Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Minjiang River Basin Using Dimensionality Reduction and a Structural Equation Model
<p>Location and elevation of MJB.</p> "> Figure 2
<p>Spatial distribution of datasets: (<b>a</b>). The land use types in 2020; (<b>b</b>). The average annual precipitation from 2000 to 2020 (mm); (<b>c</b>). The average annual GDP from 2000 to 2020 (10,000 yuan/km<sup>2</sup>); (<b>d</b>). The average annual NDVI from 2000 to 2020; (<b>e</b>). The average annual temperature from 2000 to 2020 (°C); (<b>f</b>). The average annual POP from 2000 to 2020 (person/km<sup>2</sup>).</p> "> Figure 3
<p>The flowchart of the study.</p> "> Figure 4
<p>Spatial distribution patterns of LUI: (<b>a</b>) 2000; (<b>b</b>) 2005; (<b>c</b>) 2010; (<b>d</b>) 2015; (<b>e</b>) 2020; and (<b>f</b>) Annual average.</p> "> Figure 5
<p>(<b>a</b>). Spatial distribution of CV; (<b>b</b>). Annual NDVI changes from 2000 to 2020; (<b>c</b>). The spatial distribution of trends; (<b>d</b>). The spatial distribution of trend and Hurst exponent coupling.</p> "> Figure 6
<p>(<b>a</b>). The PCC between NDVI and precipitation; (<b>b</b>). The significance of PCC/precipitation; (<b>c</b>). The correlation between NDVI and precipitation; (<b>d</b>). The PCC between NDVI and temperature; (<b>e</b>). the significance of PCC/temperature; (<b>f</b>). The correlation between NDVI and mean temperature.</p> "> Figure 7
<p>The biplot of PCA and the percentage of variance are explained by the principal components: (<b>a</b>). The graph displays the percentage of variance explained by PC1 and PC2 in a PCA. (<b>b</b>). The <span class="html-italic">x</span>-axis represents the number of principal components, while the <span class="html-italic">y</span>-axis indicates the proportion of variance explained by each principal component.</p> "> Figure 8
<p>PLS-SEM analysis of vegetation NDVI responses to climate drivers (precipitation and temperature), topographic factors (elevation and slope), and human activities (LUI, GDP, and POP) is presented. The thickness of the lines represents the absolute value of the path coefficients: thicker lines indicate larger absolute values.</p> "> Figure 9
<p>The interrelation between NDVI/PCC and climatic factors across different elevations.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Land Use Intensity
2.3.2. Coefficient of Variation
2.3.3. Theil–Sen Median Trend Analysis and Mann–Kendall Test
2.3.4. Hurst Index
2.3.5. Partial Correlation Coefficient Analysis
2.3.6. Principal Component Analysis
2.3.7. Partial Least Squares Structural Equation Modeling
3. Results
3.1. Spatiotemporal Variation Analysis of LUI
3.2. Spatiotemporal Variation and Trend Analysis of NDVI
3.2.1. Time Variation Characteristics
3.2.2. Spatial Distribution Characteristics
3.2.3. Trend Analysis of Long-Time Series NDVI
3.2.4. Predictability of Long Time Series of NDVI
3.3. Relationship between Climate Factors and NDVI
3.4. PCA and PLS-SEM Analysis
4. Discussion
4.1. Spatiotemporal Variation in NDVI
4.2. The Influence of Climate and Terrain on Vegetation Growth
4.3. The Interrelation of the Impact Factor
4.4. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keenan, T.F.; Riley, W.J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 2018, 8, 825–828. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tommervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Du, X.; Du, Z.; Sun, M. Alpine grassland greening on the Northern Tibetan Plateau driven by climate change and human activities considering extreme temperature and soil moisture. Sci. Total Environ. 2024, 916, 169995. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, W.; Tao, S. Interannual variations of monthly and seasonal NDVI in China from 1982 to 1999. J. Geophys. Res. Atmos. 2003, 108, 4401. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.L.; Myneni, R.B.; Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef]
- Lehnert, L.; Wesche, K.; Trachte, K.; Bendix, J. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures. Sci. Rep. 2016, 6, 24367. [Google Scholar] [CrossRef]
