenario is more fragmented. Grassland degradation is primarily concentrated in the
southeast and west of the study area, and human activity impacts are most evident in the
urban periphery and some southern areas of the study area. As shown in Figure 3, several
significant features can be observed in the land use change from 1985 to 2030. Forest and
grassland are the two main land use types in the study area, distributed in the south and
west of the study area, respectively. In 1985, forests covered 42.6% of the study area, and
the internal structure of the forest was largely intact with only a few fragmented areas.
By 2030, under all scenarios, varying degrees of fragmentation appear in the forest. The
forest proportions under the improvement and baseline scenarios were 46.0% and 45.6%,
respectively, showing a slight increase. However, under the deterioration scenario, the
forest area decreased to 41.1%, with much of the forest converting to grassland, cropland,
and unused land.

In the deterioration scenario, the impervious surface proportion increased from 0.03%
in 1985 to 0.43%. Due to the low population density of the study area, the spread of
impervious surfaces mainly occurred from the central urban area. Notably, many forests in
the southern part of the study area were converted into impervious surfaces, potentially
harming the stability and connectivity of the forest interior.

Under the baseline scenario, the grassland proportion degraded to 38%, a 7% decrease
compared to 1985, with grasslands mainly converting to unused land and forest. The most
significant areas of grassland degradation were in the southeast and west of the study area,
where the average elevation was above 4200 m, and the primary grassland type was alpine
grassland. Therefore, the grassland degradation scenario predicted by this study aligns
closely with the actual degradation situation.
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Figure 3. Spatial pattern change in LULC: (a) 1985 control network; (b) 2030 improvement network;
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of high mountains and canyons, (II) dense forests, (III) urban neighborhoods, and (IV) grassland.

3.2. Spatial Distribution of Ecological Network in SE-QTP
3.2.1. Spatial Distribution of Resistance Surface

From a spatial distribution perspective, the western and northern parts of the study
area exhibit high resistance, while the central and southeastern parts show low resistance
(Figure 4). The spatial distribution of resistance surfaces in 2030 under different scenarios
is similar, with close resistance values. However, each scenario shows significant spatial
differences compared to the resistance surfaces in 1985. In 1985, the highest resistance
value was 37.7, while in 2030, under all scenarios, the highest resistance value for the
improvement scenario was 41.5, lower than that of the degradation and baseline scenarios.
The average resistance in the improvement scenario was 14.81, also lower than that of the
degradation scenario (15.57) and baseline scenario (15.28).

From 1985 to 2030, resistance values in typical regions generally show an increasing
trend, with the range of high-resistance areas expanding. Type I (mountainous and canyon
crossing points) and Type II (forested areas) exhibit fragmentation of low-resistance areas,
eventually evolving into large areas with moderate resistance values. Type III (urban areas)
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reflects changes in resistance surfaces due to rapid urban development, with urban areas
becoming high-resistance zones. Type IV (grassland areas) shows continuous expansion of
high-resistance areas, while low-resistance areas in grasslands continue to shrink. Com-
pared to 1985, changes in resistance in typical regions under the improvement scenario in
2030 are less pronounced than those in the baseline and degradation scenarios. Changes in
resistance surfaces indicate that habitats for flora and fauna will face increasing resistance
values, leading to habitat loss and fragmentation, thereby threatening the stability of species
populations and structure.
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3.2.2. Spatial Distribution of Habitat Suitability

By 2030, both the total area and number of habitats will decrease (Table 3). Specifically,
compared to 1985 (71,891.3 km2), the area of habitats in 2030 will decrease by 12.9%
(62,629.3 km2). Among them, the distribution range of Rheum nobile will significantly
decrease, approximately by 4259.0 km2. Next is Budorcas taxicolor, with a decrease of
3014.1 km2. At the same time, the overlap rate of species habitats will increase from 25.4%
in 1985 to 30.9% in 2030, indicating that environmental changes will reduce the suitable
habitat area for species and intensify the resource competition intensity among multiple
species. However, environmental changes may be beneficial for the survival of individual
species. For example, the distribution area of Rhodiola crenulata will increase by 2213.1 km2

by 2030; the habitat of Capricornis sumatraensis may increase by 688.8 km2 in the study area
by 2030.
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Table 3. Changes in network values for networks.

Parameters Control
Network

Improvement
Network

Deterioration
Network

Baseline
Network

Area of ecological sources/km2

(overlapping rate of source areas)
71,891.3 (25.4%) 62,629.3 (30.8%)

Number of ecological sources 180 167 167 167
Number of ecological corridors 346 345 343 343

Average length of ecological corridors/m 62,589.3 64,669.0 65,213.3 64,990.9
Average resistance value of corridors 8.6 10.2 10.4 9.8

Intersection point of ecological corridors 555 485 490 506
Intersection point of ecological corridors/area

of ecological sources 0.00772 0.00774 0.00782 0.00808

3.2.3. Spatial Distribution of Ecological Network

Figure 5 depicts the complete HA-EN under different scenarios (improvement, degra-
dation, and baseline) for the study area in 1985 and 2030. The results reveal a dense spatial
distribution pattern in the southeastern and northwestern parts of the study area, while
connectivity is lacking in the western and northeastern parts. In 1985, the average cor-
ridor length was 62,589.3 m with an average resistance of 8.6, significantly lower than
the values observed under all scenarios in 2030. Specifically, the average corridor length
was 64,669.0 m for the improvement scenario, slightly less than 65,213.3 m for the baseline
scenario and the maximum of 64,990.9 m for the degradation scenario. The ratio of habitat
area to corridor crossing points reflects the intensity of species interactions. The results
show the highest ratio in the baseline scenario (0.00808), followed by the degradation
scenario (0.00782), with the lowest ratio observed in 1985 (0.00772). This indicates that
environmental changes not only reduce suitable habitat area but also potentially increase
the difficulty of species movement between habitats.
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In typical regions (I-type: mountainous and canyon crossing points, II-type: forested
areas, III-type: urban areas, and IV-type: grassland areas), significant reductions in habitat
quantity and connectivity due to environmental changes are observed. Compared to 1985,
the complexity of HA-EN substantially decreases under all simulated scenarios in 2030,
highlighting the threat of habitat fragmentation to the stability of species populations
and structure.

3.2.4. Changes in HA-EN Topology Indicators

Compared to 1985, the average path length in 2030 shows a significant increase in the
deterioration and baseline scenarios, while it only slightly increases in the improvement
scenario (Figure 6). Betweenness centrality in 1985 is significantly higher than in all
scenarios for 2030. In 2030, the betweenness centrality of the improvement scenario is
higher than that of the other two scenarios, with the baseline scenario being the lowest.
Closeness centrality significantly decreases in the deterioration scenario, indicating that
nodes in the network are increasingly deviating from the geometric center of the network,
making the entire network more dispersed, while closeness centrality remains similar across
the other three scenarios. The clustering coefficient is similar in 1985 and the improvement
scenario, both higher than in the deterioration and baseline scenarios. Eigenvector centrality
increases in 2030, suggesting a widening gap in node importance, with peripheral nodes
becoming more dependent on central nodes due to the reduced importance of many nodes.
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The clustering coefficient, reflecting the stability of the network nodes, was similar
in the improvement network and the network in 1985, both higher than those of the
deterioration and baseline networks. The eigenvector centrality, indicating the importance
of the neighboring nodes of a node, increased in 2030, signifying a widening disparity in
importance among nodes. Consequently, the periphery has become increasingly reliant
on peripheral nodes, driven by the diminished significance of numerous nodes. Module
analyses were performed for the network as a whole and for different species separately
(Figure 7). In 1985, the network was divided into six modules, and in 2030, the number
of modules was reduced to four for the deterioration and baseline networks and five for
the improvement network. The reduction in modules reflects the fact that environmental
changes in recent years have caused parts of the study area to become unsuitable for species,
and species will move or congregate in new suitable habitats. Combined with topology
results, from 1985 to 2030, the average degradation of network topology attributes was 4.1%.
Compared to the baseline and deterioration networks, the topology of the improvement
network increased by 1.6% and 2.2%.
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4. Discussion
4.1. Discussion on Multi-Scenario Network