- Ran, Q.; Hao, Y.; Xia, A.; Liu, W.; Hu, R.; Cui, X.; Xue, K.; Song, X.; Xu, C.; Ding, B.; et al. Quantitative assessment of the impact of physical and anthropogenic factors on vegetation spatial-temporal variation in northern Tibet. Remote Sens. 2019, 11, 1183. [Google Scholar] [CrossRef]
- Jiang, Z.; Hu, Z.; Lai, D.; Han, D.; Wang, M.; Liu, M.; Zhang, M.; Guo, Y. Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands:a meta-analysis. Glob. Chang. Biol. 2020, 26, 7186–7197. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Huang, Y.; Xin, Z.; Dor-ji, T.; Wang, Y. Tibetan Plateau greening driven by warming-wetting climate change and ecological restoration in the 21st century. Land Degrad. Dev. 2022, 33, 2407–2422. [Google Scholar] [CrossRef]
- Wang, B.; Xu, G.; Li, P.; Zhang, Y.; Cheng, Y.; Jia, L.; Zhang, J. Vegetation dynamics and their relationships with climatic factors in the Qinling Mountains of China. Ecol. Indic. 2020, 108, 105719. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Ma, B.; Du, W. Assessing the ecological vulnerability of the upper reaches of the Minjiang River. PLoS ONE 2017, 12, e0181825. [Google Scholar] [CrossRef]
- Han, J.; Huang, Y.; Zhang, H.; Wu, X. Characterization of elevation and land cover dependent trends of NDVI variations in the Hexi region, northwest China. J. Environ. Manag. 2019, 232, 1037–1048. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Zhao, W. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing the ecological services of the Qinghai-Tibetan Plateau’s grasslands through sustainable restoration and management in era of global change. Agric. Ecosyst. Environ. 2022, 326, 107756. [Google Scholar] [CrossRef]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.A.J.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef]
- Yao, T.; Bolch, T.; Chen, D.; Gao, J.; Immerzeel, W.; Piao, S.; Su, F.; Thompson, L.; Wada, Y.; Wang, L.; et al. The imbalance of the Asian water tower. Nat. Rev. Earth Environ. 2022, 3, 618–632. [Google Scholar] [CrossRef]
- Sun, P.; Liu, S.; Jiang, H.; Lue, Y.; Liu, J.; Lin, Y.; Liu, X. Hydrologic effects of NDVI time series in a context of climatic variability in an Upstream Catchment of the Minjiang River. J. Am. Water Resour. 2008, 44, 1132–1143. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X.; Sun, P.; Liu, S. The effect of forest harvesting and climatic variability on runoff in a large watershed: The case study in the upper Minjiang River of Yangtze River basin. J. Hydrol. 2012, 464, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Liu, L.; Sun, P.A. Study on the Relationship Between Vegetation Pattern and Environment in the Upstream of Minjiang River. J. Beijing Norm. Univ. 2005, 4, 404–409. (In Chinese) [Google Scholar] [CrossRef]
- Fu, B.; Xu, P.; Wang, Y.; Peng, Y.; Ren, J. Spatial Pattern of Water Retetnion in Dujiangyan County. Acta Ecol. Sin. 2013, 33, 789–797. (In Chinese) [Google Scholar]
- Zhu, C.; Zhang, J.; Zhao, Y.; Liu, C. Topographic gradient effects of ecosystem services in a typical watershed in the eastern margin of the Qinghai-Tibet Plateau: A case study of the upper reaches of the Minjiang River. Resour. Environ. Yangtze Basin 2017, 26, 1687–1699. (In Chinese) [Google Scholar]
- Xiong, Y.; Wang, H. Spatial relationships between NDVI and topographic factors at multiple scales in a watershed of the Minjiang River, China. Ecol. Inform. 2022, 69, 101617. [Google Scholar] [CrossRef]
- Wang, J.; Fan, Y.; Yang, Y.; Zhang, L.; Zhang, Y.; Li, S.; Wei, Y. Spatial-temporal evolution characteristics and driving force analysis of ndvi in the minjiang river basin, china, from 2001 to 2020. Water 2022, 14, 2923. [Google Scholar] [CrossRef]
- Wang, G.; Peng, W. Quantifying spatiotemporal dynamics of vegetation and its differentiation mechanism based on geographical detector. Environ. Sci. Pollut. Res. 2022, 29, 32016–32031. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, T.; Zhu, X.; Yi, G.; Li, J.; Bie, X.; Hu, J.; Liu, X. Quantitatively analyzing the driving factors of vegetation change in China: Climate change and human activities. Eco. Inform. 2024, 82, 102667. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Wang, H.; Ciais, P.; Penuelas, J.; Myneni, R.B.; Desai, A.R.; Gough, C.M.; Gonsamo, A.; Black, A.T.; et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Chang. 2018, 8, 1092–1096. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carre, G.; Marquez, J.R.G.; Gruber, B.; Lafourcade, B.; Leitao, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst Sci Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhang, Q.; Ruan, X.; Xiong, A. Establishment and Assessment of the Grid Air Temperature Data Sets in China for the Past 57 Years. J. Appl. Met. Sci. 2009, 20, 385–393. (In Chinese) [Google Scholar]
- Li, J.; Li, C.; Yin, Z. ArcGIS Based Kriging Interpolation Method and Its Application. Bull. Surv. Mapp. 2013, 9, 87. (In Chinese) [Google Scholar]
- Margriter, S.C.; Bruland, G.L.; Kudray, G.M.; Lepczyk, C.A. Using indicators of land-use development intensity to assess the condition of coastal wetlands in Hawaii. Landsc. Ecol. 2014, 29, 517–528. [Google Scholar] [CrossRef]
- Han, Z.; Meng, Q.; Yan, X.; Zhao, W. Spatial and temporal relationships between land use intensity and the value of Ecosystem Services in northern Liaodong Bay over the past 30 years. Acta Ecol. Sin. 2020, 40, 2555–2566. (In Chinese) [Google Scholar]
- Wang, G.; Liao, S. Study on spatial heterogeneity of land use intensity change. Chin. J. Appl. Ecol. 2006, 17, 611–614. (In Chinese) [Google Scholar]
- Kross, A.; McNairn, H.; Lapen, D.; Sunohara, M.; Champagne, C. Assessment of Rapid Eye Vegetation Indices for Estimation of Leaf Area Index and Biomass in Corn and Soybean Crops. Int. J. Appl. Earth Obs. 2015, 34, 235–248. [Google Scholar] [CrossRef]
- He, J.; Shi, X.; Fu, Y. Identifying vegetation restoration effectiveness and driving factors on different micro-topographic types of hilly Loess Plateau: From the perspective of ecological resilience. J. Environ. Manag. 2021, 289, 112562. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Jiang, W.; Shen, W.; Liu, Y.; Wang, W.; Tao, L.; Zhang, H.; Liu, X. The spatio temporal variations of vegetations cover in the Yellow River Basin from 2000 to 2010. Acta Eeologica Sin. 2013, 33, 7798–7806. (In Chinese) [Google Scholar]
- Piao, S.; Anwar, M.; Fang, J.; Cai, Q.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, M.R.; Heydari, M.H.; Qasem, S.N.; Mosavi, A.; Band, S.S. Principal component analysis to study the relations between the spread rates of COVID-19 in high risks countries. Alex. Eng. J. 2021, 60, 457–464. [Google Scholar] [CrossRef]
- Raziei, T.; Saghafian, B.; Paulo, A.A.; Pereira, L.S.; Bordi, I. Spatial patterns and tem-poral variability of drought in Western Iran. Water Resour. Manag. 2009, 23, 439–455. [Google Scholar] [CrossRef]
- Bartlett, M.S. Tests of significance in factor analysis. Br. J. Stat. Psychol. 1950, 3, 77–85. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark IV. Educ. Psychol. Measur. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Huang, J.; Sun, S.; Xue, Y.; Li, J.; Zhang, J. Spatial and temporal variability of precipitation and dryness/wetness during 1961–2008 in Sichuan Province, West China. Water Resour. Manag. 2014, 28, 1655–1670. [Google Scholar] [CrossRef]
- Li, B.; Su, H.; Chen, F.; Li, S.; Tian, J.; Qin, Y.; Zhang, R.; Chen, S.; Yang, Y.; Rong, Y. The changing pattern of droughts in the Lancang River Basin during 1960–2005. Theor. Appl. Climatol. 2012, 111, 401–415. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2017, 624, 1523–1538. [Google Scholar] [CrossRef]
- Reinartz, W.J.; Haenlein, M.; Henseler, J. An empirical comparison of the efficacy of covariance-based and variance-based SEM. Int. J. Res. Mark. 2009, 26, 332–344. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial Least Squares Structural Equation Modeling (PLS-SEM). An emerging tool in business research. Eur. Bus. Rev. 2014, 26, 106–121. [Google Scholar] [CrossRef]