Given the profound influence of global change, the objectives and strategies for ecolog-
ical restoration of national land vary under different development scenarios [18]. However,
most existing research relies on current and historical landscape data, limiting the effective-
ness of ecological network conservation in mitigating landscape fragmentation. Human
activities and climate change, specifically LULC changes, determine the location and extent
of habitat fragmentation and loss, as well as the likelihood of species traversing interme-
diate areas, thereby directly affecting the performance of ENs [55–57]. Static data may
overlook future key changes and hotspot areas, failing to provide effective conservation
strategies [58]. Assessing the potential impact of landscape changes on the structure and
function of ENs is crucial for them to cope with landscape change disturbances. Zeller [59]
noted that neglecting hotspot areas of change could result in misguided or ineffective
conservation efforts. Bishop-Taylor [60] found that relying on static landscape priorities
might lead to limited conservation budgets being misallocated to habitats that are not im-
portant for connectivity. Given limited resources and budgets, focusing on areas expected to
change through multi-scenario simulations could be beneficial for long-term conservation.
This dynamic and forward-looking analytical approach can more effectively guide the
implementation of conservation measures, ensuring that ENs maintain their functionality
and connectivity in the face of future climate change and land alteration [61]. Addition-
ally, ongoing global climate changes will exacerbate the network cascading effects [62,63].
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Predation, habitat, and reproduction relationships of species at regional scales are strongly
interconnected, as are the impacts of global ecological cores, such as the Tibetan Plateau and
the Amazon Rainforest, when subjected to climate change [62]. Consequently, scientists
have begun to establish links between elements at the global scale through networks, which
are used for tipping point analysis, early warning, detection, and prediction in dynamic
systems [64].

The QTP, often referred to as the world’s “third pole” and “world water tower”, is
primarily recognized for its unique advantages and the exceptional ecological value of its
resources [12]. However, its distinctive geographical conditions render the QTP highly
sensitive to global climate change, transforming it into a typically ecologically fragile
area [65–67]. Over recent decades, global climate change has been rapidly and fiercely
impacting the QTP, leading to an increasingly serious degradation of alpine grasslands
and a gradual decrease in land productivity [11,12,68]. This poses a significant threat to
the normal functioning of alpine grassland ecosystem services [69]. Furthermore, if the
continued degradation of grasslands is allowed to persist, it will also pose a threat to the
biodiversity of the alpine region [37]. Recognizing the immense harm caused by the ongo-
ing degradation of grasslands should be a primary focus of ecological protection [70,71].
Therefore, our goal is to establish a framework to support efficient and effective planning
of biodiversity under global change. This framework enhances the integration of ecologi-
cal network models and future data and formulates biodiversity conservation plans that
respond to future global change according to local conditions by analyzing long-term,
multi-species, and multi-scenario ecological networks.

4.2. Multi-Scenario Conservation Pattern

In multi-scenario simulations, compared to the control network in 1985, the network
indicators of three ecological networks in 2030 have changed to varying degrees. This
clearly reflects the intensified ecological resource competition among animal and plant
species due to human activities and environmental changes in recent years. The connectivity
and stability of ecological networks have declined. The improvement and deterioration
networks aim to align with the United Nations 2030 sustainable development plan and
to find ecological problems from deterioration development. In our simulation results,
the primary problem of the deterioration network is the significant increase in ecological
resistance. Since we restricted the same correction factors, the increase in resistance is
directly related to the change in LULC. Compared with the LULC in 1985, the forest and
grassland proportions of the deterioration network both decreased, while the cropland,
unused land, and impervious surface proportions increased. These proportion changes
reflect the changes in land types caused by excessive logging and grazing, large-scale
reclamation of farmland, and large-scale urban construction. Secondly, the deterioration
network will aggravate the problem of landscape fragmentation. The deterioration network
caused serious fragmentation of the forests in the south of Nyingchi and the south of
Shannan due to large-scale urban construction, and then excessive logging and grazing
and large-scale reclamation of farmland caused the ecological resistance of Lhasa and the
north of Shannan to increase significantly, and the land structure became more fragmented.
And large-area continuous habitats will be separated into small-area discontinuous habitat
patches, forcing regional biodiversity to decline further.

The baseline scenario is grounded in the significant issue of grassland degradation that
has persisted in the SE-QTP over recent decades. This scenario aligns with the observed
trend in land changes within the study area in recent years. Among them, the most obvious
change in land is the annual decline of grassland area, while the forest area keeps rising,
so the baseline scenario more realistically reflects the current development trend of the
study area. The most obvious area of grassland degradation in the baseline network is in
Lhasa and the north of Shannan, where the average elevation is above 4200 m, classify-
ing it as alpine grassland. Alpine grassland is very sensitive to environmental changes,
and many studies have shown that alpine grassland is the most significant land type of
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grassland degradation in the QTP, and environmental conditions are the dominant factors
affecting the stability of alpine grassland communities (Figure 8b). Therefore, protection
measures should focus on studying the mechanism of grassland degradation caused by
environmental conditions, while also controlling the impact of human activities on the
growth environment. (Figure 8i) shows the direct harm of human development activities
to grassland, and the deeper indirect harm caused by development should also be carefully
considered, such as the impact of development on grassland water and heat conditions, soil
conditions, and biological conditions. Secondly, some areas maintain a grazing lifestyle, and
overgrazing leads to the decline of grassland biomass and soil nutrients, gradually causing
grassland degradation (Figure 8j); in addition, rocky desertification directly destroys the
grassland structure and causes irreversible damage (Figure 8g).
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(f) melting glaciers; (g) rocky desertification; (h) urban green space; (i) human-made development;
(j) overgrazing. (Shot by Chuang Li).

Compared to the other two scenarios, the implementation of the improvement network
significantly improved the ecological conditions of the multi-species ecological network,
moving closer to the network conditions of the 1985 control network. This includes a
decrease in the length of ecological corridors, intersections, and ecological resistance
values, an increase in network topology indicators, and a reduction in ecological resource
competition pressure between species. In order to enhance the protection of biodiversity,
we have integrated ecological issues and improvement measures from the three scenarios
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and have proposed protection interventions and policy suggestions. Ecological network
and landscape connectivity play a key role in landscape planning and management policies
and strategies [72,73]. The wild animals within the ecological network primarily inhabit
the forests in the southern regions of Shannan and Nyingchi. The gradually expanding
transportation network is detrimentally impacting the connectivity between animal habitats.
During our field investigation, we observed the construction of protective barriers on both
sides of the roads (Figure 8e). Although the protective net can reduce the occurrence of
traffic accidents, the communication of terrestrial animals on both sides of the road will also
be blocked. For this reason, governments and conservation organizations have built animal
corridors to alleviate the serious damage and fragmentation of wildlife habitats caused by
transportation facilities. This study identifies the intersections of roads and corridors and
provides a reference for the spatial planning of wildlife corridors.

Summarizing all the above problems, we formulated the protection planning pattern of
this study based on the baseline network: “two points, two cores, two belts, and two zones”
(Table 4).

Table 4. Conservation pattern and countermeasures.

Pattern Content Definition Countermeasure

Two points Break point and
stepping stone

The break point is the intersection
of the animal corridor and the road;
a stepping stone is the intersection

of two roads and a corridor.

Building an animal corridor at the break point; the
stepping stone area restricts human activities.