- Hayes, A.F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Hu, R.; Wang, Y.; Chang, J.; Istanbulluoglu, E.; Guo, A.; Meng, X.; Li, Z.; He, B.; Zhao, Y. Coupling water cycle processes with water demand routes of vegetation using a cascade causal modeling approach in arid inland basins. Sci. Total Environ. 2022, 840, 156492. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Luo, L.; Wang, S.; Wang, Y.; Sharma, S.; Shimdera, H.; Wang, X.; Bressi, M.; de Mirnda, R.M.; Jiang, J.; et al. Status and characteristics of ambient PM2.5 pollution in global megacities. Environ. Int. 2016, 89–90, 212–221. [Google Scholar] [CrossRef]
- Liao, T.; Wang, S.; Ai, J.; Gui, K.; Duan, B.; Zhao, Q.; Zhang, X.; Jiang, W.; Sun, Y. Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China). Sci. Total Environ. 2017, 584, 1056–1065. [Google Scholar] [CrossRef]
- Shi, S.; Wang, X.; Hu, Z.; Zhao, X.; Zhang, S.; Hou, M.; Zhang, N. Geographic Detector-Based Quantitative Assessment Enhances Attribution Analysis of Climate and Topography Factors to Vegetation Variation for Spatial Heterogeneity and Coupling. Glob. Ecol. Conserv. 2023, 42, e02398. [Google Scholar] [CrossRef]
- Chin, W.; Cheah, J.H.; Liu, Y.; Ting, H.; Lim, X.J.; Cham, T.H. Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Ind. Manag. Data Syst. 2020, 120, 2161–2209. [Google Scholar] [CrossRef]
- Wetzels, M.; Odekerken-Schröder, G.; Van Oppen, C. Using PLS path modeling for assessing hierarchical construct models: Guidelines and empirical illustration. MIS Q. 2019, 33, 177–195. [Google Scholar] [CrossRef]
- Cui, P.; Lin, Y.; Chen, C. Destruction of vegetation due to geo-hazards and its environmental impacts in the Wenchuan earthquake areas. Ecol. Eng. 2012, 44, 61–69. [Google Scholar] [CrossRef]
- Shen, P.; Zhang, L.; Fan, R.; Zhu, H.; Zhang, S. Declining geohazard activity with vegetation recovery during first ten years after the 2008 Wenchuan earthquake. Geomorphology. 2020, 352, 106989. [Google Scholar] [CrossRef]
- Xiao, C.; Ji, Y.; Li, J.; Zhang, Z.; Ba, R.; Cao, Y. Spatial and temporal differentiation of ecological vulnerability and interaction effect of driving factors in the upper reaches of the Minjiang River: A case study of the Hagu Naohe River Basin. Ecol. Environ. Sci. 2023, 32, 1760–1770. (In Chinese) [Google Scholar]
- Wu, S.; Wu, N.; Zhong, B. What Ecosystem Services Flowing from Linpan System—A Cultural Landscape in Chengdu Plain, Southwest China. Sustainability 2020, 12, 4122. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, W.; Zhang, J. Assessment of Land Ecological Security from 2000 to 2020 in the Chengdu Plain Region of China. Land 2023, 12, 1448. [Google Scholar] [CrossRef]
- Evans, J.; Ceeken, R. Discrimination between climate and human-induced dryland degradation. J. Arid. Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China. Remote Sens. 2021, 13, 5081. [Google Scholar] [CrossRef]
- Yao, B.; Ma, L.; Si, H.; Li, S.; Gong, X.; Wang, X. Spatial Pattern of Changing Vegetation Dynamics and Its Driving Factors across the Yangtze River Basin in Chongqing: A Geodetector-Based Study. Land 2023, 12, 269. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Fu, Y.; Xue, B.; Wang, G.; Yu, J.; Zuo, D.; Xu, Z. Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River basin in the Tibetan plateau. J. Hydrol. 2019, 574, 324–332. [Google Scholar] [CrossRef]
- Jobbagy, E.G.; Sala, O.E.; Paruelo, J.M. Patterns and controls of primary production in the Patagonian steppe: A remote sensing approach. Ecology 2002, 83, 307–319. [Google Scholar] [CrossRef]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernandez-Clemente, R.; Zhao, Y.; Gaitan, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehman, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Lenz, A.; Hoch, G.; Körner, C. Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. J. Ecol. 2014, 102, 981–988. [Google Scholar] [CrossRef]
- Shen, Z.; Fu, G.; Yu, C.; Sun, W.; Zhang, X. Relationship between the growing season maximum enhanced vegetation index and climatic factors on the Tibetan Plateau. Remote Sens. 2014, 6, 6765–6789. [Google Scholar] [CrossRef]