Two cores Grassland
degradation area

The most obvious area of
grassland degradation.

Strictly restrict grazing, return farmland to
grassland, study the degradation mechanism of
alpine grassland, and find a breakthrough plan.

Two belts Corridor core zone The strip area with the highest
corridor density.

Restrict the discharge of construction and
pollution sources and establish protection

countermeasures according to the migration date
and habits of animals.

Two zones
Restoration areas
and conservation

areas

Comparing the ecological sources
in 1985 and 2030, the lost ecological

source in 2030 is the restoration
area, and the emerging ecological

source is the conservation area.

The conservation and restoration countermeasures
shall be formulated by zoning, and the

countermeasures for the first ecological resistance
source in the restoration area shall be studied, so
as to prevent the degradation and fragmentation

of the conservation area.

4.3. Shortcomings and Prospects

Given the complexity and long-term impacts of future scenarios, further research
should consider more influencing factors and simulate different environmental change sce-
narios, such as farmland protection scenarios and ecosystem service enhancement scenarios.
Additionally, since land policies vary across regions, land type simulations should align
with the land policies of local decision-makers. In this study, because land use simulation is
based on area changes, it is challenging to reflect more factors related to grassland quality
degradation. However, the ultimate outcome of grassland quality degradation will evolve
into desertification, characterized by changes in land type. Secondly, this study involves
multiple species, selecting six plants and four animals (including two bird species) listed as
endangered or protected globally and in China. These species exhibit a certain degree of
similarity in their distribution points, leading to overlapping extracted ecological resources.
We have only conducted a macro-level study of species habitat networks, and species-level
analyses are still needed. Moreover, the ultimate goal of most spatial planning is to be
applied in practical ecological protection; thus, more consideration should be given to
issues that align with national policies, reality, effectiveness, and cost-efficiency. Finally,
the SE-QTP is crucial for biodiversity conservation in East Asia and even Central Asia.
Therefore, strengthening cooperation between China and its neighboring countries in estab-
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lishing or managing transnational ecological protection and construction is wise. In future
research, we will explore how to optimize the construction and management of HA-EN
to better protect biodiversity. We hope these studies can provide more scientific evidence
for biodiversity conservation and ecosystem management. With these improvements,
future research will be able to more comprehensively assess the ecological environmental
impacts under different scenarios, providing a solid foundation for formulating scientific
and effective protection measures.

5. Conclusions

This study focuses on the SE-QTP, setting different scenarios to simulate the ecological
space network of multi-species habitats and assess the impact of LULC and climate change
on HA-EN. Based on the research results, we propose ecological protection schemes to
address the challenges of spatio-temporal environmental changes. The main findings are
as follows:

1. Resistance distribution characteristics: The western and northern parts of the study
area exhibit high ecological resistance, while the central and southeastern parts ex-
hibit low ecological resistance. With changes in climate and LULC, high-resistance
areas continuously expand outward, and low-resistance areas continuously shrink.
Under different scenarios, the ecological resistance of the improvement scenario is
significantly better than that of the deterioration and baseline scenarios, yet there is
still a significant difference compared to the baseline year of 1985.

2. Changes in habitats and corridors: By 2030, the area of species’ habitats will have
decreased by 12.9%, while the length of ecological corridors will have significantly
increased under various scenarios. Changes in climate and LULC not only lead to a
reduction in the area of suitable habitats for species but may also further increase the
difficulty of species communication between habitats. Although the network topology
indicators of the improvement scenario are better than those of the deterioration and
baseline scenarios, there remains a significant difference compared to the baseline
year of 1985.

3. Ecological protection planning: By optimizing the spatial layout of ecological elements,
we propose a zoning and layout scheme of “two points, two cores, two belts, and
two areas.” The regional hotspots are mainly located along corridors passing through
areas of human activity and the edges of core habitats. This planning is based on the
heterogeneity of the ecological space network and aims to enhance the connectivity of
the HA-EN and the stability of species habitats.
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