- Choat, B.; Brodribb, T.J.; Brodersen, C.R.; Duursma, R.A.; Lopez, R.; Medlyn, B.E. Triggers of tree mortality under drought. Nature 2018, 558, 531–539. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Xu, B.; Li, J.; Liu, Y.; Zhang, T.; Luo, Z.; Pei, X. Disentangling the response of vegetation dynamics to natural and anthropogenic drivers over the Qinghai–Tibet Plateau using dimensionality reduction and structural equation model. For. Ecol. Manag. 2024, 554, 121677. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Wang, X.; Dong, J.; Bie, Q. Detecting Patterns of Vegetation Gradual Changes (2001–2017) in Shiyang River Basin, Based on a Novel Framework. Remote Sens. 2019, 11, 2475. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Mohammadzadeh, A.; Jamali, S. Linear and Non-Linear Vegetation Trend Analysis throughout Iran Using Two Decades of MODIS NDVI Imagery. Remote Sens. 2022, 14, 3683. [Google Scholar] [CrossRef]
β | Z | Classification | Area Ratio |
---|---|---|---|
β > 0.0005 | 1.96 < |Z| | significant increase | 36.92 |
1.96 ≥ |Z| | insignificant increase | 32.11 | |
−0.0005 < β < 0.0005 | Z | stable | 12.71 |
β < −0.0005 | 1.96 ≥ |Z| | insignificant decrease | 12.16 |
1.96 < |Z| | significant decrease | 6.10 |
Classification | Hurst Index | Trend Persistence Characteristics | Area Ratio |
---|---|---|---|
Significant increase Insignificant increase Stable Insignificant decrease Significant decrease | 0.5 ≤ H < 1 | Sustained significant improvement | 9.18 |
Sustained insignificant improvement | 7.38 | ||
Sustained stable | 12.72 | ||
Sustained insignificant degradation | 3.80 | ||
Sustained significant degradation | 2.53 | ||
0 < H < 0.5 | Uncertain | 64.39 |
Index Standard | Value | Classification |
---|---|---|
R2 | >0.67 | High explanatory power |
>0.33 | Moderate explanatory power | |
>0.19 | Low explanatory power | |
Q2 | >0 | The larger the value, the higher the prediction accuracy of the model. |
GOF | 0.1 | Low model fitting |
0.25 | Medium model fitting | |
0.36 | High model fitting |
Classification | Area Ratio (Precipitation) | Area Ratio (Temperature) |
---|---|---|
Extremely significant negative correlation | 0.74 | 0.56 |
Significant negative correlation | 1.67 | 1.82 |
No significant negative correlation | 31.64 | 34.79 |
No significant positive correlation | 54.46 | 56.54 |
Significant positive correlation | 6.80 | 4.83 |
Extremely significant positive correlation | 4.69 | 1.44 |
Classification | Average Precipitation PCC | Average Temperature PCC |
---|---|---|
significant increase | 0.235 | 0.138 |
insignificant increase | 0.103 | 0.076 |
stable | 0.014 | 0.026 |
insignificant decrease | −0.071 | −0.013 |
significant decrease | −0.169 | −0.085 |
Indicators | Type | Value |
---|---|---|
R2 | NDVI | 0.141 |
Human activities | 0.601 | |
Climate factors | 0.828 | |
Q2 | / | 0.140 |
GOF | / | 0.458 |
p-value | Topographic factors → NDVI | 0.391 |
Human activities → NDVI | 0.000 | |
Climate factors → NDVI | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Wang, Z.; Xu, B.; Shen, W.; Chen, Y.; Zhou, X.; Liu, Y.; Zhang, T.; Wang, G.; Jia, Y.; et al. Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Minjiang River Basin Using Dimensionality Reduction and a Structural Equation Model. Forests 2024, 15, 1438. https://doi.org/10.3390/f15081438
Kang Y, Wang Z, Xu B, Shen W, Chen Y, Zhou X, Liu Y, Zhang T, Wang G, Jia Y, et al. Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Minjiang River Basin Using Dimensionality Reduction and a Structural Equation Model. Forests. 2024; 15(8):1438. https://doi.org/10.3390/f15081438
Chicago/Turabian StyleKang, Yujie, Ziqin Wang, Binni Xu, Wenjie Shen, Yu Chen, Xiaohui Zhou, Yanguo Liu, Tingbin Zhang, Guoyan Wang, Yuling Jia, and et al. 2024. "Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Minjiang River Basin Using Dimensionality Reduction and a Structural Equation Model" Forests 15, no. 8: 1438. https://doi.org/10.3390/f15081438
APA StyleKang, Y., Wang, Z., Xu, B., Shen, W., Chen, Y., Zhou, X., Liu, Y., Zhang, T., Wang, G., Jia, Y., & Li, J. (2024). Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Minjiang River Basin Using Dimensionality Reduction and a Structural Equation Model. Forests, 15(8), 1438. https://doi.org/10.3390/f15081438